
ispLever
CORECORE

TM

August 2007
ipug69_01.0

Gigabit Ethernet PCS IP Core for LatticeECP2M

User’s Guide

2

Gigabit Ethernet PCS IP Core
Lattice Semiconductor for LatticeECP2M

Introduction

The 1000BASE-X physical layer, also referred to as the Gigabit Ethernet (GbE) physical layer, consists of three
major blocks, the Physical Coding Sublayer (PCS), the Physical Medium Attachment sublayer (PMA), and the
Physical Medium Dependent sublayer (PMD). The LatticeECP2M™ embedded SERDES/PCS performs the PMA
function, and portions of the PMD and PCS functions, including link serialization/deserialization, code-group align-
ment, clock tolerance compensation buffering, and 8b10b encoding/decoding. However, the embedded SER-
DES/PCS does not provide all necessary functions for implementing a complete GbE physical layer solution. That’s
where the GbE PCS IP core comes in. The IP core provides the additional functions required to fully implement the
PCS functions of the GbE physical layer. These additional functions include a transmit state machine, a receive
state machine, and auto-negotiation.

This document describes the IP core’s operation and provides instructions for generating the core through
ispLEVER

®

 IPexpress™, including instantiating, synthesizing, and simulating the core.

Features

• Implements the transmit, receive, and auto-negotiation functions of the IEEE 802.3z specification

• 8-bit GMII Interface operating at 125 MHz

• 8-bit Code-Group Interface operating at 125 MHz

• Parallel signal interface for control and status management

Functional Description

The GbE PCS IP core converts GMII data frames into 8-bit code groups in both transmit and receive directions;
and performs auto negotiation with a link partner as described in the IEEE 802.3z specification. The core’s block
diagram is shown in Figure 1. The following paragraphs detail the operation the IP core’s main functional blocks. An
example of how this IP core may be used in implementing a gigabit ethernet physical layer is shown in Figure 2.

Figure 1. GbE PCS IP Core Block Diagram

Transmit
State Machine

Receive
State Machine

Synchronization
State Machine

Auto-Negotiation
State Machine

T
xD

[7
:0

]

T
x_

C
LK

T
x_

E
r

T
x_

E
n

R
x_

E
r

R
x_

D
v

R
x

_C
lk

R
xD

[7
:0

]

R
x_

D
at

a[
7:

0]

R
x_

K
cn

tl

R
x_

E
ve

n

T
x_

K
cn

tl

T
x_

D
at

a[
7:

0]

MAC/PHY Mode

mr_adv_ability

mr_an_enable

mr_main_reset

mr_restart_an

mr_an_complete

mr_lp_adv_ability

mr_page_rx

GMII Interface

8-bit Code Group Interface S
ig

na
l_

D
et

ec
t

R
x_

D
is

p_
E

rr

R
x_

C
v_

E
rr

R
x_

E
rr

_D
ec

od
e_

M
od

e

C
or

re
ct

_D
is

p

X
m

it_
A

ut
on

eg

3

Gigabit Ethernet PCS IP Core
Lattice Semiconductor for LatticeECP2M

Figure 2. Typical GbE Physical Layer Implementation

Transmit State Machine

The transmit state machine implements the transmit functions described in clause 36 of the IEEE 802.3 specifica-
tion. The state machine’s main purpose is to convert GMII data frames into code groups. A typical timing diagram
for this circuit block is shown below. Note that the state machine in this IP core does not fully implement the conver-
sion to 10-bit code groups as specified in the 802.3 specification. Instead, partial conversion to 8-bit code groups is
performed. A separate encoder (located in the LatticeECP2M embedded SERDES/PCS block) completes the full
conversion to 10-bit code groups.

Figure 3. Typical Transmit Timing Diagram

Synchronization State Machine

The synchronization state machine implements the alignment functions described in clause 36 of the IEEE 802.3
specification. The state machine’s main purpose is to determine whether incoming code groups are properly
aligned. Once alignment is attained, proper code groups are passed to the receive state machine. If alignment is
lost for an extended period, an auto negotiation restart is triggered.

Receive State Machine

The receive state machine implements the receive functions described in clause 36 of the IEEE 802.3 specifica-
tion. The state machine’s main purpose is to convert code groups into GMII data frames. A typical timing diagram
for this circuit block is shown below. Note that the state machine in this IP core does not fully implement the conver-
sion from 10-bit code groups as specified in the 802.3 specification. Instead, partial conversion from 8-bit code
groups is performed. A separate decoder (located in the LatticeECP2M embedded SERDES/PCS block) performs
10-bit to 8-bit conversions.

User I/O

GbE
PCS

IP Core

Link State Machine

8b10b
Encoder
Decoder

SERDES

Control
RegistersMDIO

GMII 8BI

8 bits @
125 MHz

GMII

8 bits @
125 MHz

125 MHz
Ref Clk

Serial Interface
to Magnetics
or Backplane

CML
Differential Pairs

@ 1.25 Gbps

Part of Embedded
SERDES/PCS

8 bits @
125 MHz

Management
Interface

tx_d

tx_en

tx_data

tx_kcntl

preamble SFD Dest Add Src Add Len/Type Data FCS

preamble SFD Dest Add Src Add Len/Type Data FCS SPD IDLE IDLE EPD

4

Gigabit Ethernet PCS IP Core
Lattice Semiconductor for LatticeECP2M

Figure 4. Typical Receive Timing Diagram

Auto-Negotiation State Machine

The auto-negotiation state machine implements the link configuration functions described in clause 37 of IEEE
802.3 specification, including checking link readiness, determining duplex mode, and negotiating flow control. A
typical timing diagram is shown below.

Figure 5. Typical Auto-Negotiation Timing Diagram

Signal Descriptions

Table 1. GbE PCS IP Core Input and Output Signals

Signal Name I/O Description

Clock Signals

tx_clk_125

In

Transmit Clock

 – 125 MHz clock source for transmit state machine. Incoming GMII
transmit data is sampled on rising edge of this clock. Outgoing 8-bit code group trans-
mit data is launched on the rising edge of this clock.

rx_clk_125

In

Receive Clock

 – 125 MHz clock source for receive state machine and the synchroni-
zation state machine. Incoming signals are sampled on the rising edge of the clock.
Outgoing signals are launched on the rising edge of this clock.

GMII Signals

tx_d[7:0]

In

Transmit Data

 – Incoming GMII data.

tx_en

In

Transmit Enable

 – Active high signal, asserts when incoming data is valid.

tx_er

In

Transmit Error

 – Active high signal, used to denote transmission errors and carrier
extension on incoming GMII data port.

rx_d[7:0]

Out

Receive Data

 – Outgoing GMII data.

rx_dv

Out

Receive Data Valid

– Active high signal, asserts when outgoing data is valid.

rx_er

Out

Receive Error

 – Active high signal, used to denote transmission errors and carrier
extension on outgoing GMII data port.

8-Bit Code Group Signals

tx_data[7:0]

Out

8b Transmit Data

 – 8-bit code group data after passing through transmit state
machine.

tx_kcntl

Out

8b Transmit K Control

 – Denotes whether current code group is data or control.
1=control 0=data

rx_d

rx_dv

rx_data

rx_kcntl

preamble SFD Dest Add Src Add Len/Type Data FCS

IDLE preamble SFD Dest Add Src Add Len/Type Data FCS SPD IDLE EPD

mr_page_rx

power up reset

mr_adv_ability

mr_an_complete

mr_lp_adv_ability

0x0020

0x4020 0x0000

5

Gigabit Ethernet PCS IP Core
Lattice Semiconductor for LatticeECP2M

correct_disp

Out

Corrects Disparity

 – Asserted during inter-packet gaps to ensure that negative dispar-
ity IDLE ordered-sets are transmitted by the LatticeECP2M embedded SERDES /PCS.
1=correct disparity, 0=normal

xmit_autoneg

Out

Auto-negotiation Transmitting

 – This signal asserts when the IP core’s auto negotia-
tion state machine is active. The signal is used by the LatticeECP2M embedded SER-
DES/PCS to occasionally insert idle ordered sets into its receive path (eight ordered
sets every 2048 clocks). This facilitates proper operation of the embedded clock toler-
ance compensation circuit. 1=autoneg is active, 0=autoneg is not active

rx_data[7:0]

In

8b Receive Data

– 8-bit code group data presented to the receive state machine.

rx_kcntl

In

8b Receive K Control

 – Denotes whether current code group is data or control.
1=control 0=data

rx_err_decode_mode

In

Receive Error Control Mode

 – The embedded SERDES block of the LatticeECP2M
FPGAs has two modes of interpreting errors, decoded and normal. In decoded mode,
the three signals (

rx_even

,

rx_cv_err

,

rx_disp_err

) are used to decode 1-of-8 error
conditions. In decoded mode, the IP core responds to the following errors:

100 = Coding Violation Error
111 = Disparity Error

All other error codes are ignored by the IP core. In normal mode, the three error signals
(

rx_even

,

rx_cv_err

,

rx_disp_err

) behave normally. The

rx_err_decode_mode

signal should be set high for decode mode, and low for normal mode.

rx_even

In

Rx Even

 – This signal is only used when error decoding mode is active. Otherwise, the
signal should be tied low.

rx_cv_err

In

Rx Coding Violation Error

 – In normal mode, an active high signal denoting a coding
violation error in the receive data path. In decode mode, used to decode 1 of 8 error
conditions.

rx_disp_err

In

Rx Disparity Error

 – In normal mode, an active high signal denoting a disparity error in
the receive data path. In decode mode, used to decode 1 of 8 error conditions.

signal_detect

In

Signal Detect

 – Denotes status of GbE PCS RX physical link. 1=signal is good; 0=loss
of receive signal

Management Signals

mr_adv_ability[15:0]

In

Advertised Ability

 – Configuration status transmitted by PCS during auto negotiation
process.

mr_an_enable

In

Auto Negotiation Enable

 – Active high signal that enables auto negotiation state
machine to function.

mr_main_reset

In

Main Reset

 – Active high signal that forces all PCS state machines to reset.

mr_restart_an

In

Auto Negotiation Restart

 – Active high signal that forces auto negotiation process to
restart.

mr_an_complete

Out

Auto Negotiation Complete

 – Active high signal that indicates that the auto negotia-
tion process is completed.

mr_lp_adv_ability[15:0]

Out

Link Partner Advertised Ability

 – Configuration status received from partner PCS
entity during the auto negotiating process. The bit definitions are the same as
described above for the

mr_adv_ability

 port.

mr_page_rx

Out

Auto Negotiation Page Received

 – Active high signal that asserts while the auto
negotiation state machine is in the

Complete_Acknowledge

 state.

Miscellaneous Signals

rst_n

In

Reset

 – Active low global reset

debug_link_timer_short

In

Debug Link Timer Mode

 – Active high signal that forces the auto negotiation link timer
to run much faster than normal. This mode is provided for debug purposes (e.g.,allow-
ing simulations to run through the auto negotiation process much faster that the nor-
mal).

Table 1. GbE PCS IP Core Input and Output Signals (Continued)

Signal Name I/O Description

6

Gigabit Ethernet PCS IP Core
Lattice Semiconductor for LatticeECP2M

Core Generation

The GbE PCS IP core is available for download from the Lattice website at www.latticesemi.com. The IP files are
automatically installed using ispUPDATE technology in any directory of your choosing.

The ispLEVER IPexpress GUI window for the GbE PCS IP core is shown in Figure 6. To generate a specific IP core
configuration you must specify:

•

Project Path

 – Path to directory where the generated IP files will be loaded.

•

File Name

 – “username” designation given to the generated IP core and corresponding folders and files.

•

Design Entry type

 – Verilog HDL.

•

Device Family

 – Device family to which IP is to be targeted. Only families that support the particular core are
listed.

•

Part Name

 – Specific targeted part within the selected Device Family.

Note that if IPexpress is called from within an existing project, Project Path, Design Entry, Device Family and Part
Name default to the specified project parameters. Please refer to the IPexpress on-line help for further information.

Figure 6. IPexpress Dialog Box

To create a custom configuration, click on the

Customize

 button to display the GbE PCS IP core Configuration
GUI, shown in Figure 7. From this window you may start the core generation process.

7

Gigabit Ethernet PCS IP Core
Lattice Semiconductor for LatticeECP2M

Figure 7. Configuration Dialog Box

When you click the Generate button, the IP core and supporting files are generated in the specified Project Path
directory. The directory structure of the generated files is shown in Figure 8.

Figure 8. GbE PCS IP Core Generated Directory Structure

The following files are generated at the root of the “Project Path” directory (gbe_pcs_test in Figure 8):

• <username>.lpc – IP parameter file (you may modify this file if necessary)

• <username>.ngo – Synthesized and mapped IP core

• <username>_bb.v – Black box module wrapper for synthesis

• <username>_inst.v – Example of instantiation template to be included in customer’s design

• <username>_beh.v – Behavioral simulation model for IP core configuration username

8

Gigabit Ethernet PCS IP Core
Lattice Semiconductor for LatticeECP2M

These are all of the files that you need to implement and verify the GbE PCS IP core in your own top-level design.
The following additional files providing IP core generation status information are also generated in the “Project
Path” directory:

• <username>_generate.log – ispLEVER synthesis and map log file

• <username>_gen.log – IPexpress IP generation log file

The \<gbe_pcs_eval> and subtending directories provide files supporting GbE PCS core evaluation. The
\<gbe_pcs_eval> directory contains files/folders with content that is constant for all configurations of the GbE
PCS. The \<username> subfolder (\gbepcs_core0 in this example) contains files/folders with content specific
to the username configuration.

The \gbe_pcs_eval directory is created by IPexpress the first time the core is generated and updated each time
the core is regenerated. A \<username> directory is created by IPexpress each time the core is generated and
regenerated each time the core with the same file name is regenerated. A separate \<username> directory is
generated for cores with different names, e.g. \<gbepcs_core1>, \<gbepcs_core2>, etc.

Instantiating the Core
The generated GbE PCS IP core package includes black-box (<username>_bb.v) and instance (<user-
name>_inst.v) templates that can be used to instantiate the core in a top-level design. Two example RTL top-
level source files are provided in \<project_dir>\gbe_pcs_eval\<username>\src\rtl\top\<technol-
ogy>.

The top-level file top.v is a GbE Physical Layer Reference design (described in Appendix B). Additional files asso-
ciated with the reference design are located in the directory \<project_dir>\gbe_pcs_eval\<user-
name>\src\rtl\template\<technology>.

The top-level file top_gbe_pcs_core_only.v supports the ability to implement just the GbE PCS core by itself.
This design is intended only to provide an indication of the device utilization associated with the GbE PCS IP core
and should not be used as an actual implementation example.

Running Functional Simulation
The functional simulation model generated in the “Project Path” root directory (<username>_beh.v) may be
instantiated in the your testbench for evaluation in the context of your application. Lattice does not provide a test-
bench for evaluating this IP core in isolation. However, a function simulation capability is provided in which <user-
name>_beh.v is instantiated in an FPGA top level that implements a complete GbE Physical Layer as discussed
previously and described in an appendix to this document. The top-level file supporting ModelSim® simulation is
provided in \<project_dir>\gbe_pc_eval\<username>\sim\modelsim. This FPGA top is instantiated in
an eval testbench provided in \<project_dir>\gbe_psc_eval\testbench.

You may run the eval simulation by doing the following:

1. Open ModelSim.

2. Under the File tab, select Change Directory and choose folder:

<project_dir>\gbe_pcs_eval\<username>\sim\modelsim.

3. Under the Tools tab, select TCL _ Execute Macro and execute the ModelSim “do” script shown.

The simulation waveform results will be displayed in the ModelSim Wave window.

9

Gigabit Ethernet PCS IP Core
Lattice Semiconductor for LatticeECP2M

Synthesizing and Implementing the Core in a Top-Level Design
The GbE PCS IP core itself is synthesized and is provided in NGO format when the core is generated. You may
synthesize the core in your own top-level design by instantiating the core in your top-level as described above in the
“Instantiating the Core” section and then synthesizing the entire design with either Synplicity® or Precision® RTL.

As described previously, two example RTL top-level configurations supporting GbE PCS core top-level synthesis
and implementation are provided in \<project_dir>\gbe_pcs_eval\<username>\src\rtl\top\<tech-
nology>.

The top-level file top_gbe_pcs_core_only.v provided in \<project_dir>\gbe_pcs_eval\<user-
name>\src\rtl\top supports the ability to implement just the GBE_PCS core. This design is intended only to
provide an accurate indication of the device utilization associated with the core itself and should not be used as an
actual implementation example.

The top-level file top.v is a GbE Physical Layer Reference design \<project_dir>\gbe_pcs_eval\<user-
name>\src\rtl\top supports the ability to instantiate, simulate, map, place and route the GBE_PCS IP core in
a complete example design. A complete description of this design is given in an appendix to this document. Note
that implementation of the reference evaluation configuration is specifically targeted to a LatticeECP2M
LFE2M35E-6F672C device.

Push-button implementation of both top-level configurations is supported via the ispLEVER project files, <user-
name>_reference_eval.syn and <username>_core_only_eval.syn. These files are located in
<project_dir>\ten_gbemac_test\ten_gbemac_eval\<username>\impl\<configuration>.

To use these project files:

1. Select Open Project under the File tab in ispLEVER.

2. Browse to the \<project_dir\gbe_pcs_eval\<username>\impl directory and select either the
\core_only or \reference directory in the Open Project dialog box.

3. Select and open either <username>_reference_eval.syn or username>_core_only_eval.syn. At this
point, all of the files needed to support top-level synthesis and implementation will be imported to the project.

4. Select the device top-level entry in the left-hand GUI window.

5. Implement the complete design via the standard ispLEVER GUI flow.

Hardware Evaluation
Lattice’s IP hardware evaluation capability makes it possible to create versions of IP cores that operate in hardware
for a limited period of time (approximately four hours) without requiring the purchase on an IP license. The hard-
ware evaluation capability may be enabled/disabled in the Properties menu of the Build Database setup in
ispLEVER Project Navigator. It is enabled by default.

References
• ispLEVER Software User Manual

• ispLeverCORE™ IP Module Evaluation Tutorial available on the Lattice website at www.latticesemi.com

Technical Support Assistance
Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)

e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

10

Gigabit Ethernet PCS IP Core
Lattice Semiconductor for LatticeECP2M

Revision History
Date Version Change Summary

August 2007 01.0 Initial release.

11

Gigabit Ethernet PCS IP Core
Lattice Semiconductor for LatticeECP2M

Appendix A. LatticeECP2M Devices
Table 2. Performance and Resource Utilization1

Ordering Part Number
The Ordering Part Number (OPN) for the GbE PCS core targeting LatticeECP2M devices is GBE-PCS-PM-U1.

You can use the IPexpress software tool to help generate new configurations of this IP core. IPexpress is the Lattice
IP configuration utility, and is included as a standard feature of the ispLEVER design tools. Details regarding the
usage of IPexpress can be found in the IPexpress and ispLEVER help system. For more information on the
ispLEVER design tools, visit the Lattice web site at: www.latticesemi.com/software.

Target Device SLICEs LUTs Registers I/Os2 fMAX (MHz)

LFE2M35E-5F672CES 350 447 417 85 125

1. Performance and utilization characteristics are in Lattice’s ispLEVER7.0 software with Synplify synthesis. When using this IP core in a differ-
ent software version or a different device density or speed grade, performance may vary.

2. I/Os are for core-only top-level instantiation. The actual core does not require any primary I/O other than SERDES interface.

12

Gigabit Ethernet PCS IP Core
Lattice Semiconductor for LatticeECP2M

Appendix B. GbE Physical Layer Reference Design
Introduction
This appendix describes the operation, simulation, and implementation of a GbE Physical Layer design, using Lat-
tice’s GbE PCS IP Core. The reference design utilizes two channels, one generates and monitors simplified ether-
net frames, the other loops back all received ethernet frames. The two channels can be externally connected
through the SERDES physical links, thereby establishing a demonstration of the interoperability between two GbE
physical layers. Another application is connecting the reference design loopback channel to an external GbE traffic
source (e.g. a Smartbits Test Generator), thereby demonstrating interoperability with the external traffic source.

Functional Description
The reference design block diagram is shown in Figure 9. The major blocks include two GbE PCS IP cores, the
LatticeECP2M embedded SERDES/ PCS, a frame driver, a frame receiver, and control logic.

The Driver Channel
The driver channel is shown in the lower part of Figure 9, and is comprised of a frame driver, a frame monitor, and
GbE PCS IP core, part of an embedded SERDES/PCS, and some control registers.

The transmit side of the channel begins at the frame driver, where a single 512-byte gigabit ethernet frame is
repeatedly transmitted. The frame enters the transmit side of the GbE PCS IP core, where it is converted into 8-bit
code groups. Next the frame enters the transmit portion of an embedded SERDES/PCS channel where 8b10b
encoding and 10-bit-to-1-bit serialization occurs. The frame leaves the FPGA over the external 1.25Gbps SERDES
physical link.

The receive side of the channel begins at the external SERDES input port. Clock recovery is performed, the data is
deserialized, and an 802.3z synchronization state machine aligns the data stream to comma characters, and
10B8B decoding is performed. Next the frame enters the receive portion of the GbE PCS IP core, where 8-bit code
groups are converted to GMII frames. Then the frame arrives at the frame monitor. If the payload data matches the
frame driver data pattern, a “pass” signal is asserted. If the data pattern check fails, a “fail” signal is asserted.

The Loopback Channel
The driver channel is shown in the upper part of Figure 9. It is similar to the driver channel except that it does not
contain a frame driver or frame monitor. Instead this channel utilizes a parallel loopback block. All GMII frames from
the receive path of the GbE PCS IP core are looped back to the transmit path of the GbE PCS IP core.

Clock Distribution
All timing in the reference design is derived from ref_clk a 125 MHz primary input to the FPGA. This clock is fed
to the embedded SERDES/PCS where it is phase locked and used to time all outgoing SERDES channels, used to
reference clock recovery of all incoming SERDES channels, and used to source timing for all of the FPGA soft
logic, including the transmit and receive paths of the GbE PCS IP cores.

13

Gigabit Ethernet PCS IP Core
Lattice Semiconductor for LatticeECP2M

Figure 9. Block Diagram GbE Physical Layer Reference Design

IP Core Registers
A set of registers are implemented for each of the GbE PCS IP cores. These registers provide the management
control functions discussed in IEEE 802.3 clauses 22 and 37. The registers are most commonly associated with
managing auto-negotiation. The registers can be assessed by an external MDIO interface that conforms to the SMI
protocol in IEEE 802.3 clause 22 or the registers can be accessed by an external JTAG interface that conforms to
the Lattice ORCAstra protocol. The external pin enable_smi selects which register control method is used.

Table 3 shows the register set for one of the IP cores. Both IP cores have identical register sets. When using SMI,
the two cores are distinguished by using different port IDs. When using ORCAstra, the two cores are distinguished
by different memory address mappings.

SERDES/PCS

Ethernet
Physical Link

125Mhz
Ref Clk

regbus
MDIO Registers

8b10b
Decoder De-Serializer

8b10b
Decoder De-Serializer

8b10b
Encoder Serializer

8b10b
Encoder Serializer

Link State Machine

Link State Machine

MDIO
Controller

ORCAstra
Controller

GbE PCS
IP Core

GbE PCS
IP Core

Loopback

Registers

JTAG

Frame
Driver

Frame
Monitor

regbus

SCI

SCI

SCI

8BI GMII

GMII 8BI

14

Gigabit Ethernet PCS IP Core
Lattice Semiconductor for LatticeECP2M

Table 3. GbE PCS IP Core Management Registers

LatticeECP2M Embedded SERDES/PCS Registers
The embedded SERDES/PCS has a large register set for managing control and status. These registers are auto-
matically configured for proper operation during FPGA configuration by means of an auto-configuration file called
pcs_serdes.txt. If you want the registers to maintain their auto-configured states, you do not need to manually
access the embedded SERDES/PCS registers. However, if you want to change register settings, or monitor the
status registers, then you must manually access the registers. This reference design employs an external JTAG
interface controlled by Lattice ORCAstra software for accessing the embedded SERDES/PCS registers. Table 4
shows the address mapping. Note that you may also access the GbE PCS IP core management registers through
the ORCAstra interface. Please consult technical note TN1124, LatticeECP2M SERDES/PCS Usage Guide, for
details on the embedded SERDES/PCS registers.

Table 4. ORCAstra Register Memory Map

Address
Access
Mode

Register
Name Register Bits

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0x0 R/W Control — — mr_main_reset — — mr_restart_an — — — — — — — — —

0x1 R Status 0 0 0 0 0 0 0 0 0 0 mr_an-complete 0 0 0 0 0

0x2 — N/A — — — — — — — — — — — — — — — —

0x3 — N/A — — — — — — — — — — — — — — — —

0x4 R/W Auto-Negotiation
Advertisement mr_adv_ability[15:0]

0x5 R Auto-Negotiation
Link Partner mr_lp_adv_ability[15:0]

0x6 R Auto-Negotiation
Expansion 0 0 0 0 0 0 0 0 0 0 0 0 0 0 mr_page_rx 0

ORCAstra Address Register Description

0x000 - 0x03F Embedded SERDES/PCS – Channel 0 Registers

0x400 - 0x07F Embedded SERDES/PCS – Channel 1 Registers

0x800 - 0x0BF Embedded SERDES/PCS – Channel 2 Registers

0xC00 - 0x0FF Embedded SERDES/PCS – Channel 3 Registers

0x100 - 0x13F Embedded SERDES/PCS – Quad Registers

0x800 / 0x810 IP Core 0 / IP Core 1 – control reg [7:0]

0x801 / 0x811 IP Core 0 / IP Core 1 – control reg [15:8]

0x802 / 0x812 IP Core 0 / IP Core 1 – status reg [7:0]

0x803 / 0x813 IP Core 0 / IP Core 1 – status reg [15:8]

0x808 / 0x818 IP Core 0 / IP Core 1 – mr_adv_ability [7:0]

0x809 / 0x819 IP Core 0 / IP Core 1 – mr_adv_ability [15:8]

0x80A / 0x81A IP Core 0 / IP Core 1 – mr_lp_adv_ability [7:0]

0x80B / 0x81B IP Core 0 / IP Core 1 – mr_lp_adv_ability [15:8]

0x80C / 0x81C IP Core 0 / IP Core 1 – mr_an_expansion [7:0]

0x80D / 0x81D IP Core 0 / IP Core 1 – mr_an_expansion [15:8]

0x820 Soft FPGA Logic ID Version Register 0 (Data = 0xAA)

0x821 Soft FPGA Logic ID Version Register 1 (Data = 0x55)

0x820 Soft FPGA Logic Control Register (bit D0 enables frame driver)

15

Gigabit Ethernet PCS IP Core
Lattice Semiconductor for LatticeECP2M

Pinouts
Table shows the primary pinouts for this reference design. Note that when you choose the 672-pin package when
generating your GbE PCS IP core with Lattice IPexpress, pin-number preferences will be generated. These pin
numbers correspond to the pinouts of the Lattice demo board for ECP2M, and are listed in Table . If you choose a
different package, IPexpress will not generate a pin-out preference file, and the actual pin numbers for your design
will be chosen during place and route. In this case, the pin numbers shown in Table are not applicable.

Table 5. Reference Design Pinouts

Signal Name I/O Pin Number Description

ref_clk In N23 Reference Clock – 125 MHz clock source

rst_n In M7 Reset – Active low global reset

hdinp0 In URC_SQ_HDINP0 Inbound SERDES P – Channel 0

hdinn0 In URC_SQ_HDINN0 Inbound SERDES N – Channel 0

hdoutp0 Out URC_SQ_HDOUTP0 Outbound SERDES P – Channel 0

hdoutn0 Out URC_SQ_HDOUTN0 Outbound SERDES N – Channel 0

hdinp1 In URC_SQ_HDINP1 Inbound SERDES P – Channel 1

hdinn1 In URC_SQ_HDINN1 Inbound SERDES N – Channel 1

hdoutp1 Out URC_SQ_HDOUTP1 Outbound SERDES P – Channel 1

hdoutn1 Out URC_SQ_HDOUTN1 Outbound SERDES N – Channel 1

mdc In Note 1 MDIO Clock (0 to 50 MHz)

mdio In/Out Note 1 MDIO Bidirectional Data Signal

port_id_0[4:0] In Note 1 MDIO Port ID for IP Core 0

port_id_1[4:0] In Note 1 MDIO Port ID for IP Core 1

tck In TCK JTAG Clock Source (0 to 50 MHz)

tdi in TDI JTAG Data Input

tdo Out TDO JTAG Data Output

tms In TMS JTAG Test Mode Select

chan_0_activity_LED Out U6 Blue LED flashes when RX_DV on Chan 0 toggles

chan_0_autoneg_complete_LED Out U5 Green LED solid on when Chan0 autoneg completes OK

mon_activity_LED Out V2 Blue LED flashes when RX_DV on Chan 1 toggles

mon_autoneg_complete_LED Out W2 Green LED solid on when Chan1 autoneg completes OK

mon_pass_LED Out V1 Yellow LED solid on when Chan1 monitor data pattern OK

mon_fail_LED Out U2 Red LED solid on when Chan 1 monitor data pattern fails

enable_smi In Note 1 When high, IP core registers are controlled by MDIO.
When low, IP core registers are controlled by ORCAstra

debug_link_timer_short_0 In Note 1
When high, autoneg link timer on IP core0 is 2µsec (debug
mode).
When low, link timer on IP core0 is 10mec (normal).

debug_link_timer_short_1 In Note 1
When high, autoneg link timer on IP core1 is 2µsec (debug
mode).
When low, link timer on IP core1 is 10mec (normal)

1. Location preferences are not specified for these pins. See your implementation results for actual pin locations.

16

Gigabit Ethernet PCS IP Core
Lattice Semiconductor for LatticeECP2M

Simulation
To run the reference design simulation, do the following:

1. Open ModelSim.

2. Under the File tab, select Change Directory and choose folder

\<project_dir>\gbe_pcs_eval\<username>\sim\modelsim.

3. Under the Tools tab, select TCL _ Execute Macro and execute the ModelSim “do” script shown.

The simulation waveform results will be displayed in the ModelSim Wave window.

Implementation
To synthesize/map/place/route the reference design:

1. Select Open Project under the File tab in ispLEVER.

2. Browse to \<project_dir\gbe_pcs_eval\<username>\impl\reference in the Open Project dialog
box.

3. Select and open <username>_reference_eval.syn. A this point, all of the files needed to support top-level
synthesis and implementation will be imported to the project.

4. Select the device top-level entry in the left-hand GUI window.

5. Implement the complete design via the standard ispLEVER GUI flow.

Note that the implementation flow described here is only validated for use with the Synplicity synthesizer. The rea-
son for this is that some of the timing constraints are listed in the “physical” format. The names of these physical
preferences change when a different synthesizer is used. It is possible to use the Precision RTL synthesizer with
this reference design; however, you will have to rename the existing physical preferences into names compatible
with the Precision RTL synthesis output.

Reference Design Performance and Utilization
Table 6. Performance and Resource Utilization1

References

• Technical Note 1124, LatticeECP2M SERDES/PCS Usage Guide

• LatticeECP2/M Family Data Sheet

Target Device SLICEs LUTs Registers EBRs SERDES/PCS I/Os fMAX (MHz)

LFE2M35E-5F672CES 1250 1720 1321 2 1 31 125

1. Performance and utilization characteristics are in Lattice’s ispLEVER 7.0 software with Synplify synthesis. When using this IP core in a dif-
ferent software version or a different device density or speed grade, performance may vary.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Lattice:

 GBE-PCS-PM-U1 GBE-PCS-PM-UT1

http://www.mouser.com/latticesemi
http://www.mouser.com/access/?pn=GBE-PCS-PM-U1
http://www.mouser.com/access/?pn=GBE-PCS-PM-UT1

	Introduction
	Features
	Functional Description
	Transmit State Machine
	Synchronization State Machine
	Receive State Machine
	Auto-Negotiation State Machine

	Core Generation
	Instantiating the Core
	Running Functional Simulation
	Synthesizing and Implementing the Core in a Top-Level Design
	Hardware Evaluation
	References
	Technical Support Assistance
	Revision History
	Appendix A. LatticeECP2M Devices
	Ordering Part Number

	Appendix B. GbE Physical Layer Reference Design
	Introduction
	Functional Description
	The Driver Channel
	The Loopback Channel
	Clock Distribution
	IP Core Registers
	LatticeECP2M Embedded SERDES/PCS Registers
	Pinouts

	Simulation
	Implementation
	Reference Design Performance and Utilization
	References

