Lattice

Semiconductor
Corporation

ispLever’

Gigabit Ethernet PCS IP Core for LatticeECP2M

User’s Guide

August 2007
ipug69_01.0

Gigabit Ethernet PCS IP Core
Lattice Semiconductor for LatticeECP2M

Introduction

The 1000BASE-X physical layer, also referred to as the Gigabit Ethernet (GbE) physical layer, consists of three
major blocks, the Physical Coding Sublayer (PCS), the Physical Medium Attachment sublayer (PMA), and the
Physical Medium Dependent sublayer (PMD). The LatticeECP2M™ embedded SERDES/PCS performs the PMA
function, and portions of the PMD and PCS functions, including link serialization/deserialization, code-group align-
ment, clock tolerance compensation buffering, and 8b10b encoding/decoding. However, the embedded SER-
DES/PCS does not provide all necessary functions for implementing a complete GbE physical layer solution. That’s
where the GbE PCS IP core comes in. The IP core provides the additional functions required to fully implement the
PCS functions of the GbE physical layer. These additional functions include a transmit state machine, a receive
state machine, and auto-negotiation.

This document describes the IP core’s operation and provides instructions for generating the core through
ispLEVER® IPexpress™, including instantiating, synthesizing, and simulating the core.

Features

¢ Implements the transmit, receive, and auto-negotiation functions of the IEEE 802.3z specification

* 8-bit GMII Interface operating at 125 MHz

¢ 8-bit Code-Group Interface operating at 125 MHz

» Parallel signal interface for control and status management

Functional Description

The GbE PCS IP core converts GMII data frames into 8-bit code groups in both transmit and receive directions;
and performs auto negotiation with a link partner as described in the IEEE 802.3z specification. The core’s block
diagram is shown in Figure 1. The following paragraphs detail the operation the IP core’s main functional blocks. An
example of how this IP core may be used in implementing a gigabit ethernet physical layer is shown in Figure 2.

Figure 1. GbE PCS IP Core Block Diagram

GMll Interface
| 1
x| o Qf x
MAC/PHY Mode —»l & | E| ml| § gl al &9 :
=) I I I I
x x x x
R R g & | é& |
| A A A y |
: Transmit Receive |
i State Machine
mr_adv_ability | State Machine < | mr_an_complete
. z | >
mr_an_enable : 4 Imrﬁlpfadvfabili'(y
mr_main_reset | Auto-Negotiation |4 Synchronization Imr page_rx
. il i — -
— — | State Machine State Machine
mr_restart_an | A A A A A%A |
(=]
| g 2 |
(0]
o -
I s 5| gl | s [B] |
| < al s o |, =Y o] |
I sl =] & g Qg |E Y alg1|e |
[$] = | ® > |.= =
| 8| 2| gl 2 5 (8|23 |8 | | |
| <l =l 8 EV 8-bit Code Group Interface SlElElE|E &z I

Gigabit Ethernet PCS IP Core
Lattice Semiconductor for LatticeECP2M

Figure 2. Typical GbE Physical Layer Implementation

125 MHz
Ref Clk

.

Part of Embedded
SERDES/PCS
OO
»| GbE Serial Interface
—> » pcs 8b10b to Magnetics
v | Userlio GMIl 8Bl Encoder | SERDES or Backplane
IP Core
< < Decoder
8 bits @ 8 bits @ 8 bits @
125 MHz 125 MHz 125 MHz . . DOOC
A Link State Machine | CML
Differential Pairs
@ 1.25 Gbps
Management
Interface
MDIO Con_1tro|
< > Registers

Transmit State Machine

The transmit state machine implements the transmit functions described in clause 36 of the IEEE 802.3 specifica-
tion. The state machine’s main purpose is to convert GMII data frames into code groups. A typical timing diagram
for this circuit block is shown below. Note that the state machine in this IP core does not fully implement the conver-
sion to 10-bit code groups as specified in the 802.3 specification. Instead, partial conversion to 8-bit code groups is
performed. A separate encoder (located in the LatticeECP2M embedded SERDES/PCS block) completes the full
conversion to 10-bit code groups.

Figure 3. Typical Transmit Timing Diagram

tx_en J |

tx_d |preamble|SFD| Dest Add | Src Add |Lenf|' ype| Data | FCS|
tx_kentl
tx_data IDLE [SPD|preamble[SFD| DestAdd | SrcAdd [Len/Type] Data |Fcs [ePD| IDLE

Synchronization State Machine

The synchronization state machine implements the alignment functions described in clause 36 of the IEEE 802.3
specification. The state machine’s main purpose is to determine whether incoming code groups are properly
aligned. Once alignment is attained, proper code groups are passed to the receive state machine. If alignment is
lost for an extended period, an auto negotiation restart is triggered.

Receive State Machine

The receive state machine implements the receive functions described in clause 36 of the IEEE 802.3 specifica-
tion. The state machine’s main purpose is to convert code groups into GMII data frames. A typical timing diagram
for this circuit block is shown below. Note that the state machine in this IP core does not fully implement the conver-
sion from 10-bit code groups as specified in the 802.3 specification. Instead, partial conversion from 8-bit code
groups is performed. A separate decoder (located in the LatticeECP2M embedded SERDES/PCS block) performs
10-bit to 8-bit conversions.

Gigabit Ethernet PCS IP Core
Lattice Semiconductor for LatticeECP2M

Figure 4. Typical Receive Timing Diagram

rx_kentl

rx_data IDLE [SPD|preamble|SFD| DestAdd | SrcAdd |Len/Type| Data | Fcs [epD] IDLE

rx_dv | I_

rx_d |preamble|SFD| Dest Add | Src Add |Len/Type| Data |FCS|

Auto-Negotiation State Machine

The auto-negotiation state machine implements the link configuration functions described in clause 37 of IEEE
802.3 specification, including checking link readiness, determining duplex mode, and negotiating flow control. A
typical timing diagram is shown below.

Figure 5. Typical Auto-Negotiation Timing Diagram
power up reset ///
mr_page_rx |_|

mr_an_complete |

mr_adv_ability / / / 0x0020

mr_lp_adv_ability /// 0x0000 X 0x4020

Signal Descriptions

Table 1. GbE PCS IP Core Input and Output Signals

Signal Name | vo | Description
Clock Signals

Transmit Clock — 125 MHz clock source for transmit state machine. Incoming GMI|
tx_clk 125 In [transmit data is sampled on rising edge of this clock. Outgoing 8-bit code group trans-
mit data is launched on the rising edge of this clock.

Receive Clock — 125 MHz clock source for receive state machine and the synchroni-
rx _clk 125 In |zation state machine. Incoming signals are sampled on the rising edge of the clock.
Outgoing signals are launched on the rising edge of this clock.

GMII Signals

tx d[7:0] In |Transmit Data — Incoming GMII data.

tx _en In | Transmit Enable — Active high signal, asserts when incoming data is valid.

tx er In Transmit Errpr - Aptive high signal, used to denote transmission errors and carrier
— extension on incoming GMII data port.

rx d[7:0] Out |Receive Data — Outgoing GMII data.

rx_dv Out |Receive Data Valid — Active high signal, asserts when outgoing data is valid.

rx er out Receive Error — Active high signal, used to denote transmission errors and carrier

extension on outgoing GMII data port.

8-Bit Code Group Signals

8b Transmit Data — 8-bit code group data after passing through transmit state
machine.

8b Transmit K Control — Denotes whether current code group is data or control.
1=control O=data

tx data[7:0] Out

tx_kentl Out

Lattice Semiconductor

Gigabit Ethernet PCS IP Core
for LatticeECP2M

Table 1. GbE PCS IP Core Input and Output Signals (Continued)

Signal Name

/0

Description

correct disp

Out

Corrects Disparity — Asserted during inter-packet gaps to ensure that negative dispar-
ity IDLE ordered-sets are transmitted by the LatticeECP2M embedded SERDES /PCS.
1=correct disparity, 0=normal

xmit_autoneg

Out

Auto-negotiation Transmitting — This signal asserts when the IP core’s auto negotia-
tion state machine is active. The signal is used by the LatticeECP2M embedded SER-
DES/PCS to occasionally insert idle ordered sets into its receive path (eight ordered
sets every 2048 clocks). This facilitates proper operation of the embedded clock toler-
ance compensation circuit. 1=autoneg is active, 0=autoneg is not active

rx data[7:0]

8b Receive Data — 8-bit code group data presented to the receive state machine.

rx_kcntl

8b Receive K Control — Denotes whether current code group is data or control.
1=control O=data

rx_err_decode mode

Receive Error Control Mode — The embedded SERDES block of the LatticeECP2M
FPGAs has two modes of interpreting errors, decoded and normal. In decoded mode,
the three signals (rx_even, rx_cv_err, rx disp_err) are used to decode 1-of-8 error
conditions. In decoded mode, the IP core responds to the following errors:

100 = Coding Violation Error
111 = Disparity Error

All other error codes are ignored by the IP core. In normal mode, the three error signals
(rx_even, rx_cv_err, rx disp err) behave normally. The rx_err decode mode
signal should be set high for decode mode, and low for normal mode.

rx_even

Rx Even — This signal is only used when error decoding mode is active. Otherwise, the
signal should be tied low.

X _Cv_err

Rx Coding Violation Error — In normal mode, an active high signal denoting a coding
violation error in the receive data path. In decode mode, used to decode 1 of 8 error
conditions.

rx disp err

Rx Disparity Error — In normal mode, an active high signal denoting a disparity error in
the receive data path. In decode mode, used to decode 1 of 8 error conditions.

signal detect

Signal Detect — Denotes status of GbE PCS RX physical link. 1=signal is good; O=loss
of receive signal

Management Signals

mr_adv_ability[15:0]

Advertised Ability — Configuration status transmitted by PCS during auto negotiation
process.

mr_an_enable

Auto Negotiation Enable — Active high signal that enables auto negotiation state
machine to function.

mr_main_reset

Main Reset — Active high signal that forces all PCS state machines to reset.

mr restart an

Auto Negotiation Restart — Active high signal that forces auto negotiation process to
restart.

mr_an_complete

Out

Auto Negotiation Complete — Active high signal that indicates that the auto negotia-
tion process is completed.

mr_lp adv_ability[15:0]

Out

Link Partner Advertised Ability — Configuration status received from partner PCS
entity during the auto negotiating process. The bit definitions are the same as
described above for the mr_adv_ability port.

mr_page_ rx

Out

Auto Negotiation Page Received — Active high signal that asserts while the auto
negotiation state machine is in the Complete Acknowledge state.

Miscellaneous Signals

rst n

Reset — Active low global reset

debug_link timer short

Debug Link Timer Mode — Active high signal that forces the auto negotiation link timer
to run much faster than normal. This mode is provided for debug purposes (e.g.,allow-
ing simulations to run through the auto negotiation process much faster that the nor-
mal).

Gigabit Ethernet PCS IP Core

Lattice Semiconductor for LatticeECP2M

Core Generation

The GbE PCS IP core is available for download from the Lattice website at www.latticesemi.com. The IP files are
automatically installed using ispUPDATE technology in any directory of your choosing.

The ispLEVER IPexpress GUI window for the GbE PCS IP core is shown in Figure 6. To generate a specific IP core
configuration you must specify:

Project Path — Path to directory where the generated IP files will be loaded.
File Name - “username” designation given to the generated IP core and corresponding folders and files.
Design Entry type — Verilog HDL.

Device Family — Device family to which IP is to be targeted. Only families that support the particular core are
listed.

Part Name — Specific targeted part within the selected Device Family.

Note that if IPexpress is called from within an existing project, Project Path, Design Entry, Device Family and Part
Name default to the specified project parameters. Please refer to the IPexpress on-line help for further information.

Figure 6. IPexpress Dialog Box

_lax]
Fle Took Hep
| a e ase ® INIDevice Families "I
Name [Version | -]
® 1 Module To generate the module or IP, enter the information in the
sar o enabled fields (such as Project Path, File Name, etc.) and click
=4 Communicatians on the Customize button. A dialog will open to allow
Tl OBSALRP3 10 customization of the selected mocdule or IP.
& SGMII_PCS 20
B Tri-Speed_MAC 21
-1 Connectivity Macro Type: |UBEann1igurable P Version: (1.0
- |DSP
-} Processors, Confrollers and Penphere
IP Name: |GBE_PCS
Froject Path: IC.\my_prDiecl J
File Name: |
Design Entry: [SchematicVenlog HOL x|
Deevice Family: [LoticeECP2M =1
PatName: |LFE2M3SE-EF672CES =l
isp
Customize | H\“‘:]
= Local| @ IP Server | %y GBE_FCS E GBE_PCS]|

To create a custom configuration, click on the Customize button to display the GbE PCS IP core Configuration
GUI, shown in Figure 7. From this window you may start the core generation process.

Gigabit Ethernet PCS IP Core
Lattice Semiconductor for LatticeECP2M

Figure 7. Configuration Dialog Box

/7 Lattice IP Core -- GBE PCS Core 1.0 =] Y

Configuration | Generate Log |

GBE_PCS General \
—>rst_n |
st T iR _ ¥ Connectreset portto GSR

—slte clk_125 ‘x—d;"’&? r. =
it _kenli—=
_’t;—gg 0 correct_disp—»
> tx:ar xmit_autoneg—=
data[7:0]
»irx_clk_125 e :cuicnl': <«
<—{r_d[7:0) re_even re—
—rx_dv r_disp_ernr€—
~—rx_er _Cv_ernp€—
n_enm_decode_mode 4—
signal_detect 4—

Generate Close Help

When you click the Generate button, the IP core and supporting files are generated in the specified Project Path
directory. The directory structure of the generated files is shown in Figure 8.

Figure 8. GbE PCS IP Core Generated Directory Structure

220 gbe_pes_test

801 gbe_pes_eval

=00 ghepcs_cored
=21 impl

E {:I core_orly

i [reference
=3 sim

E|{:| G
=-C7 rt

-2 testbench

The following files are generated at the root of the “Project Path” directory (gbe _pcs_test in Figure 8):

* <username>.lpc — IP parameter file (you may modify this file if necessary)

* <username>.ngo — Synthesized and mapped IP core

* <username>_ bb.v — Black box module wrapper for synthesis

* <username>_ inst.v — Example of instantiation template to be included in customer’s design
* <username>_ beh.v — Behavioral simulation model for IP core configuration username

7

Gigabit Ethernet PCS IP Core
Lattice Semiconductor for LatticeECP2M

These are all of the files that you need to implement and verify the GbE PCS IP core in your own top-level design.
The following additional files providing IP core generation status information are also generated in the “Project
Path” directory:

* <username>_ generate.log — iSpLEVER synthesis and map log file

* <username>_ gen.log — IPexpress IP generation log file

The \<gbe pcs eval> and subtending directories provide files supporting GbE PCS core evaluation. The
\<gbe pcs_eval> directory contains files/folders with content that is constant for all configurations of the GbE
PCS. The \<username> subfolder (\gbepcs_core0 in this example) contains files/folders with content specific
to the username configuration.

The \gbe pcs_eval directory is created by IPexpress the first time the core is generated and updated each time
the core is regenerated. A \<username> directory is created by |IPexpress each time the core is generated and
regenerated each time the core with the same file name is regenerated. A separate \<username> directory is
generated for cores with different names, e.g. \<gbepcs_corel>, \<gbepcs_core2>, etc.

Instantiating the Core

The generated GbE PCS IP core package includes black-box (<username> bb.v) and instance (<user-
name> inst.v) templates that can be used to instantiate the core in a top-level design. Two example RTL top-
level source files are provided in \<project dir>\gbe pcs eval\<username>\src\rtl\top\<technol-

ogy>.

The top-level file top.v is a GbE Physical Layer Reference design (described in Appendix B). Additional files asso-
ciated with the reference design are located in the directory \<project dir>\gbe pcs eval\<user-
name>\src\rtl\template\<technology>.

The top-level file top gbe pcs core only.v supports the ability to implement just the GbE PCS core by itself.
This design is intended only to provide an indication of the device utilization associated with the GbE PCS IP core
and should not be used as an actual implementation example.

Running Functional Simulation

The functional simulation model generated in the “Project Path” root directory (<username> beh.v) may be
instantiated in the your testbench for evaluation in the context of your application. Lattice does not provide a test-
bench for evaluating this IP core in isolation. However, a function simulation capability is provided in which <user-
name> beh.v is instantiated in an FPGA top level that implements a complete GbE Physical Layer as discussed
previously and described in an appendix to this document. The top-level file supporting ModelSim® simulation is
provided in \<project dir>\gbe pc evall<username>\sim\modelsim. This FPGA top is instantiated in
an eval testbench provided in \<project dir>\gbe psc_eval\testbench.

You may run the eval simulation by doing the following:
1. Open ModelSim.
2. Under the File tab, select Change Directory and choose folder:
<project dir>\gbe pcs evall\<username>\sim\modelsim.
3. Under the Tools tab, select TCL _ Execute Macro and execute the ModelSim “do” script shown.

The simulation waveform results will be displayed in the ModelSim Wave window.

Gigabit Ethernet PCS IP Core
Lattice Semiconductor for LatticeECP2M

Synthesizing and Implementing the Core in a Top-Level Design

The GbE PCS IP core itself is synthesized and is provided in NGO format when the core is generated. You may
synthesize the core in your own top-level design by instantiating the core in your top-level as described above in the
“Instantiating the Core” section and then synthesizing the entire design with either Synplicity® or Precision® RTL.

As described previously, two example RTL top-level configurations supporting GbE PCS core top-level synthesis
and implementation are provided in \<project dir>\gbe pcs_ eval\<username>\src\rtl\top\<tech-
nology>.

The top-level file top gbe pcs core only.v provided in \<project dir>\gbe pcs_eval\<user-
name>\src\rtl\top supports the ability to implement just the GBE_PCS core. This design is intended only to
provide an accurate indication of the device utilization associated with the core itself and should not be used as an
actual implementation example.

The top-level file top.v is a GbE Physical Layer Reference design \<project dir>\gbe pcs_eval\<user-
name>\src\rtl\top supports the ability to instantiate, simulate, map, place and route the GBE_PCS IP core in
a complete example design. A complete description of this design is given in an appendix to this document. Note
that implementation of the reference evaluation configuration is specifically targeted to a LatticeECP2M
LFE2M35E-6F672C device.

Push-button implementation of both top-level configurations is supported via the ispLEVER project files, <user-
name> reference eval.syn and <username> core only eval.syn. These files are located in
<project dir>\ten gbemac test\ten gbemac eval\<username>\impl\<configuration>.

To use these project files:
1. Select Open Project under the File tab in ispLEVER.

2. Browse to the \<project_dir\gbe_pcs_eval\<username>\impl directory and select either the
\core_only or \reference directory in the Open Project dialog box.

3. Select and open either <username>_reference_eval.syn Or username>_core_only_eval.syn. At this
point, all of the files needed to support top-level synthesis and implementation will be imported to the project.

4. Select the device top-level entry in the left-hand GUI window.
5. Implement the complete design via the standard ispLEVER GUI flow.

Hardware Evaluation

Lattice’s IP hardware evaluation capability makes it possible to create versions of IP cores that operate in hardware
for a limited period of time (approximately four hours) without requiring the purchase on an IP license. The hard-
ware evaluation capability may be enabled/disabled in the Properties menu of the Build Database setup in
ispLEVER Project Navigator. It is enabled by default.

References

¢ ispLEVER Software User Manual

* ispLeverCORE™ [P Module Evaluation Tutorial available on the Lattice website at www.latticesemi.com

Technical Support Assistance

Hotline: 1-800-LATTICE (North America)
+1-503-268-8001 (Outside North America)

e-mail: techsupport@Iatticesemi.com

Internet: www.latticesemi.com

Gigabit Ethernet PCS IP Core
Lattice Semiconductor for LatticeECP2M

Revision History

Date Version Change Summary

August 2007 01.0 Initial release.

10

Gigabit Ethernet PCS IP Core
Lattice Semiconductor for LatticeECP2M

Appendix A. LatticeECP2M Devices

Table 2. Performance and Resource Ultilization’

Target Device SLICEs LUTs Registers I/0s? fmax (MHz)
LFE2M35E-5F672CES 350 447 417 85 125

1. Performance and utilization characteristics are in Lattice’s ispLEVER7.0 software with Synplify synthesis. When using this IP core in a differ-
ent software version or a different device density or speed grade, performance may vary.
2.1/Os are for core-only top-level instantiation. The actual core does not require any primary I/O other than SERDES interface.

Ordering Part Number
The Ordering Part Number (OPN) for the GbE PCS core targeting LatticeECP2M devices is GBE-PCS-PM-U1.

You can use the IPexpress software tool to help generate new configurations of this IP core. IPexpress is the Lattice
IP configuration utility, and is included as a standard feature of the ispLEVER design tools. Details regarding the
usage of IPexpress can be found in the IPexpress and ispLEVER help system. For more information on the
ispLEVER design tools, visit the Lattice web site at: www.latticesemi.com/software.

11

Gigabit Ethernet PCS IP Core
Lattice Semiconductor for LatticeECP2M

Appendix B. GbE Physical Layer Reference Design

Introduction

This appendix describes the operation, simulation, and implementation of a GbE Physical Layer design, using Lat-
tice’s GbE PCS IP Core. The reference design utilizes two channels, one generates and monitors simplified ether-
net frames, the other loops back all received ethernet frames. The two channels can be externally connected
through the SERDES physical links, thereby establishing a demonstration of the interoperability between two GbE
physical layers. Another application is connecting the reference design loopback channel to an external GbE traffic
source (e.g. a Smartbits Test Generator), thereby demonstrating interoperability with the external traffic source.

Functional Description

The reference design block diagram is shown in Figure 9. The major blocks include two GbE PCS IP cores, the
LatticeECP2M embedded SERDES/ PCS, a frame driver, a frame receiver, and control logic.

The Driver Channel
The driver channel is shown in the lower part of Figure 9, and is comprised of a frame driver, a frame monitor, and
GbE PCS IP core, part of an embedded SERDES/PCS, and some control registers.

The transmit side of the channel begins at the frame driver, where a single 512-byte gigabit ethernet frame is
repeatedly transmitted. The frame enters the transmit side of the GbE PCS IP core, where it is converted into 8-bit
code groups. Next the frame enters the transmit portion of an embedded SERDES/PCS channel where 8b10b
encoding and 10-bit-to-1-bit serialization occurs. The frame leaves the FPGA over the external 1.25Gbps SERDES
physical link.

The receive side of the channel begins at the external SERDES input port. Clock recovery is performed, the data is
deserialized, and an 802.3z synchronization state machine aligns the data stream to comma characters, and
10B8B decoding is performed. Next the frame enters the receive portion of the GbE PCS IP core, where 8-bit code
groups are converted to GMII frames. Then the frame arrives at the frame monitor. If the payload data matches the
frame driver data pattern, a “pass” signal is asserted. If the data pattern check fails, a “fail” signal is asserted.

The Loopback Channel

The driver channel is shown in the upper part of Figure 9. It is similar to the driver channel except that it does not
contain a frame driver or frame monitor. Instead this channel utilizes a parallel loopback block. All GMII frames from
the receive path of the GbE PCS IP core are looped back to the transmit path of the GbE PCS IP core.

Clock Distribution

All timing in the reference design is derived from ref clk a 125 MHz primary input to the FPGA. This clock is fed
to the embedded SERDES/PCS where it is phase locked and used to time all outgoing SERDES channels, used to
reference clock recovery of all incoming SERDES channels, and used to source timing for all of the FPGA soft
logic, including the transmit and receive paths of the GbE PCS IP cores.

12

Gigabit Ethernet PCS IP Core

Lattice Semiconductor for LatticeECP2M

Figure 9. Block Diagram GbE Physical Layer Reference Design

125Mhz
Ref Clk
SERDES/PCS
GMIl 8Bl
! |
L—p ! 8b10b o
i i Encoder | Serializer _'E)OOOC\\\
I | \\
I | .
Loopback ! GbE PCS : Y
: IP Core : |
I | \
I | \
: : 8b10b |
d . . . <._
i i Decoder | De-Serializer :)OOOCK
A -
\ \
MDIO «—» MDIO Registers Link State Machine \\ \
Controller regbls \ !
Vo
‘l |
Ethemet | |
Physical Link | !
!
< N ORCAstra o
< !
JTAG Controller scl / |
/I
/
//
GMII 8BI Fa
| | ; /
Frame ! > : ~ 8b10b o s // //
Driver i ! Encoder | Serializer > X000 ;
!
I | ,
! |
! GbE PCS ! /I
! IP Core ! ,
| | I/
| | ;
Frame |q— - | 8b10b ek j
Monitor : ! Decoder | De-Serializer :)OOOCV
Link State Machine
regbus SCI

IP Core Registers
A set of registers are implemented for each of the GbE PCS IP cores. These registers provide the management

control functions discussed in IEEE 802.3 clauses 22 and 37. The registers are most commonly associated with
managing auto-negotiation. The registers can be assessed by an external MDIO interface that conforms to the SMI
protocol in IEEE 802.3 clause 22 or the registers can be accessed by an external JTAG interface that conforms to
the Lattice ORCAstra protocol. The external pin enable smi selects which register control method is used.

Table 3 shows the register set for one of the IP cores. Both IP cores have identical register sets. When using SMI,
the two cores are distinguished by using different port IDs. When using ORCAstra, the two cores are distinguished

by different memory address mappings.

13

Gigabit Ethernet PCS IP Core

Lattice Semiconductor for LatticeECP2M

Table 3. GbE PCS IP Core Management Registers

Access Register
Address| Mode Name Register Bits
D15 | D14 | D13 D12 D11 | D10 D9 D8 D7 Dé D5 D4 D3 D2 D1 DO
0x0 R/W Control — — |mr_main_reset| — — |mr_restart_an| — — — — — — — — —
0ox1 R Status 0 0 0 0 0 0 0 0 0 0 |[mr_an-complete| 0 0 0 0 0
0x2 — N/A — — — — — — — — — — — — — — — —
0x3 — N/A — — — — — — — — — — — — — — — —
Auto-Negotiation i .
Oox4 R/W Advertisement mr_adv_ability[15:0]
Auto-N iati f
0x5 R to-Negotiation mr_lp_adv_ability[15:0]
Auto-Negotiation
0x6 R Expansion 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |[mr_page_rx| O

LatticeECP2M Embedded SERDES/PCS Registers

The embedded SERDES/PCS has a large register set for managing control and status. These registers are auto-
matically configured for proper operation during FPGA configuration by means of an auto-configuration file called
pcs_serdes.txt. If you want the registers to maintain their auto-configured states, you do not need to manually
access the embedded SERDES/PCS registers. However, if you want to change register settings, or monitor the
status registers, then you must manually access the registers. This reference design employs an external JTAG
interface controlled by Lattice ORCAstra software for accessing the embedded SERDES/PCS registers. Table 4
shows the address mapping. Note that you may also access the GbE PCS IP core management registers through
the ORCAstra interface. Please consult technical note TN1124, LatticeECP2M SERDES/PCS Usage Guide, for
details on the embedded SERDES/PCS registers.

Table 4. ORCAstra Register Memory Map

ORCAstra Address Register Description
0x000 - 0x03F Embedded SERDES/PCS — Channel 0 Registers
0x400 - 0x07F Embedded SERDES/PCS — Channel 1 Registers
0x800 - Ox0BF Embedded SERDES/PCS — Channel 2 Registers
0xCO00 - OxOFF Embedded SERDES/PCS — Channel 3 Registers
0x100 - 0x13F Embedded SERDES/PCS — Quad Registers
0x800 / 0x810 IP Core 0/IP Core 1 —control reg [7:0]
0x801 / 0x811 IP Core 0/IP Core 1 —control reg [15:8]
0x802 / 0x812 IP Core 0/IP Core 1 —status reg [7:0]
0x803 / 0x813 IP Core 0/IP Core 1 —status reg [15:8]
0x808 / 0x818 IPCore 0/IP Core 1 —mr_adv_ability [7:0]
0x809 / 0x819 IPCore 0/IP Core 1 —mr_adv_ability [15:8]
0x80A / 0x81A IPCore 0/IP Core 1 —mr_1p adv_ability [7:0]
0x80B / 0x81B IPCore 0/IP Core 1 —mr_1p adv ability [15:8]
0x80C / 0x81C IP Core 0/IP Core 1 —mr_an_expansion [7:0]
0x80D / 0x81D IP Core 0/IP Core 1 —mr_an_expansion [15:8]

0x820 Soft FPGA Logic ID Version Register 0 (Data = OxAA)
0x821 Soft FPGA Logic ID Version Register 1 (Data = 0x55)
0x820 Soft FPGA Logic Control Register (bit DO enables frame driver)

14

Gigabit Ethernet PCS IP Core
Lattice Semiconductor for LatticeECP2M

Pinouts

Table shows the primary pinouts for this reference design. Note that when you choose the 672-pin package when
generating your GbE PCS IP core with Lattice IPexpress, pin-number preferences will be generated. These pin
numbers correspond to the pinouts of the Lattice demo board for ECP2M, and are listed in Table . If you choose a
different package, IPexpress will not generate a pin-out preference file, and the actual pin numbers for your design
will be chosen during place and route. In this case, the pin numbers shown in Table are not applicable.

Table 5. Reference Design Pinouts

Signal Name /0 Pin Number Description
ref clk In |N23 Reference Clock — 125 MHz clock source
rst n In |M7 Reset — Active low global reset
hdinp0 In |URC_SQ_HDINPO Inbound SERDES P — Channel 0
hdinn0 In |URC_SQ_HDINNO Inbound SERDES N — Channel 0
hdoutp0 Out |[URC_SQ_HDOUTPO [Outbound SERDES P — Channel 0
hdoutn0 Out |URC_SQ_HDOUTNO |Outbound SERDES N — Channel 0
hdinpl In |URC_SQ_HDINP1 Inbound SERDES P — Channel 1
hdinnl In |URC_SQ_HDINN1 Inbound SERDES N — Channel 1
hdoutpl Out |URC_SQ_HDOUTP1 |Outbound SERDES P — Channel 1
hdoutnl Out |URC_SQ_HDOUTN1 |Outbound SERDES N — Channel 1
mdc In [Note 1 MDIO Clock (0 to 50 MHz)
mdio In/Out |Note 1 MDIO Bidirectional Data Signal
port_id 0[4:0] In |Note 1 MDIO Port ID for IP Core 0
port_id 1[4:0] In |Note 1 MDIO Port ID for IP Core 1
tck In |TCK JTAG Clock Source (0 to 50 MHz)
tdi in |TDI JTAG Data Input
tdo Out |TDO JTAG Data Output
tms In |TMS JTAG Test Mode Select
chan 0_activity LED Out |U6 Blue LED flashes when RX_DV on Chan 0 toggles
chan 0 _autoneg_complete LED| Out [U5 Green LED solid on when Chan0 autoneg completes OK
mon activity LED Out |V2 Blue LED flashes when RX_DVv on Chan 1 toggles
mon_autoneg_complete LED Out (W2 Green LED solid on when Chan1 autoneg completes OK
mon_pass_LED Out |V1 Yellow LED solid on when Chan1 monitor data pattern OK
mon fail LED Out |U2 Red LED solid on when Chan 1 monitor data pattern fails
n e e e o
When high, autoneg link timer on IP core0 is 2psec (debug
debug link timer short 0 In |[Note 1 mode).
When low, link timer on IP core0 is 10mec (normal).
When high, autoneg link timer on IP core1 is 2usec (debug
debug link timer short 1 In [Note 1 mode).
When low, link timer on IP core1 is 10mec (normal)

1. Location preferences are not specified for these pins. See your implementation results for actual pin locations.

15

Gigabit Ethernet PCS IP Core
Lattice Semiconductor for LatticeECP2M

Simulation
To run the reference design simulation, do the following:

1. Open ModelSim.

2. Under the File tab, select Change Directory and choose folder
\<project_dir>\gbe_pcs_eval\<username>\sim\modelsim.

3. Under the Tools tab, select TCL _ Execute Macro and execute the ModelSim “do” script shown.

The simulation waveform results will be displayed in the ModelSim Wave window.

Implementation
To synthesize/map/place/route the reference design:

1. Select Open Project under the File tab in ispLEVER.

2. Browse to \<project_dir\gbe_pcs_eval\<username>\impl\reference in the Open Project dialog
box.

3. Select and open <username>_reference_eval.syn. A this point, all of the files needed to support top-level
synthesis and implementation will be imported to the project.

4. Select the device top-level entry in the left-hand GUI window.
5. Implement the complete design via the standard ispLEVER GUI flow.

Note that the implementation flow described here is only validated for use with the Synplicity synthesizer. The rea-
son for this is that some of the timing constraints are listed in the “physical” format. The names of these physical
preferences change when a different synthesizer is used. It is possible to use the Precision RTL synthesizer with
this reference design; however, you will have to rename the existing physical preferences into names compatible
with the Precision RTL synthesis output.

Reference Design Performance and Utilization
Table 6. Performance and Resource Utilization’

Target Device SLICEs LUTs Registers EBRs SERDES/PCS I/Os fuax (MHz)
LFE2M35E-5F672CES 1250 1720 1321 2 1 31 125

1. Performance and utilization characteristics are in Lattice’s ispLEVER 7.0 software with Synplify synthesis. When using this IP core in a dif-
ferent software version or a different device density or speed grade, performance may vary.

References
* Technical Note 1124, LatticeECP2M SERDES/PCS Usage Guide
e LatticeECP2/M Family Data Sheet

16

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Lattice:
GBE-PCS-PM-U1 GBE-PCS-PM-UT1

http://www.mouser.com/latticesemi
http://www.mouser.com/access/?pn=GBE-PCS-PM-U1
http://www.mouser.com/access/?pn=GBE-PCS-PM-UT1

	Introduction
	Features
	Functional Description
	Transmit State Machine
	Synchronization State Machine
	Receive State Machine
	Auto-Negotiation State Machine

	Core Generation
	Instantiating the Core
	Running Functional Simulation
	Synthesizing and Implementing the Core in a Top-Level Design
	Hardware Evaluation
	References
	Technical Support Assistance
	Revision History
	Appendix A. LatticeECP2M Devices
	Ordering Part Number

	Appendix B. GbE Physical Layer Reference Design
	Introduction
	Functional Description
	The Driver Channel
	The Loopback Channel
	Clock Distribution
	IP Core Registers
	LatticeECP2M Embedded SERDES/PCS Registers
	Pinouts

	Simulation
	Implementation
	Reference Design Performance and Utilization
	References

