

January 2008

FSA1156, FSA1157 Low-R_{ON} Low-Voltage SPST Analog Switch

Features

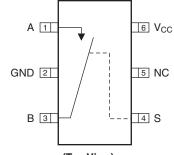
- Maximum 0.9Ω R_{ON} for 4.5V Supply at 25°C
- 0.3Ω Maximum R_{ON} Flatness for 4.5V Supply
- Broad V_{CC} Operating Range: 1.65V to 5.5V
- Fast Turn-on and Turn-off Time
- Over-voltage Tolerant, TTL-compatible Control Input
- Available in SC70 and MicroPak[™] Space-saving, Surface-mount Packages

General Description

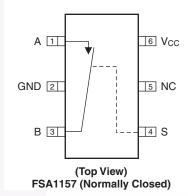
The FSA1156 and FSA1157 are high-performance Single-Pole / Single-Throw (SPST) analog switches. The devices feature ultra-low R_{ON} of 0.75Ω (typical) and operate over a wide V_{CC} range of 1.65V to 5.5V. The devices are fabricated with sub-micron CMOS technology to achieve fast switching speeds. The select input is TTL-level compatible. The FSA1156 has normally open operation; the FSA1157 has normally closed operation.

Ordering Information

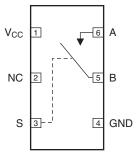
Order Number	Package Number	Top Mark	Package Description	Packing Method
FSA1156P6	MAA06A	156	6-Lead SC70, EIAJ SC88, 1.25mm Wide	250 Units Tape and Reel
FSA1156P6X	MAA06A	156	6-Lead SC70, EIAJ SC88, 1.25mm Wide	3000 Units Tape and Reel
FSA1156L6X	MAC06A	EH	6-Lead MicroPak, 1.0mm Wide	5000 Units Tape and Reel
FSA1157P6	MAA06A	157	6-Lead SC70, EIAJ SC88, 1.25mm Wide	250 Units Tape and Reel
FSA1157P6X	MAA06A	157	6-Lead SC70, EIAJ SC88, 1.25mm Wide	3000 UnitsTape and Reel
FSA1157L6X	MAC06A	EJ	6-Lead MicroPak, 1.0mm Wide	5000 UnitsTape and Reel

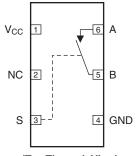


All packages are lead free per JEDEC: J-STD-020B standard.


MicroPak™ is a trademark of Fairchild Semiconductor Corporation.

Analog Symbols


Pin Assignment for SC70 Package


(Top View) FSA1156 (Normally Open)

Pin Assignment for MicroPak™

(Top Through View) FSA1156 (Normally Open)

(Top Through View) FSA1157 (Normally Closed)

Figure 1. Pin Configurations

Truth Table

Control Input(s)	FSA1156	FSA1157		
LOW Logic Level	OFF	ON		
HIGH Logic Level	ON	OFF		

Pin Descriptions

Pin Names	Function
A, B	Data Ports
S	Control Input
NC	No Connect

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	-0.5	+6.0	V
V _{SW}	Switch Voltage ^(1.)	-0.5	V _{CC} +0.5V	V
V _{IN}	Input Voltage ^(1.)	-0.5	+6.0	V
I _{IK}	Input Diode Current		-50	mA
I _{SW}	Switch Current		200	mA
I _{SWPEAK}	Peak Switch Current (Pulsed at 1ms Duration, <10% Duty Cycle)		400	mA
P _D	Power Dissipation at 85°C, SC70 Package		180	mW
T _{STG}	Storage Temperature Range	-65	+150	°C
T_J	Maximum Junction Temperature		+150	°C
T _L	Lead Temperature (Soldering, 10 seconds)		+260	°C
ESD	Human Body Model		8000	V

Note:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage		5.50	V
V_{IN}	V _{IN} Control Input Voltage ^(2.)		V _{CC}	V
V_{SW}	Switch Input Voltage		V _{CC}	V
T _A	T _A Operating Temperature		+85	°C
Θ_{JA}	Thermal Resistance in Still Air, SC70 package	350	7	°C/W

Note:

2. Control input must be held HIGH or LOW. It must not float.

DC Electrical Characteristics

All typical values are at 25°C unless otherwise specified.

Symbol	Parameter	Conditions	V _{CC} (V)	T _A = +25°C		T _A = -40°C to +85°C			Unit
				Min.	Тур.	Max.	Min.	Max.	
\/	Input Voltage High		2.7 to 3.6				2.0		V
V _{IH}	iliput voltage riigii		4.5 to 5.5				2.4		'
W	Input Voltage Low		2.7 to 3.6					0.6	V
V IL	V _{IL} Input Voltage Low		4.5 to 5.5					0.8	'
1	Control Input Leak-	V _{IN} = 0V to V _{CC}	2.7 to 3.6				-1.0	1.0	
'IN	age	VIN - OV 10 VCC	4.5 to 5.5				-1.0	1.0	μΑ
I _{NO(OFF)} , I _{NC(OFF)}	Off Leakage Current	A = 1V, 4.5V; B = 4.5V, 1V	5.5	-2.0		2.0	20.0	20.0	nA
I _{A(ON)}	On Leakage Current	A = 1V, 4.5V; B = 1V, 4.5V or Floating	5.5	-4.0		4.0	-40.0	40.0	nA
В	Switch On	I _{OUT} = 100mA, B = 1.5V	2.7		1.4	2.1		2.5	
R _{ON}	Resistance ^(3.)	I _{OUT} = 100mA, B = 3.5V	4.5		0.75	0.90		1.00	Ω
В	On Resistance	I _{OUT} = 100mA; B ₀ = 0V, 0.75V, 1.5V	2.7		0.6				Ω
R _{FLAT} (ON) Flatness ^(4.)		I _{OUT} = 100mA; B ₀ = 0V, 1V, 2V	4.5		0.1	0.2		0.3	52
laa	Quiescent Supply	$V_{IN} = 0V \text{ or } V_{CC},$	3.6		0.1	0.5		1.0	Δ
I _{CC}	Current	I _{OUT} = 0V	5.5		0.1	0.5		1.0	μА

Notes:

- 3. On resistance is determined by the voltage drop between the A and B pins at the indicated current through the switch.
- 4. Flatness is defined as the difference between the maximum and minimum value of on resistance over the specified range of conditions.

AC Electrical Characteristics

All typical values are at 25°C unless otherwise specified.

Symbol	ymbol Parameter Conditions		V _{CC} (V)	T _A =	T _A =+25°C		= -40°(+85°C	= -40°C to +85°C		Figure Number
				Min.	Тур.	Max.	Min.	Max.		Italiibei
tou	Turn-On Time	B = 1.5V, $R_L = 50Ω$, $C_L = 35pF$	2.7 to 3.6		30	40		45	ns	Figure 4
t _{ON}	Tuni-On Time	B = 3.0V, $R_L = 50Ω$, $C_L = 35pF$	4.5 to 5.5		15	20		25	113	r iguic 1
t	Turn-Off Time	B = 1.5V, $R_L = 50Ω$, $C_L = 35pF$	2.7 to 3.6		25	35		45	ns	Figure 4
OFF	t _{OFF} Turn-Off Time	B = 3.0V, $R_L = 50Ω$, $C_L = 35pF$	4.5 to 5.5		22	30		40	113	i igule 4
	Charge	C _L = 1.0nF,	2.7 to 3.6		10					
Q	Injection	$V_{GE} = 0V,$ $R_{GEN} = 0\Omega$	4.5 to 5.5		20				pC	Figure 5
OIRR	Off Isolation	$f = 1MHz, R_L = 50\Omega$	2.7 to 3.6		-65				dB	Figure 6
Oliviv	Oli isolation		4.5 to 5.5		-65				UD	i igule o
BW	-3db Band-	$R_L = 50\Omega$	2.7 to 3.6		300				MHz	Figure 7
DVV	width		4.5 to 5.5		300				IVITIZ	Figure 7
	Total Harmonic	$R_L = 600\Omega$,	2.7 to 3.6		0.001					
THD	Distortion	$V_{IN} = 0.5V_{PP}$, $f = 20Hz$ to $20kHz$	4.5 to 5.5		0.001				%	Figure 8

Capacitance

Symbol	Parameter	Conditions	V _{CC} (V)	T,	_Δ = +25°	Units	Figure	
Cymbol	raiametei CC		- (((-)	Min.	Тур.	Max.	Omio	Number
C _{IN}	Control Pin Input Capacitance	f = 1MHz	0.0		3		pF	Figure 9
C _{OFF}	A/B Port Off Capacitance	f = 1MHz	4.5		20		pF	Figure 9
C _{ON}	A/B Port On Capacitance	f = 1MHz	4.5		65		pF	Figure 9

Typical Characteristics

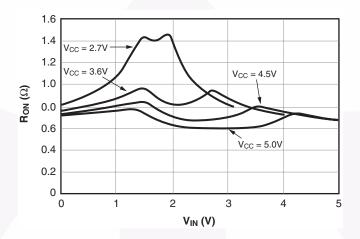


Figure 2. On Resistance vs. Input Voltage, Over Supply Voltage, $T_A=25^\circ$

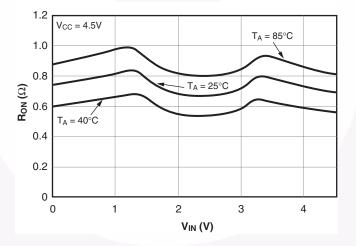
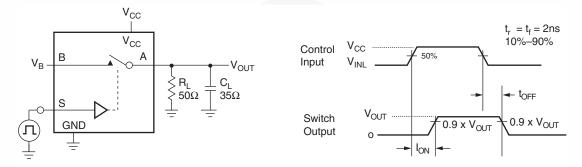



Figure 3. On Resistance vs. Input Voltage, Over Temperature

AC Loading and Waveforms

C_L Includes Fixture and Stray Capacitance

Logic Input Waveforms Inverted for Switches that have the Opposite Logic Sense

Figure 4. Turn-On / Off Timing

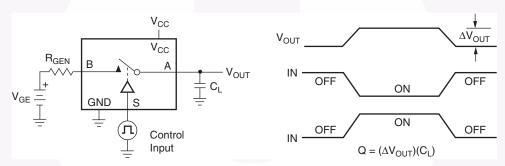


Figure 5. Charge Injection

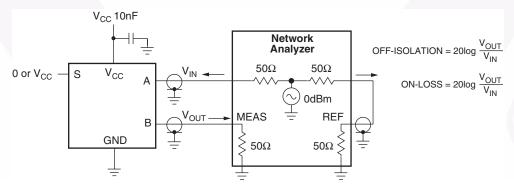


Figure 6. Off Isolation

AC Loading and Waveforms (Continued)

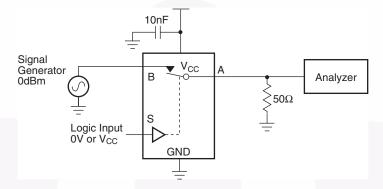


Figure 7. Bandwidth

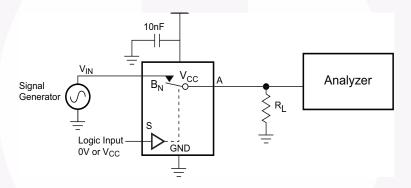


Figure 8. Harmonic Distortion

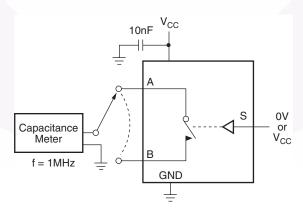
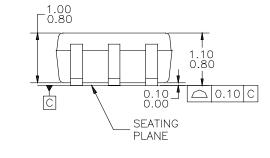
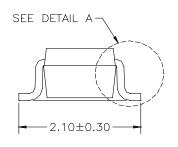
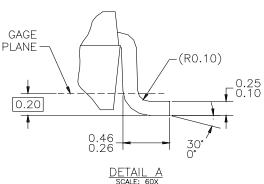





Figure 9. On / Off Capacitance

Physical Dimensions SYMM Q 2.00±0.20 A 1.25±0.10 1.90 1.30 LAND PATTERN RECOMMENDATION

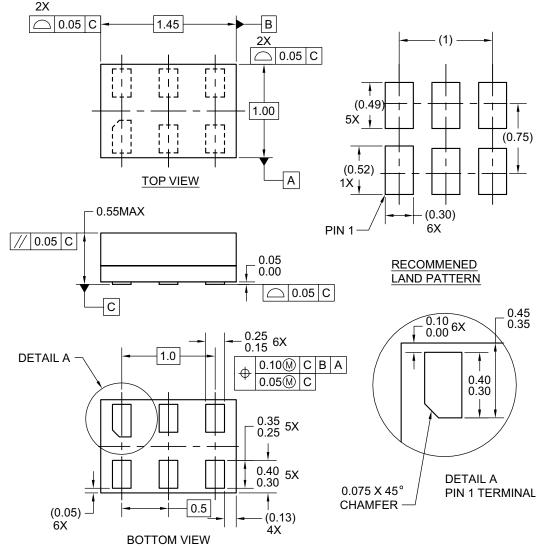
NOTES: UNLESS OTHERWISE SPECIFIED

- A) THIS PACKAGE CONFORMS TO EIAJ SC-88, 1996.B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH.

MAA06AREV5

Figure 10. 6-Lead SC70, EIAJ SC88, 1.25mm Wide

Note: click here for tape and reel specifcations, available at:


http://www.fairchildsemi.com/products/analog/pdf/sc70-6 tr.pdf

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/packaging/

Physical Dimensions (Continued)

Notes:

- 1. CONFORMS TO JEDEC STANDARD M0-252 VARIATION UAAD
- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y14.5M-1994

MAC06AREVC

Figure 11. 6-Lead MicroPak, 1.0mm Wide

Note: click here for tape and reel specifications, available at: http://www.fairchildsemi.com/products/logic/pdf/micropak tr.pdf

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/packaging/

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ACEx[®] Build it Now™ CorePLUS™ CROSSVOLT™ CTL TM

Current Transfer Logic™ EcoSPARK[®] EZSWITCH™ *

EZ ™ Fairchild[®]

Fairchild Semiconductor® FACT Quiet Series™ FACT®

FAST® FastvCore™ FlashWriter®* FPS™ FRFET®

Global Power Resources

Green FPS™

Green FPS™ e-Series™

GTO™ i-LOTM IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™

MicroPak™ MillerDrive™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® PDP-SPM™ Power220® POWEREDGE® Power-SPM™ PowerTrench®

Programmable Active Droop™ QFET®

QSTM

QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM®

STEALTH TM SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™8 SupreMOS™ SyncFET™ SYSTEM ®

The Power Franchise® p wer

TinyBoost™ TinyBuck™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ μSerDes™ UHC®

Ultra FRFET™ UniFET™ **VCXTM**

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 1. Life support devices or systems are devices or systems 2. A critical component in any component of a life support, which, (a) are intended for surgical implant into the body or device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition					
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.					
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.					
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.					
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.					

Rev. 133

^{*} EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.