

3EZ4.3D5 Series

3 Watt DO-41 Surmetic™ 30 Zener Voltage Regulators

This is a complete series of 3 Watt Zener diodes with limits and excellent operating characteristics that reflect the superior capabilities of silicon-oxide passivated junctions. All this in an axial-lead, transfer-molded plastic package that offers protection in all common environmental conditions.

Specification Features:

- Zener Voltage Range – 4.3 V to 330 V
- ESD Rating of Class 3 (>16 KV) per Human Body Model
- Surge Rating of 98 W @ 1 ms
- Maximum Limits Guaranteed on up to Six Electrical Parameters
- Package No Larger than the Conventional 1 Watt Package
- These devices are available in Pb-free package(s). Specifications herein apply to both standard and Pb-free devices. Please see our website at www.onsemi.com for specific Pb-free orderable part numbers, or contact your local ON Semiconductor sales office or representative.

Mechanical Characteristics:

CASE: Void free, transfer-molded, thermosetting plastic

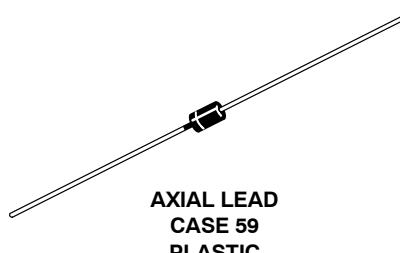
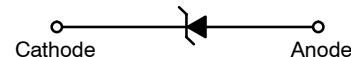
FINISH: All external surfaces are corrosion resistant and leads are readily solderable

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES:

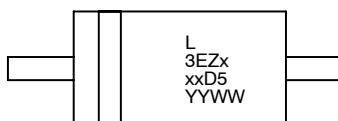
230°C, 1/16" from the case for 10 seconds

POLARITY: Cathode indicated by polarity band

OUNTING POSITION: Any



MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Max. Steady State Power Dissipation @ $T_L = 75^\circ\text{C}$, Lead Length = 3/8" Derate above 75°C	P_D	3 24	W mW/°C
Steady State Power Dissipation @ $T_A = 50^\circ\text{C}$ Derate above 50°C	P_D	1 6.67	W mW/°C
Operating and Storage Temperature Range	T_J , T_{stg}	-65 to +200	°C


ON Semiconductor®

<http://onsemi.com>

AXIAL LEAD
CASE 59
PLASTIC

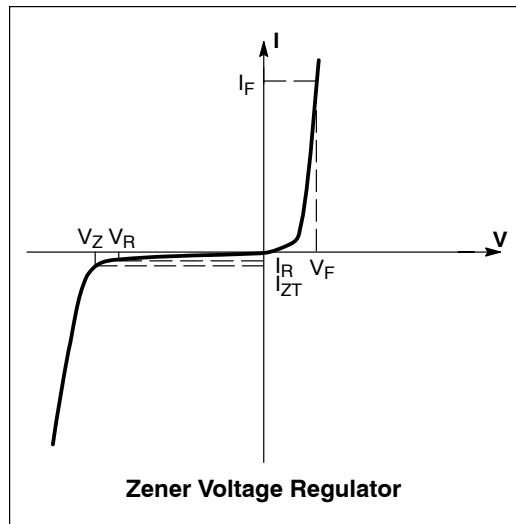
MARKING DIAGRAM

L = Assembly Location
3EZxxxD5 = Device Code
(See Table Next Page)
YY = Year
WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
3EZxxxD5	Axial Lead	2000 Units/Box
3EZxxxD5RL*	Axial Lead	6000/Tape & Reel
3EZxxxD5RR1 †	Axial Lead	2000/Tape & Reel
3EZxxxD5RR2 ‡	Axial Lead	2000/Tape & Reel

†Polarity band **up** with cathode lead off first


‡Polarity band **down** with cathode lead off first

*3EZ8.2D5 and 3EZ220D5 Not Available in
6000/Tape & Reel

3EZ4.3D5 Series

ELECTRICAL CHARACTERISTICS ($T_A = 25^\circ\text{C}$ unless otherwise noted, $V_F = 1.5 \text{ V Max} @ I_F = 200 \text{ mA}$ for all types)

Symbol	Parameter
V_Z	Reverse Zener Voltage @ I_{ZT}
I_{ZT}	Reverse Current
Z_{ZT}	Maximum Zener Impedance @ I_{ZT}
I_{ZK}	Reverse Current
Z_{ZK}	Maximum Zener Impedance @ I_{ZK}
I_R	Reverse Leakage Current @ V_R
V_R	Breakdown Voltage
I_F	Forward Current
V_F	Forward Voltage @ I_F
I_{ZM}	Maximum DC Zener Current
I_R	Surge Current @ $T_A = 25^\circ\text{C}$

3EZ4.3D5 Series

ELECTRICAL CHARACTERISTICS ($T_A = 25^\circ\text{C}$ unless otherwise noted, $V_F = 1.5\text{ V Max} @ I_F = 200\text{ mA}$ for all types)

Device (Note 1)	Device Marking	Zener Voltage (Note 2)			Zener Impedance (Note 3)		Leakage Current			I_R (Note 4)		
		V _Z (Volts)			@ I _{ZT}	Z _{ZT} @ I _{ZT}	Z _{ZK} @ I _{ZK}		I _R @ V _R			
		Min	Nom	Max	mA	Ω	Ω	mA	μA Max	Volts	mA	
3EZ4.3D5	3EZ4.3D5	4.09	4.3	4.52	174	4.5	400	1	30	1	590	4.1
3EZ6.2D5	3EZ6.2D5	5.89	6.2	6.51	121	1.5	700	1	5	3	435	3.1
3EZ8.2D5*	3EZ8.2D5*	7.79	8.2	8.61	91	2.3	700	0.5	5	6	330	2.44
3EZ10D5	3EZ10D5	9.50	10	10.5	75	3.5	700	0.25	3	7.6	270	2.0
3EZ13D5	3EZ13D5	12.35	13	13.65	58	4.5	700	0.25	0.5	9.9	208	1.54
3EZ15D5	3EZ15D5	14.25	15	15.75	50	5.5	700	0.25	0.5	11.4	180	1.33
3EZ16D5	3EZ16D5	15.2	16	16.8	47	5.5	700	0.25	0.5	12.2	169	1.25
3EZ18D5	3EZ18D5	17.1	18	18.9	42	6.0	750	0.25	0.5	13.7	150	1.11
3EZ24D5	3EZ24D5	22.8	24	25.2	31	9.0	750	0.25	0.5	18.2	112	0.83
3EZ36D5	3EZ36D5	34.2	36	37.8	21	22	1000	0.25	0.5	27.4	75	0.56
3EZ39D5	3EZ39D5	37.05	39	40.95	19	28	1000	0.25	0.5	29.7	69	0.51
3EZ220D5*	3EZ220D5*	209	220	231	3.4	1600	9000	0.25	1	167	12	0.09
3EZ240D5	3EZ240D5	228	240	252	3.1	1700	9000	0.25	1	182	11	0.09
3EZ330D5	3EZ330D5	313.5	330	346.5	2.3	2200	9000	0.25	1	251	8	0.06

1. TOLERANCE AND TYPE NUMBER DESIGNATION

Tolerance designation – device tolerance of $\pm 5\%$ are indicated by a “5” suffix.

2. ZENER VOLTAGE (V_Z) MEASUREMENT

ON Semiconductor guarantees the zener voltage when measured at 40 ms ± 10 ms, 3/8" from the diode body. And an ambient temperature of 25°C ($+8^\circ\text{C}$, -2°C)

3. ZENER IMPEDANCE (Z_Z) DERIVATION

The zener impedance is derived from 60 seconds AC voltage, which results when an AC current having an rms value equal to 10% of the DC zener current (I_{ZT} or I_{ZK}) is superimposed on I_{ZT} or I_{ZK} .

4. SURGE CURRENT (I_R) NON-REPETITIVE

The rating listed in the electrical characteristics table is maximum peak, non-repetitive, reverse surge current of 1/2 square wave or equivalent sine wave pulse of 1/120 second duration superimposed on the test current, I_{ZT} , per JEDEC standards. However, actual device capability is as described in Figure 3 of the General Data sheet for Surmetic 30s.

*Not Available in the 6000/Tape & Reel.

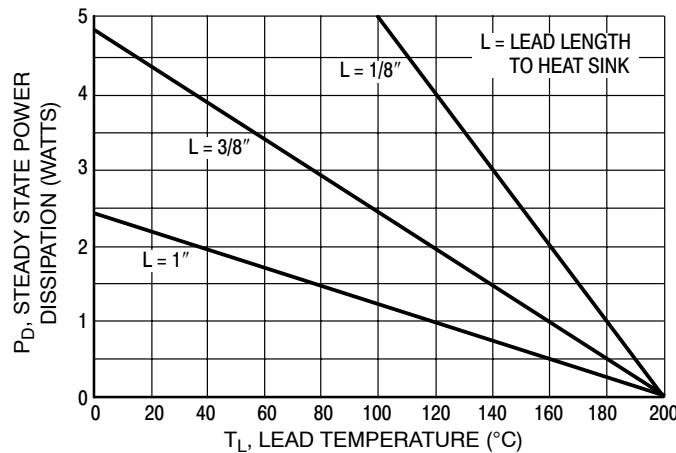


Figure 1. Power Temperature Derating Curve

3EZ4.3D5 Series

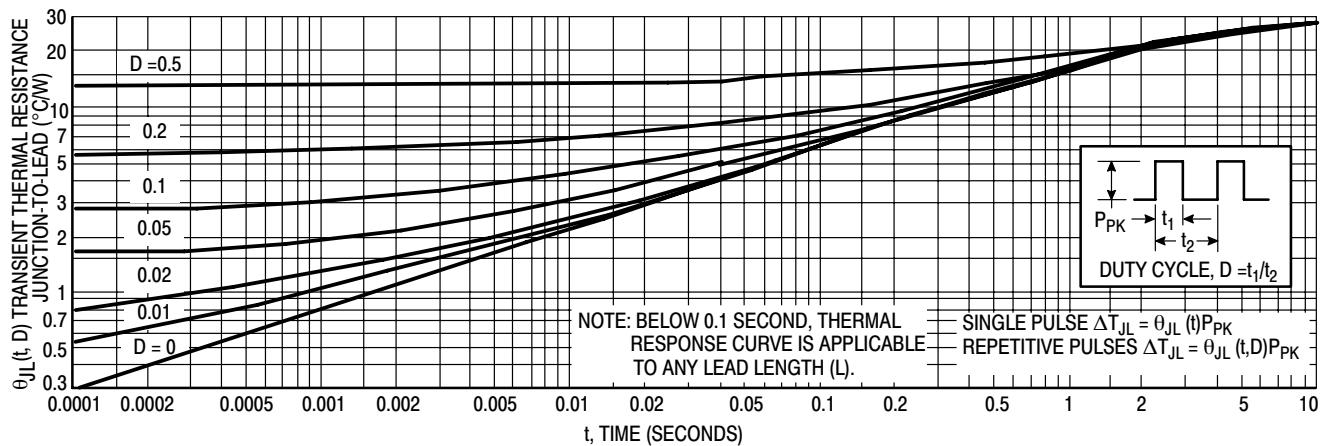


Figure 2. Typical Thermal Response L, Lead Length = 3/8 Inch

Figure 3. Maximum Surge Power

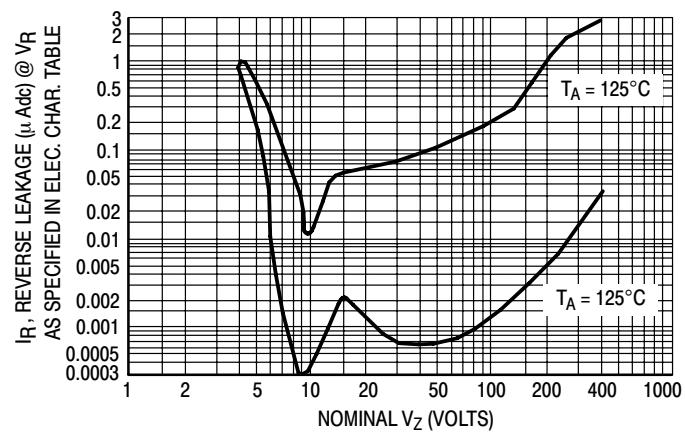


Figure 4. Typical Reverse Leakage

APPLICATION NOTE

Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended:

Lead Temperature, T_L , should be determined from:

$$T_L = \theta_{LA} P_D + T_A$$

θ_{LA} is the lead-to-ambient thermal resistance ($^{\circ}\text{C}/\text{W}$) and P_D is the power dissipation. The value for θ_{LA} will vary and depends on the device mounting method. θ_{LA} is generally 30–40 $^{\circ}\text{C}/\text{W}$ for the various clips and tie points in common use and for printed circuit board wiring.

The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of T_L , the junction temperature may be determined by:

$$T_J = T_L + \Delta T_{JL}$$

ΔT_{JL} is the increase in junction temperature above the lead temperature and may be found from Figure 2 for a train of power pulses ($L = 3/8$ inch) or from Figure 10 for dc power.

$$\Delta T_{JL} = \theta_{JL} P_D$$

For worst-case design, using expected limits of I_Z , limits of P_D and the extremes of T_J (ΔT_J) may be estimated. Changes in voltage, V_Z , can then be found from:

$$\Delta V = \theta_{VZ} \Delta T_J$$

θ_{VZ} , the zener voltage temperature coefficient, is found from Figures 5 and 6.

Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible.

Data of Figure 2 should not be used to compute surge capability. Surge limitations are given in Figure 3. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure 3 be exceeded.

3EZ4.3D5 Series

TEMPERATURE COEFFICIENT RANGES (90% of the Units are in the Ranges Indicated)

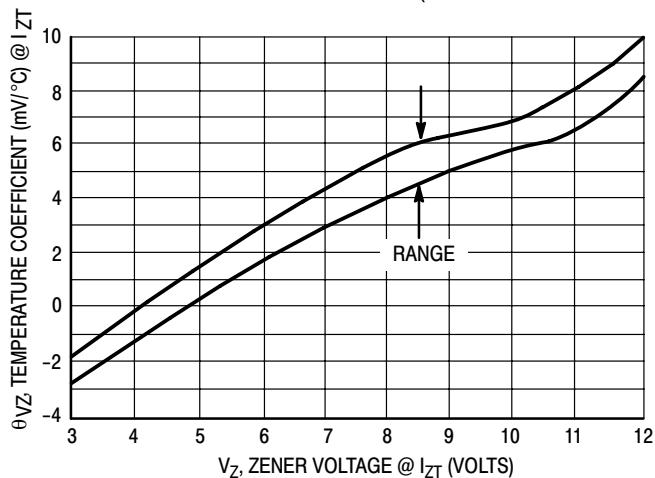


Figure 5. Units To 12 Volts

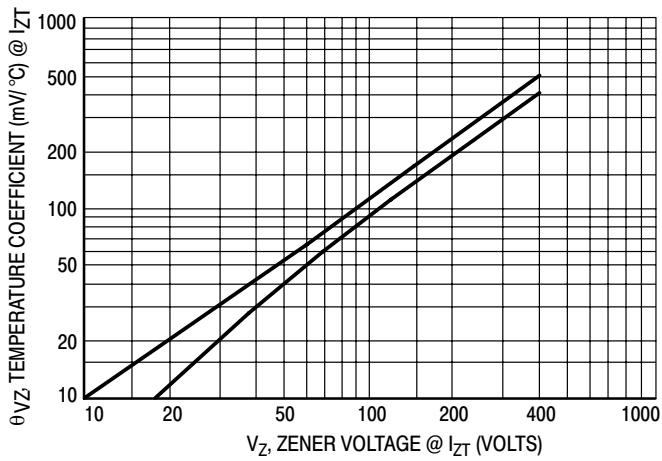


Figure 6. Units 10 To 400 Volts

ZENER VOLTAGE versus ZENER CURRENT

(Figures 7, 8 and 9)

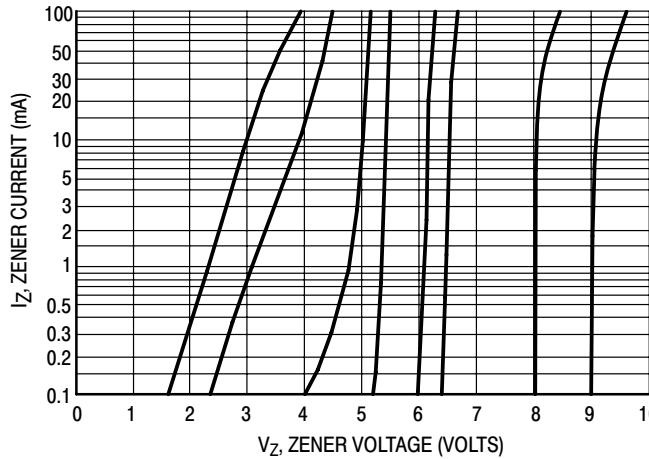


Figure 7. V_Z = 3.3 thru 10 Volts

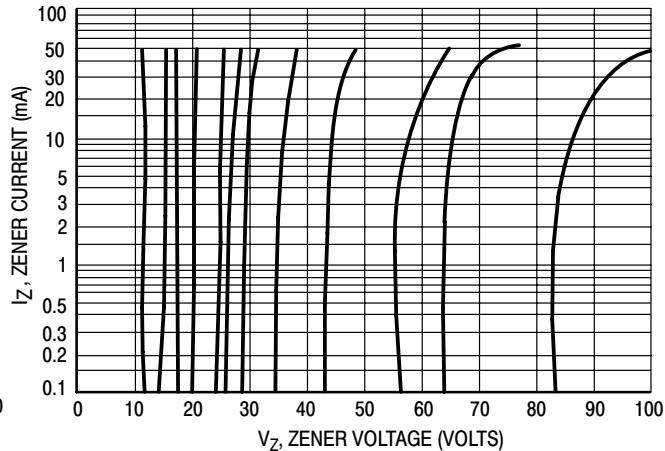


Figure 8. V_Z = 12 thru 82 Volts

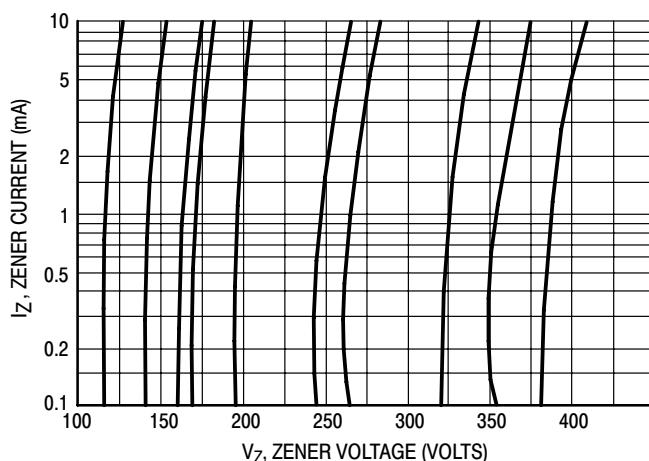


Figure 9. V_Z = 100 thru 400 Volts

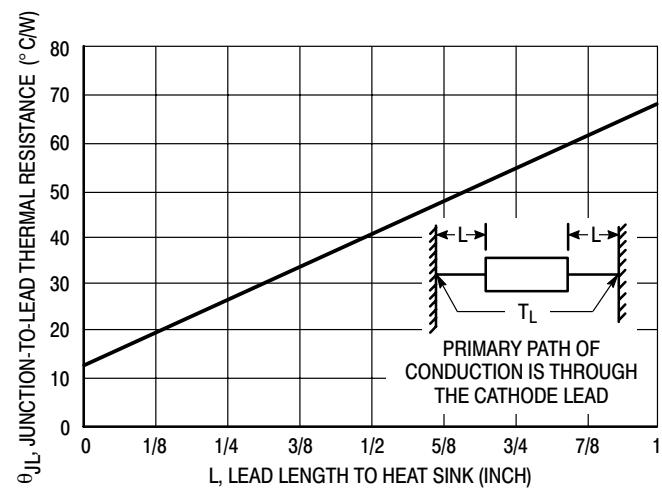
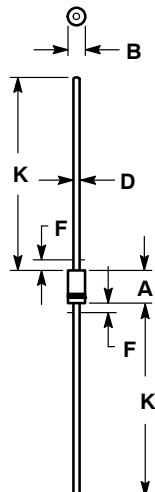


Figure 10. Typical Thermal Resistance

OUTLINE DIMENSIONS


Zener Voltage Regulators – Axial Leaded

3 Watt DO-41 Surmetic™ 30

PLASTIC DO-41

CASE 59-10

ISSUE S

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 59-04 OBSOLETE, NEW STANDARD 59-09.
4. 59-03 OBSOLETE, NEW STANDARD 59-10.
5. ALL RULES AND NOTES ASSOCIATED WITH JEDEC DO-41 OUTLINE SHALL APPLY.
6. POLARITY DENOTED BY CATHODE BAND.
7. LEAD DIAMETER NOT CONTROLLED WITHIN F DIMENSION.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.161	0.205	4.10	5.20
B	0.079	0.106	2.00	2.70
D	0.028	0.034	0.71	0.86
F	---	0.050	---	1.27
K	1.000	---	25.40	---

Surmetic is a trademark of Semiconductor Components Industries, LLC.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor

P.O. Box 61312, Phoenix, Arizona 85082-1312 USA

Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada

Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.comN. American Technical Support: 800-282-9855 Toll Free
USA/CanadaJapan: ON Semiconductor, Japan Customer Focus Center
2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051
Phone: 81-3-5773-3850ON Semiconductor Website: <http://onsemi.com>Order Literature: <http://www.onsemi.com/litorder>For additional information, please contact your
local Sales Representative.