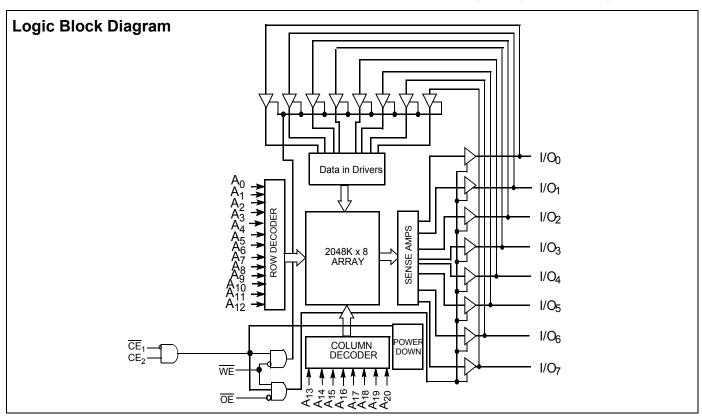


2M x 8 Static RAM

Features

- High Speed

 □ t_{AA} = 10, 12 ns
- Low Active Power □ 990 mW (max.)
- Operating Voltages of 3.3 ± 0.3V
- 2.0V Data Retention
- Automatic Power Down when deselected
- TTL-compatible Inputs and Outputs
- Easy Memory Expansion with $\overline{\text{CE}}_1$ and CE_2 features
- Available in Pb-free and non Pb-free 54-pin TSOP II, non Pb-free 60-ball Fine-Pitch Ball Grid Array (FBGA) package

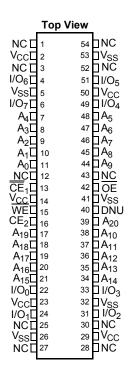

Functional Description

The CY7C1069AV33 is a high performance CMOS Static RAM organized as 2,097,152 words by 8 bits. Writing to the device is accomplished by enabling the chip (by taking CE_1 LOW and CE_2 HIGH) and Write Enable (WE) inputs LOW.

Reading from the device is accomplished by enabling the chip $(\overline{CE}_1 \text{ LOW})$ and $(\overline{CE}_1 \text{ LOW})$ and $(\overline{CE}_1 \text{ LOW})$ as well as forcing the Output Enable ($(\overline{CE}_1 \text{ LOW})$) HIGH. See "Truth Table" on page 8 for a complete description of Read and Write modes.

The input/output pins (I/O $_0$ through I/O $_1$) are placed in a high impedance state when the device is deselected (CE $_1$ HIGH or CE $_2$ LOW), the outputs are disabled (OE HIGH), or during a Write operation (CE $_1$ LOW, CE $_2$ HIGH, and WE LOW).

The CY7C1069AV33 is available in a 54-pin TSOP II package with center power and ground (revolutionary) pinout and a 60-ball fine-pitch ball grid array (FBGA) package.

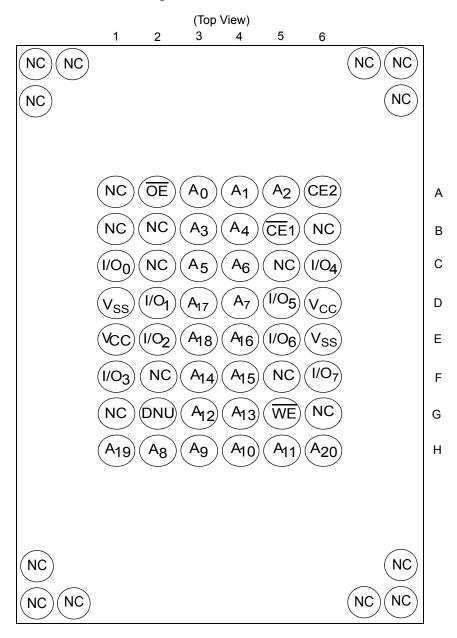


Selection Guide

Description	-10	-12	Unit
Maximum Access Time	10	12	ns
Maximum Operating Current	275	260	mA
Maximum CMOS Standby Current	50	50	mA

Pin Configuration

Figure 1. **54-Pin TSOP II** [1, 2]


Notes

- NC pins are not connected on the die.
 DNU pins have to be left floating or tied to VSS to ensure proper application.

Pin Configuration

Figure 2. 54-Pin TSOP II $^{[1,2]}$

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Storage Temperature-65°C to +150°C

Ambient Temperature with

Supply Voltage on V_{CC} to Relative GND^[3].....-0.5V to +4.6V

DC Input Voltage ^[3]	0.5V to V _{CC} + 0.5V
Current into Outputs (LOW)	20 mA

Operating Range

Range	Ambient Temperature	V _{cc}
Commercial	0°C to +70°C	$3.3V \pm 0.3V$
Industrial	–40°C to +85°C	

DC Electrical Characteristics Over the Operating Range

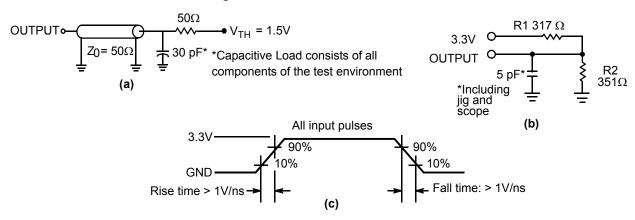
Parameter	Description	Test Conditions	-	10	-12		Unit
raiailletei	Description	lest Collultions	Min	Max	Min	Max	Oilit
V _{OH}	Output HIGH Voltage	V_{CC} = Min., I_{OH} = -4.0 mA	2.4		2.4		V
V _{OL}	Output LOW Voltage	V_{CC} = Min., I_{OL} = 8.0 mA		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.0	$V_{CC} + 0.3$	2.0	$V_{CC} + 0.3$	V
V _{IL}	Input LOW Voltage ^[3]		-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$	–1	+1	– 1	+1	μА
I _{OZ}	Output Leakage Current	$GND \le V_{OUT} \le V_{CC}$, Output Disabled	– 1	+1	– 1	+1	μА
I _{CC}		$V_{CC} = Max.,$ $f = f_{MAX} = 1/t_{RC}$		275		260	mA
I _{SB1}	Power Down Current	$CE_2 \le V_{IL}$, $\underline{}$ $Max. V_{CC}$, $\overline{CE_1} \ge V_{IH}$ $V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, $f = f_{MAX}$		70		70	mA
I _{SB2}	Power Down Current —CMOS Inputs	$\begin{split} & \underbrace{\text{CE}_2} \leq 0.3\text{V}, \text{Max.} \text{V}_{\text{CC}}, \\ & \text{CE}_1 \!\!\! \geq \text{V}_{\text{CC}} - 0.3\text{V}, \\ & \text{V}_{\text{IN}} \!\!\! \geq \text{V}_{\text{CC}} - 0.3\text{V}, \\ & \text{or} \text{V}_{\text{IN}} \!\!\! \leq 0.3\text{V}, \text{f} = 0 \end{split}$		50		50	mA

Capacitance

Tested initially and after any design or process changes that may affect these parameters.^[4]

Parameter	Description	Test Conditions	TSOP II	FBGA	Unit
C _{IN}	Input Capacitance	$T_A = 25$ °C, f = 1 MHz, $V_{CC} = 3.3$ V	6	8	pF
C _{OUT}	I/O Capacitance		8	10	pF

Notes


Document #: 38-05255 Rev. *G

^{3.} V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.

^{4.} Tested initially and after any design or process changes that may affect these parameters.

Figure 3. AC Test Loads and Waveforms^[5]

AC Switching Characteristics Over the Operating Range [7]

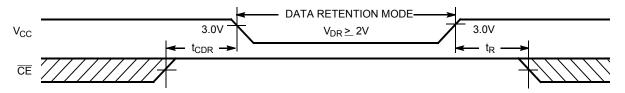
Davamatav	Decemention	-10		_	12	11!4
Parameter	Description	Min	Max	Min	Max	Unit
Read Cycle					•	
t _{power}	V _{CC} (typical) to the First Access ^[8]	1		1		ms
t _{RC}	Read Cycle Time	10		12		ns
t _{AA}	Address to Data Valid		10		12	ns
t _{OHA}	Data Hold from Address Change	3		3		ns
t _{ACE}	CE ₁ LOW/CE ₂ HIGH to Data Valid		10		12	ns
t _{DOE}	OE LOW to Data Valid		5		6	ns
t _{LZOE}	OE LOW to Low-Z ^[9]	1		1		ns
t _{HZOE}	OE HIGH to High-Z ^[9]		5		6	ns
t _{LZCE}	CE ₁ LOW/CE ₂ HIGH to Low-Z ^[9]	3		3		ns
t _{HZCE}	CE ₁ HIGH/CE ₂ LOW to High-Z ^[9]		5		6	ns
t _{PU}	CE ₁ LOW/CE ₂ HIGH to Power Up ^[10]	0		0		ns
t _{PD}	CE ₁ HIGH/CE ₂ LOW to Power Down ^[10]		10		12	ns
Write Cycle ^[10, 11]	•		U	l.		I.
t _{WC}	Write Cycle Time	10		12		ns
t _{SCE}	CE ₁ LOW/CE ₂ HIGH to Write End	7		8		ns
t _{AW}	Address Setup to Write End	7		8		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Setup to Write Start	0		0		ns

Notes

- Valid SRAM operation does not occur until the power supplies have reached the minimum operating V_{DD} (3.0V). As soon as 1ms (T_{power}) after reaching the minimum operating V_{DD}, normal SRAM operation can begin including reduction in V_{DD} to the data retention (V_{CCDR}, 2.0V) voltage.

 Valid SRAM operation does not occur until the power supplies have reached the minimum operating V_{DD} (3.0V). As soon as 1ms (T_{power}) after reaching the minimum operating V_{DD}, normal SRAM operation can begin including reduction in V_{DD} to the data retention (V_{CCDR}, 2.0V) voltage.

 Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{DL}/I_{DH} and transmission line loads. Test conditions for the Read cycle use output loading shown in part a) of the AC test loads, unless specified otherwise.


- This part has a voltage regulator which steps down the voltage from 3V to 2V internally. tpower time has to be provided initially before a Read/Write operation is started.
- t_{HZOE} , t_{HZCE} , t_{HZWE} and t_{LZOE} , t_{LZCE} , and t_{LZWE} are specified with a load capacitance of 5 pF as in (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.
- 10. These parameters are guaranteed by design and are not tested.
- 11. The internal Write time of the memory is defined by the overlap of $\overline{\text{CE}}_1\text{LOW/CE}_2\text{HIGH}$, and $\overline{\text{WE}}$ LOW. $\overline{\text{CE}}_1$ and $\overline{\text{WE}}$ must be LOW along with $\overline{\text{CE}}_2$ HIGH to initiate a Write, and the transition of any of these signals can terminate the Write. The input data setup and hold timing should be referenced to the leading edge of the signal that terminates the Write.
- 12. The minimum Write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

AC Switching Characteristics Over the Operating Range (continued)^[7]

Parameter	Description	Description -10		-1	Unit	
Parameter	Description	Min	Max	Min	Max	Ollit
t _{PWE}	WE Pulse Width	7		8		ns
t _{SD}	Data Setup to Write End	5.5		6		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low-Z ^[9]	3		3		ns
t _{HZWE}	WE LOW to High-Z ^[9]		5		6	ns

Figure 4. Data Retention Waveform

Switching Waveforms

Figure 5. Read Cycle No. 1^[13, 14]

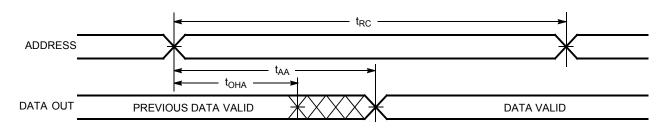
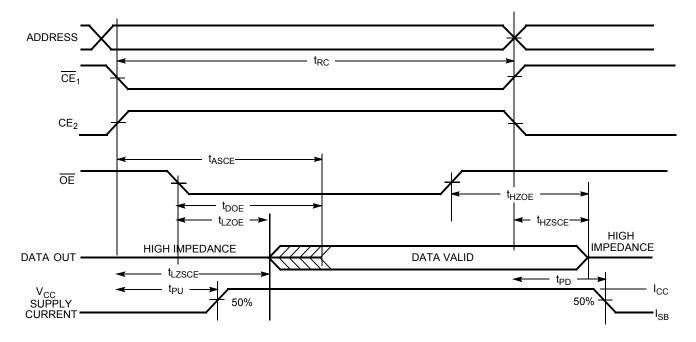



Figure 6. Read Cycle No. 2 (OE Controlled)[14, 15]

Notes

^{13. &}lt;u>Device</u> is continuously selected. $\overline{CE}_1 = V_{IL}$, $CE_2 = V_{IH}$.

^{14.} WE is HIGH for Read cycle.

15. Address valid prior to or coincident with $\overline{\text{CE}}_1$ transition LOW and CE_2 transition HIGH.

Switching Waveforms (continued)

Figure 7. Write Cycle No. 1 ($\overline{\text{CE}}_1$ Controlled)[16, 17, 18]

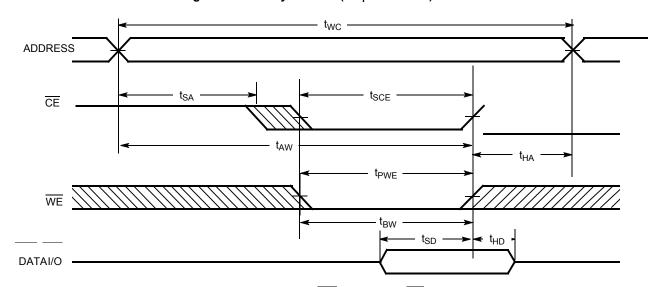
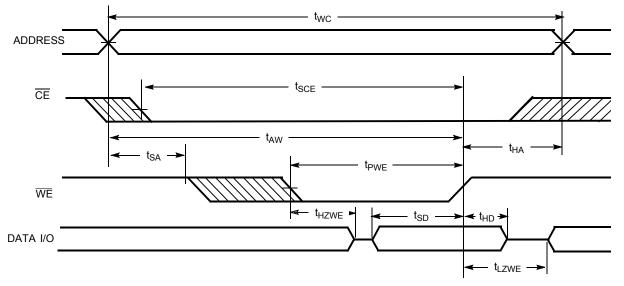



Figure 8. Write Cycle No. 2 (WE Controlled, OE LOW)[16, 17, 18]

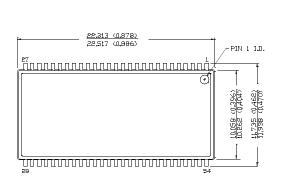
Truth Table

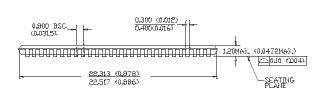
CE ₁	CE ₂	OE	WE	I/O ₀ –I/O ₇	Mode	Power
Н	Х	X	X	High-Z	Power Down	Standby (I _{SB})
Х	L	Х	Х	High-Z	Power Down	Standby (I _{SB})
L	Н	L	Н	Data Out	Read All Bits	Active (I _{CC})
L	Н	X	L	Data In	Write All Bits	Active (I _{CC})
L	Н	Н	Н	High-Z	Selected, Outputs Disabled	Active (I _{CC})

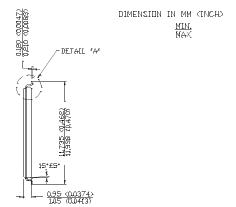
^{16.} Data I/O is high-impedance if $\overline{\mathsf{OE}} = \mathsf{V}_\mathsf{IH}$.

17. If $\overline{\mathsf{CE}}_1$ goes HIGH/CE₂ LOW simultaneou<u>sly</u> with $\overline{\mathsf{WE}}$ going HIGH, the output remains in a high-impedance state.

18. $\overline{\mathsf{CE}}$ above is defined as a combination of $\overline{\mathsf{CE}}_1$ and CE_2 . It is active low.




Ordering Information


Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C1069AV33-10ZC	51-85160	54-pin TSOP II	Commercial
	CY7C1069AV33-10ZXC]	54-pin TSOP II (Pb-free)	
	CY7C1069AV33-10BAC	51-85162	60-ball (8 mm x 20 mm x 1.2 mm) FBGA	
	CY7C1069AV33-10ZXI		54-pin TSOP II (Pb-free)	
	CY7C1069AV33-10BAI	51-85162	60-ball (8 mm x 20 mm x 1.2 mm) FBGA	
12	CY7C1069AV33-12ZC	51-85160	54-pin TSOP II	Commercial
	CY7C1069AV33-12ZXC]	54-pin TSOP II (Pb-free)	
	CY7C1069AV33-12ZI	51-85160	54-pin TSOP II	Industrial

Package Diagrams

Figure 9. 54-Pin TSOP II (51-85160)

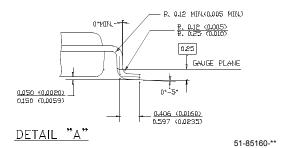
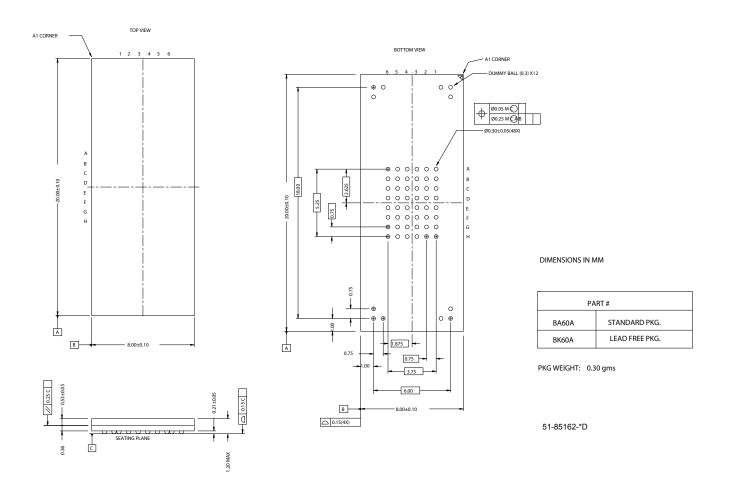



Figure 10. 60-Ball FBGA (8 mm x 20 mm x 1.2 mm) (51-85162)

Document History Page

REV.	ECN NO.	Submission Date	Orig. of Change	Description of Change
**	113724	03/27/02	NSL	New Data Sheet
*A	117060	07/31/02	DFP	Removed 15-ns bin
*B	117990	08/30/02	DFP	Added 8-ns bin Changing I_{CC} for 8, 10, 12 bins t_{power} changed from 1 μs to 1 ms Load Cap Comment changed (for Tx line load) t_{SD} changed to 5.5 ns for the 10-ns bin Changed some 8-ns bin #'s (t_{HZ} , t_{DOE} , t_{DBE}) Removed hz < Iz comments
*C	120385	11/13/02	DFP	Final Data Sheet Added note 4 to "AC Test Loads and Waveforms" and note 7 to t _{pu} and t _p Updated Input/Output Caps (for 48BGA only) to 8 pf/10 pf and for the 54-p TSOP to 6/8 pf
*D	124441	2/25/03	MEG	Changed ISB1 from 100 mA to 70 mA Shaded the 48fBGA product offering information
*E	403984	See ECN	NXR	Changed the Logic Block Diagram On page # 1 Added notes under Pin Configuration Changed the Package diagram of 51-85162 from Rev *A to Rev *D Changed 48-Ball FBGA to 60-Ball FBGA in Pin Configuration Updated the Ordering Information
*F	492137	See ECN	NXR	Removed 8 ns speed bin from product offering Changed the description of I _{IX} from Input Load Current to Input Leakage Current in DC Electrical Characteristics table Updated the Ordering Information
*G	2784946	10/12/2009	VKN/PYRS	Updated template Corrected typo in footnote 9 Updated Ordering Information table

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at www.cypress.com/go/home/order/sales.

Products

PSoC psoc.cypress.com
Clocks & Buffers clocks.cypress.com
Wireless wireless.cypress.com
Memories memory.cypress.com
Image Sensors image.cypress.com

© Cypress Semiconductor Corporation, 2002-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document #: 38-05255 Rev. *G

Revised October 12, 2009

Page 12