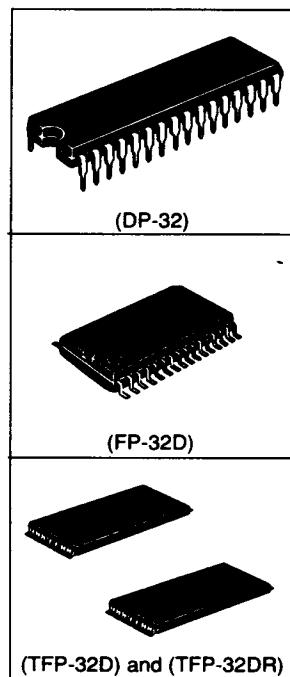


4M (512K x 8-bit) Flash Memory

■ DESCRIPTION

The Hitachi HN28F4001 is a 4-Megabit CMOS Flash Memory organized as 524,288 x 8-bit. The HN28F4001 is capable of in-system electrical chip and block erasure and reprogramming.


The HN28F4001 programs and erases data with a 12 V V_{PP} supply and a 5 V V_{CC} supply. The HN28F4001 conforms to the JEDEC Standard Dual-Supply EEPROM Command Set. Its Automatic Commands do not require complicated external control to program or erase data because of its automatic verify programming, chip erase and block erase functions.

The block architecture of the HN28F4001 segments the device into 32 blocks of 16KBytes each. This feature allows the user to erase and reprogram one random block of data and more than one block of data simultaneously.

Hitachi's HN28F4001 is offered in JEDEC-Standard Byte-Wide EPROM pinouts in 32-pin Plastic DIP and 32-lead SOP and TSOP packages. This allows an easy upgrade from the HN28F101, 1 Megabit Flash Memory, as well as socket replacement with EPROMs and Mask ROMs. The HN28F4001 TSOP is offered in both standard and reverse bend pinouts.

■ FEATURES

- Dual Power Supply:
 $V_{CC} = 5\text{ V} \pm 10\%$
 $V_{PP} = 12.0\text{ V} \pm 0.6\text{ V}$ (Erase/Program)
- Fast Access Times:
120 ns/150 ns/200 ns (max)
- Low Power Dissipation:
Read Current: 30 mA (typ)
Standby Current: 20 μA (max)
- Automatic Byte Programming:
Programming Time: 10 μs /Byte (typ)
Address, Data, Control Latch Function
Internal Automatic Program Verify
Data Polling Function
- Automatic Chip and Block Erase:
Erase Time: 1 sec (typ)
Internal Pre-Write and Erase Verify
Status Polling Function
- Block Architecture:
Block Size: 16KBytes x 32 Blocks
Simultaneous Erase of Multiple Blocks
- Erase Endurance:
10,000 times (min)
- Pin Arrangement:
JEDEC Standard Byte-Wide EPROM
EPROM and Mask ROM Compatible
- Packages:
32-pin Plastic DIP
32-lead Plastic SOP
32-lead Plastic TSOP (Type I)

HITACHI

Hitachi America, Ltd. • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

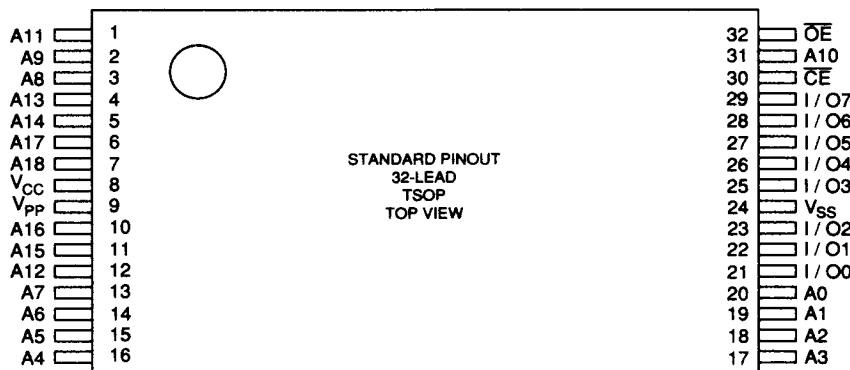
3-13

■ ORDERING INFORMATION

Type No.	Access Time	Package
HN28F4001P-12	120 ns	32-pin Plastic DIP (DP-32)
HN28F4001P-15	150 ns	
HN28F4001P-20	200 ns	
HN28F4001FP-12	120 ns	32-lead Plastic SOP (FP-32D)
HN28F4001FP-15	150 ns	
HN28F4001FP-20	200 ns	
HN28F4001T-12	120 ns	32-lead Plastic TSOP (TFP-32D)
HN28F4001T-15	150 ns	
HN28F4001T-20	200 ns	
HN28F4001R-12	120 ns	32-lead Plastic TSOP (TFP-32DR)
HN28F4001R-15	150 ns	
HN28F4001R-20	200 ns	Reverse bend

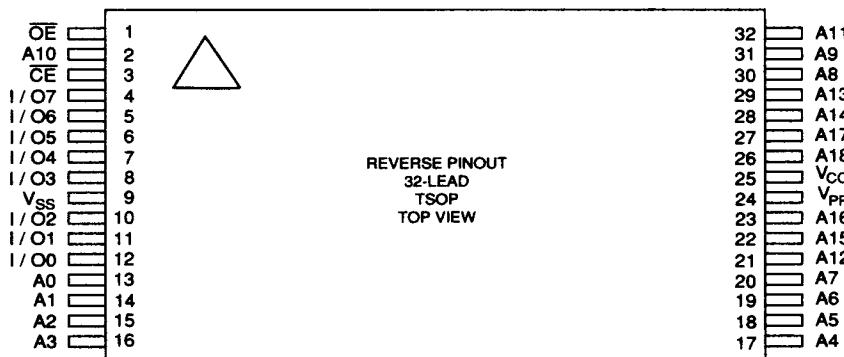
■ PIN ARRANGEMENT

HN28F4001P Series		
HN28F4001FP Series		
V _{PP}	1	32
A16	2	31
A15	3	30
A12	4	29
A7	5	28
A6	6	27
A5	7	26
A4	8	25
A3	9	24
A2	10	23
A1	11	22
A0	12	21
I/O0	13	20
I/O1	14	19
I/O2	15	18
V _{SS}	16	17
TOP VIEW		
32-PIN DIP		
32-LEAD SOP		
(PinD32.HN28F4001)		


■ PIN DESCRIPTION

Pin Name	Function
A ₀ - A ₁₆	Address
I/O ₀ - I/O ₇	Input/Output
CE	Chip Enable
OE	Output Enable
V _{CC}	Power Supply
V _{PP}	Programming Supply
V _{SS}	Ground

HITACHI

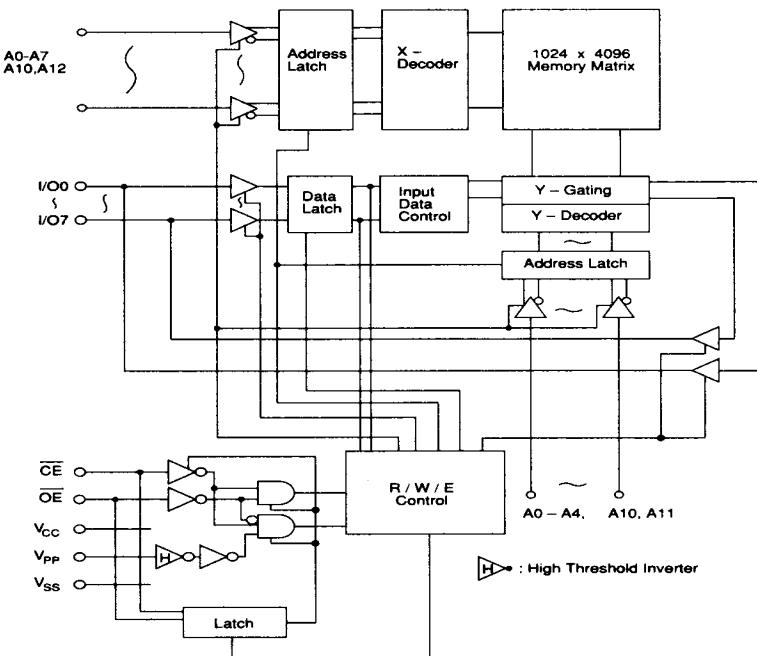

■ PIN ARRANGEMENT (continued)

HN28F4001T Series

(PinT132.HN28F4001T)

HN28F4001R Series

3


(PinT132.HN28F4001R)

HITACHI

Hitachi America, Ltd. • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

3-15

■ BLOCK DIAGRAM

(BD.HN28F4001)

■ MODE SELECTION

Mode		\overline{CE}	\overline{OE}	A_9	A_0	V_{PP}	I/O_0 to I/O_7
Read	Read	V_{IL}	V_{IL}	A_9	A_0	V_{∞}^6	D_{OUT}
	Output Disable	V_{IL}	V_{IH}	X	X	V_{∞}	High-Z
	Standby	V_{IH}	X	X	X	V_{∞}	High-Z
	Identifier ¹	V_{IL}	V_{IL}	V_H^2	V_{IL}	V_{∞}	Code"07"
		V_{IL}	V_{IL}	V_H^2	V_{IH}	V_{∞}	Code"08"
Command	Read ^{3.5}	V_{IL}	V_{IL}	A_9	A_0	V_{PP}	D_{OUT}
Program	Standby	V_{IH}	X	X	X	V_{PP}	High-Z
	Write ⁴	V_{IL}	V_{IH}	A_9	A_0	V_{PP}	D_{IN}

Notes:

1. Device Identifier Code can be output in Command Program Mode. Refer to Command Address and Data Input Table.
2. $11.4 \text{ V} \leq V_H \leq 12.6 \text{ V}$
3. Data can also be read when 12 V is applied to V_{PP} . Device Identifier Code can be output by Command Inputs. See Device Identifier Mode Description Table for more details.
4. Refer to Command Address and Data Input Table. Data is programmed, erased, or verified after inputting Commands.
5. Status of Programming and Erase can be verified in this mode. Status Outputs on I/O_7 , I/O_6 to I/O_0 are in high impedance states.
6. X = Don't Care. $V_{PP} = 0\text{V}$ to V_{CC} .

HITACHI

■ COMMAND ADDRESS AND DATA INPUT

Command	Bus Cycles Required	First Cycle			Second Cycle		
		Operation Mode ¹	Address ²	Data ³	Operation Mode ¹	Address ²	Data ³
Read (Memory) ⁴	1	Write	X	00H	Read	RA	D _{out}
Read Identifier Codes	2	Write	X	90H	Read	IA	ID
Set-up Chip Erase/ Chip Erase ⁵	2	Write	X	20H	Write	X	20H
Set-up Block Erase/ Block Erase ⁶	2	Write	X	60H	Write	BA	60H
Erase Verify ⁵	2	Write	EVA	A0H	Read	X	EVD
Setup Auto Chip Erase/ Auto Chip Erase ⁶	2	Write	X	30H	Write	X	30H
Setup Auto Block Erase/ Auto Block Erase ⁹	2	Write	X	20H	Write	BA	D0H
Setup Program/Program ⁷	2	Write	X	40H	Write	PA	PD
Program Verify ⁷	2	Write	PA	C0H	Read	X	PVD
Setup Auto Program/ Auto Program ¹⁰	2	Write	X	10H	Write	PA	PD
Reset	1 or 2	Write	X	FFH	Write ¹¹	X	FFH ¹¹

Notes:

1. Refer to Command Program Mode in Mode Selection about operation mode.
2. Refer to Device Identifier Mode. IA = Identifier Address, PA = Programming Address, EVA = Erase Verify Address, RA = Read Address, BA = Block Address. Addresses are latched on the rising edge of chip-enable pulse.
3. Refer to Device Identifier Mode. PA are latched by Programming Command. ID = Identifier Output Code, PD = Programming Data, PVD = Programming Verify Output Data, EVD = Erase Verify Output Data.
4. Command latch default value when applying 12 V to V_{PP} is "00H". Device is in Read Mode after V_{PP} is set to 12 V (before other Command is input).
5. All data in the chip is erased. Erase data according to the Manual Chip Erase Flowchart.
6. All data in the chip is erased. Data is automatically programmed to 00H and erased by internal logic circuitry. External Manual Erase Verify is not required. Erasure completion must be verified by Status Polling on I/O₇.
7. Program data according to the Manual Programming Flowchart.
8. Block data indicated by BA is erased. Erase data according to the Manual Block Erase Flowchart.
9. Block data indicated by BA is erased. Data is automatically programmed to 00H and erased by internal logic circuitry. External Manual Erase Verify is not required. Erasure completion must be verified by Status Polling on I/O₇.
10. One Byte of data is programmed. Data is programmed automatically by internal logic circuit. External program verify is not required. Program completion must be verified by Data Polling on I/O₇.
11. Write Reset Command twice to exit from program setup state or auto verify program setup state. Write it once to exit from others.

HITACHI

Hitachi America, Ltd. • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

3-17

■ ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Value	Unit
Supply Voltage ¹	V_{CC}	-0.6 to +7.0	V
Programming Voltage ¹	V_{PP}	-0.6 to +14.0	V
A_g Voltage ^{1,2}	V_{ID}	-0.6 to +13.5	V
All Input and Output Voltage ^{1,2}	V_{IN}, V_{OUT}	-0.6 to +7.0	V
Operating Temperature Range	T_{OPR}	0 to +70	°C
Storage Temperature Range ³	T_{STG}	-65 to +125	°C
Storage Temperature Under Bias	T_{BIAS}	-10 to +80	°C

Notes: 1. Relative to V_{SS} .
 2. V_{IN} , V_{OUT} and V_{ID} min = -2.0V for pulse width ≤ 20 ns.
 3. Device storage temperature range before programming.

■ CAPACITANCE ($T_a = 25^\circ C$, $f = 1\text{MHz}$)

Item	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Input Capacitance	C_{IN}	-	-	6	pF	$V_{IN} = 0\text{V}$
Output Capacitance	C_{OUT}	-	-	12	pF	$V_{OUT} = 0\text{V}$

■ DC ELECTRICAL CHARACTERISTICS FOR READ OPERATION

($V_{CC} = 5\text{V} \pm 10\%$, $V_{PP} = V_{SS}$ to V_{CC} , $T_a = 0$ to $70^\circ C$)

Item	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Input Leakage Current	I_{IL}	-	-	2	μA	$V_{IN} = V_{SS}$ to V_{CC}
Output Leakage Current	I_{LO}	-	-	2	μA	$V_{OUT} = V_{SS}$ to V_{CC}
Operating V_{CC} Current	I_{CC1}	-	-	30	mA	$I_{OUT} = 0\text{mA}$, $f = 1\text{MHz}$
	I_{CC2}	-	-	100	mA	$I_{OUT} = 0\text{mA}$, $f = 8\text{MHz}$
Standby V_{CC} Current	I_{SB1}	-	-	1	mA	$\overline{CE} = V_{IH}$
	I_{SB2}	-	-	20	μA	$\overline{CE} = V_{CC} \pm 0.3\text{V}$
V_{PP} Current	I_{PP1}	-	-	20	μA	$V_{PP} = 5.5\text{V}$
Input Voltage ³	V_{IL}	-0.3 ¹	-	0.8	V	
	V_{IH}	2.2	-	$V_{CC} + 1$ ²	V	
Output Voltage	V_{OL}	-	-	0.45	V	$I_{OL} = 2.1\text{mA}$
	V_{OH}	2.4	-	-	V	$I_{OH} = -400\text{\textmu A}$

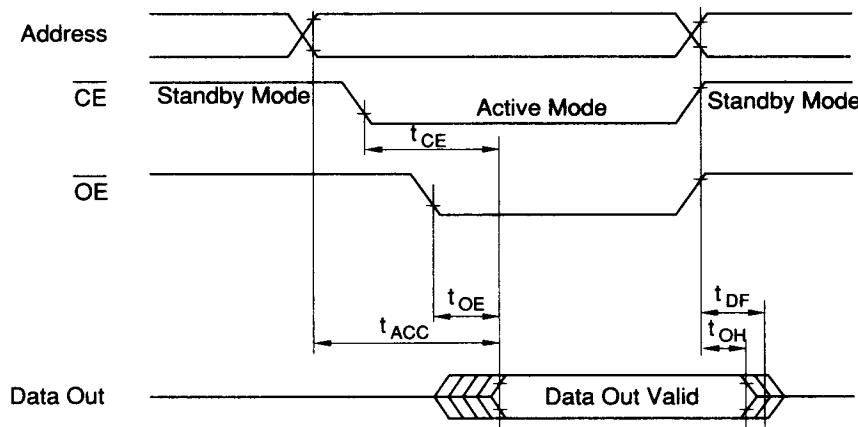
Notes: 1. V_{IL} min = -1.0 V for pulse width ≤ 50 ns.
 2. V_{IH} max = $V_{CC} + 1.5$ V for pulse width ≤ 20 ns. If V_{IH} is over the specified maximum value, Read operation can not be guaranteed.

HITACHI

■ AC ELECTRICAL CHARACTERISTICS FOR READ OPERATION

($V_{CC} = 5V \pm 10\%$, $V_{PP} = V_{SS}$ to V_{CC} , $T_a = 0$ to $70^\circ C$)

Test Conditions


- Input pulse levels: 0.45 V / 2.4 V
- Input rise and fall times: ≤ 10 ns
- Output load: 1 TTL Gate + 100 pF (Including scope and jig)
- Reference levels for measuring timing: 0.8 V, 2.0 V

Item	Symbol	HN28F4001-12		HN28F4001-15		HN28F4001-20		Unit	Test Conditions
		Min.	Max.	Min.	Max.	Min.	Max.		
Address Access Time	t_{ACC}	-	120	-	150	-	200	ns	$\overline{CE} = \overline{OE} = V_{IL}$
Chip Enable Access Time	t_{CE}	-	120	-	150	-	200	ns	$\overline{OE} = V_{IL}$
Output Enable Access Time	t_{OE}	-	60	-	70	-	80	ns	$\overline{CE} = V_{IL}$
Output Disable to High-Z ¹	t_{DF}	0	30	0	35	0	40	ns	$\overline{CE} = V_{IL}$
Output Hold to Address Change	t_{OH}	5	-	5	-	5	-	ns	$\overline{CE} = \overline{OE} = V_{IL}$

Note: 1. t_{DF} is defined as the time at which the output becomes an open circuit and data is no longer driven.

■ READ TIMING WAVEFORM

3

(TD.R.HN28F4001)

HITACHI

Hitachi America, Ltd. • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

3-19

■ DC ELECTRICAL CHARACTERISTICS FOR PROGRAMMING AND ERASE OPERATIONS
 $(V_{CC} = 5V \pm 10\%, V_{PP} = 12.0V \pm 0.6V, T_a = 0 \text{ to } +70^\circ\text{C})$

Item	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Input Leakage Current	I_{IL}	-	-	2	μA	$V_{IN} = V_{SS} \text{ to } V_{CC}$
Output Leakage Current	I_{OL}	-	-	2	μA	$V_{OUT} = V_{SS} \text{ to } V_{CC}$
Operating V_{CC} Current	I_{CC1}	-	-	30	mA	$I_{OUT} = 0 \text{ mA, } f = 1 \text{ MHz}$
	I_{CC2}	-	-	100	mA	$I_{OUT} = 0 \text{ mA, } f = 8 \text{ MHz}$
	I_{CC3}	-	-	30	mA	Programming
	I_{CC4}	-	-	30	mA	Erasing
	I_{CC5}	-	-	15	mA	Programming Verify
	I_{CC6}	-	-	15	mA	Erase Verify
Standby V_{CC} Current	I_{SB1}	-	-	1	mA	$\overline{CE} = V_{IH}$
	I_{SB2}	-	-	20	μA	$\overline{CE} = V_{CC} \pm 0.3 \text{ V}$
V_{PP} Current	I_{PP1}	-	-	20	μA	$V_{PP} = 12.6 \text{ V}$
	I_{PP2}	-	-	50	mA	Programming
	I_{PP3}	-	-	50	mA	Automatic Erase
	I_{PP4}	-	-	10	mA	Programming Verify
	I_{CC5}	-	-	10	mA	Erase Verify
Input Voltage	V_{IL}	-0.3 ⁵	-	0.8	V	
	V_{IH}	2.2	-	$V_{CC} + 1^6$	V	
Output Voltage	V_{OL}	-	-	0.45	V	$I_{OL} = 2.1 \text{ mA}$
	V_{OH}	2.4	-	-	V	$I_{OH} = -400 \mu\text{A}$

Notes:

1. V_{CC} must be applied before V_{PP} and removed after V_{PP} .
2. V_{PP} must not exceed 14 V, including overshoot.
3. Device reliability may be adversely affected if the device is installed or removed while $V_{PP} = 12 \text{ V}$.
4. When $\overline{CE} = V_{IL}$, do not change V_{PP} from V_{IL} to 12 V or 12 V to V_{IL} .
5. $V_{IL \text{ min}} = -1.0 \text{ V}$ for pulse width $\leq 20 \text{ ns}$.
6. If V_{IH} is over the specified maximum value, programming operation cannot be guaranteed.

HITACHI

■ AC ELECTRICAL CHARACTERISTICS FOR PROGRAMMING AND ERASE OPERATIONS

 $(V_{CC} = 5V \pm 10\%, V_{PP} = 12.0V \pm 0.6V, T_a = 0 \text{ to } 70^\circ C)$

Test Conditions

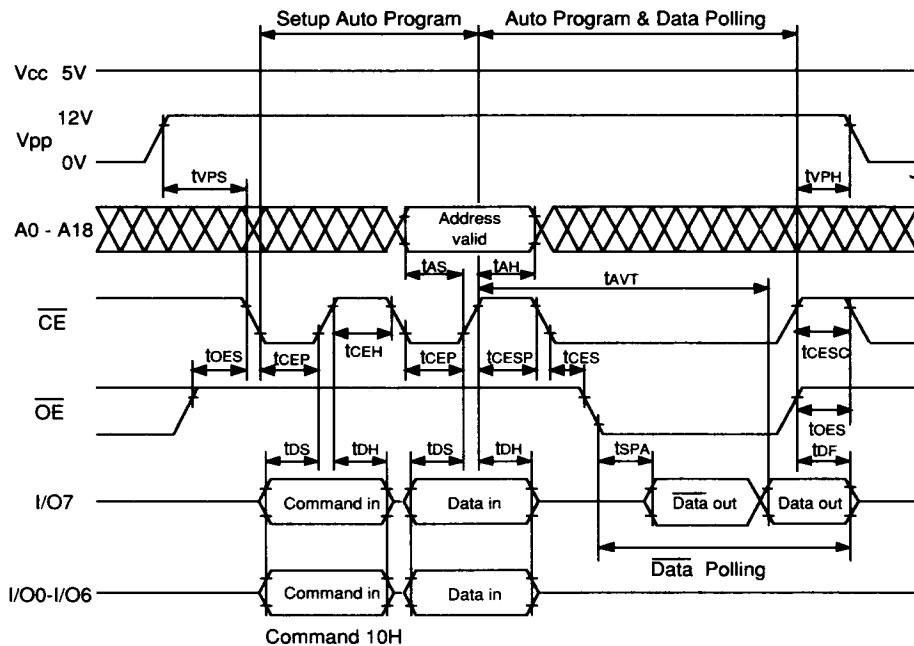
- Input pulse levels: $0.45V / 2.4V$
- Input rise and fall times: $\leq 10\text{ ns}$
- Output load: 1 TTL Gate + 100 pF (Including scope and jig)
- Reference levels for measuring timing: 0.8 V, 2.0V

3

Item	Symbol	HN28F4001-12		HN28F4001-15		HN28F4001-20		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
V_{PP} Setup Time	t_{VPS}	100	-	100	-	100	-	ns
Output Enable Setup Time	t_{OES}	100	-	100	-	100	-	ns
Chip Enable Hold Time	t_{CEH}	20	-	20	-	20	-	ns
Chip Enable Pulse Width	t_{CEP}	50	-	50	-	50	-	ns
Address Setup Time	t_{AS}	50	-	50	-	50	-	ns
Address Hold Time	t_{AH}	10	-	10	-	10	-	ns
Data Setup Time	t_{DS}	50	-	50	-	50	-	ns
Data Hold Time	t_{DH}	10	-	10	-	10	-	ns
CE Setup Time before Status Polling	t_{CESP}	100	-	100	-	100	-	ns
Chip Enable Setup Time	t_{CES}	0	-	0	-	0	-	ns
Chip Enable Setup Time before Command Write	t_{CESC}	100	-	100	-	100	-	ns
Chip Enable Setup Time before Verify	t_{CESV}	6	-	6	-	6	-	μs
V_{PP} Hold Time	t_{VPH}	100	-	100	-	100	-	ns
Output Disable Time ³	t_{DF}	30	-	35	-	40	-	ns
Status Polling Access Time	t_{SPA}	-	120	-	150	-	200	ns
Verify Access Time	t_{VA}	-	120	-	150	-	200	ns
Total Auto Chip Erase Time	t_{AETC}	0.5	30	0.5	30	0.5	30	s
Total Auto Block Erase Time	t_{AETB}	0.5	30	0.5	30	0.5	30	s
Total Auto Verify Programming Time	t_{AVT}	10	400	10	400	10	400	μs
Standby Time Before Programming	t_{PPW}	10	-	10	-	10	-	μs
Erase Standby Time	t_{ET}	9.5	-	9.5	-	9.5	-	ms
Block Address Load Cycle	t_{BALC}	70	300	70	300	70	300	ns
Block Address Load Time	t_{BAL}	1	-	1	-	1	-	μs

Notes:

1. \bar{CE} and \bar{OE} must be fixed high during V_{PP} transition from 5 V to 12 V or from 12 V to 5 V.
2. Except for sending a Command Program, a Read operation at $V_{PP} = 12V$ is similar to a Read operation at $V_{PP} = V_{CC}$.
3. t_{DF} is defined as the time at which the output becomes an open circuit and data is no longer driven.

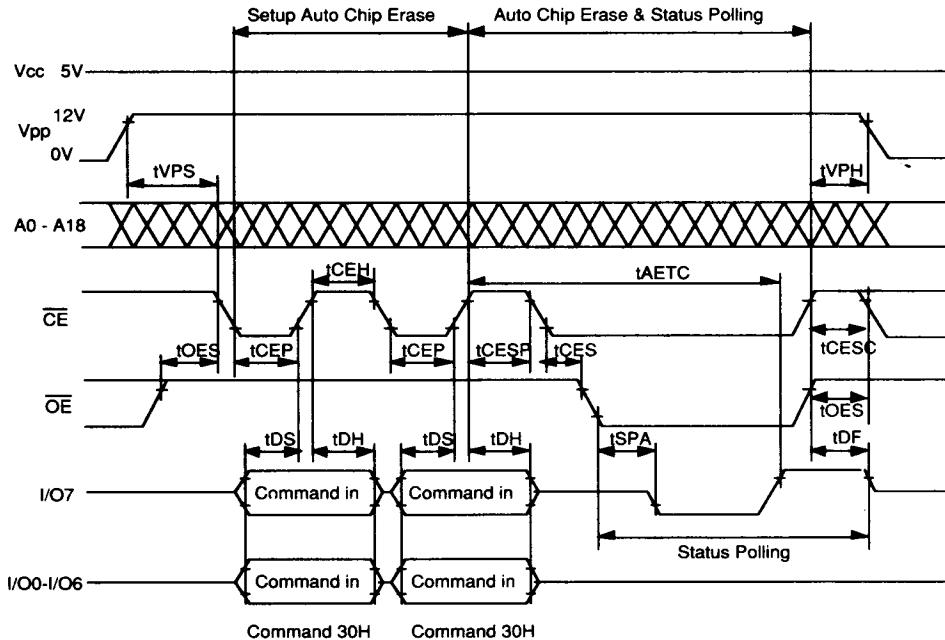

HITACHI

Hitachi America, Ltd. • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

3-21

■ AUTOMATIC PROGRAMMING TIMING WAVEFORM

One Byte of data is programmed. External programming verification is not required because these operations are executed automatically by internal control circuitry. Programming completion can be verified by Data Polling after the Automatic Programming starts. Device outputs reverse input data during auto programming on I/O₇. I/O₀ to I/O₆ are high impedance.



(TD.AP.HN28F4001)

HITACHI

■ AUTOMATIC CHIP ERASE TIMING WAVEFORM

The fast Automatic Chip Erase algorithm shown in the following timing waveform can be applied. All of the data in the chip is erased. External pre-write and erase verify are not required because the cells are pre-written and data is erased automatically by internal control circuitry. Erasure completion can be verified by Status Polling after the Automatic Erase starts. This algorithm provides a fast erase time without any voltage stress to the device or deterioration in data reliability.

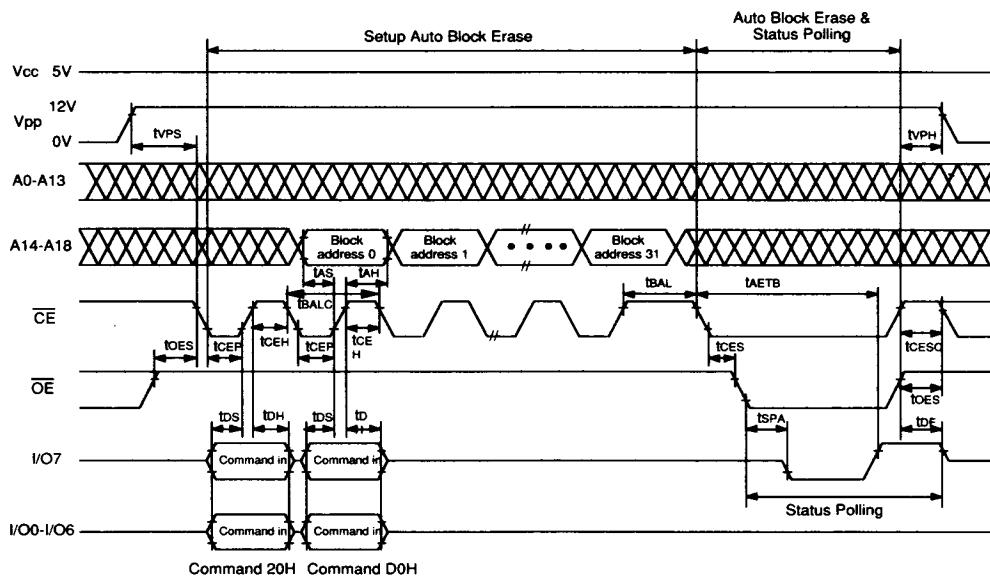
(TD.ACE.HN28F4001)

3

■ STATUS POLLING

The HN28F4001 features Status Polling as a method to indicate that the embedded algorithms are either in progress or completed. While the Automatic Chip or Block Erase algorithm is in operation, the I/O₇ pin is lowered to V_{OL} until the erase operation is completed. Upon completion of the erase operation, the I/O₇ pin is set to V_{OH} .

HITACHI

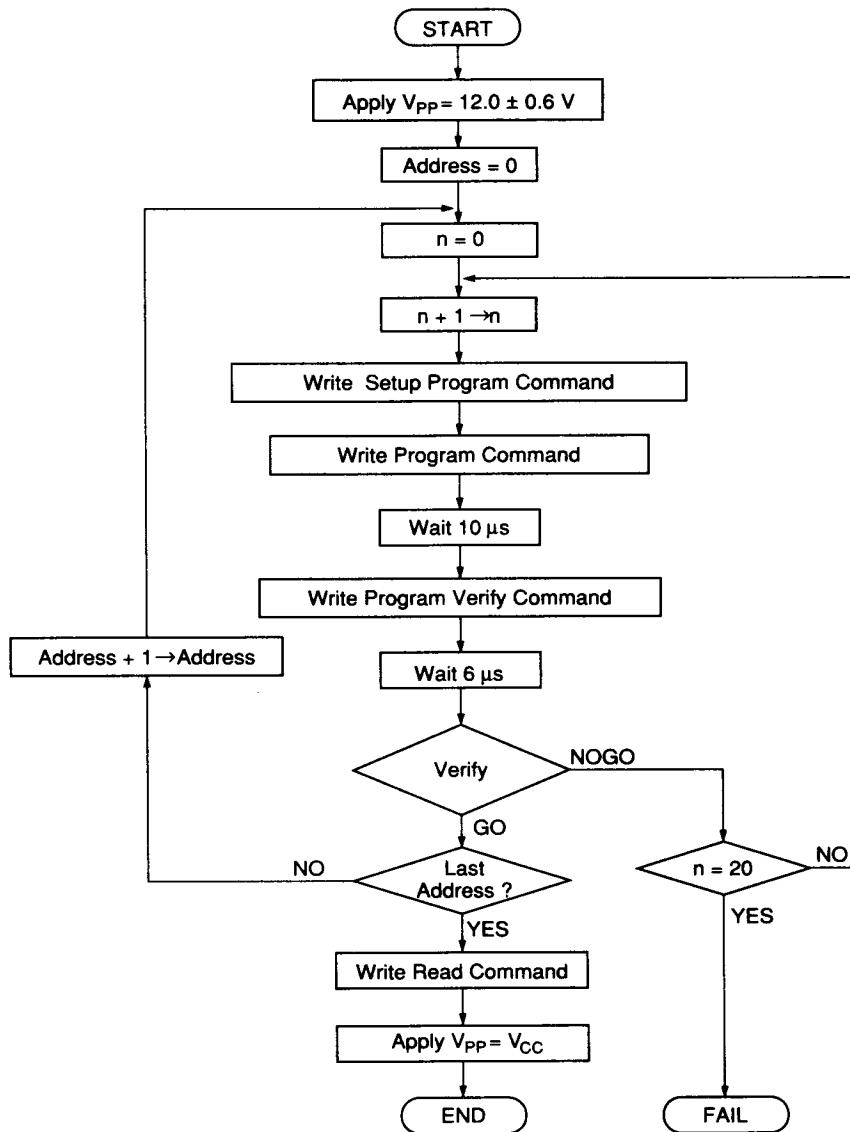

Hitachi America, Ltd. • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

3-23

■ AUTOMATIC BLOCK ERASE TIMING WAVEFORM

The fast Automatic Block Erase algorithm shown in the following timing waveform can be applied. All of the data in the block (16KBytes) indicated by A_{14} to A_{18} is erased. External pre-write and erase verify is not required because the cells are pre-written and data in the block is erased automatically by internal control circuitry. Erasure completion can be verified by Status Polling after the automatic erase starts. This algorithm provides a fast erase time without any voltage stress to the device or deterioration in data reliability.

As indicated below, a single random block or any combination of multiple blocks can be erased simultaneously.



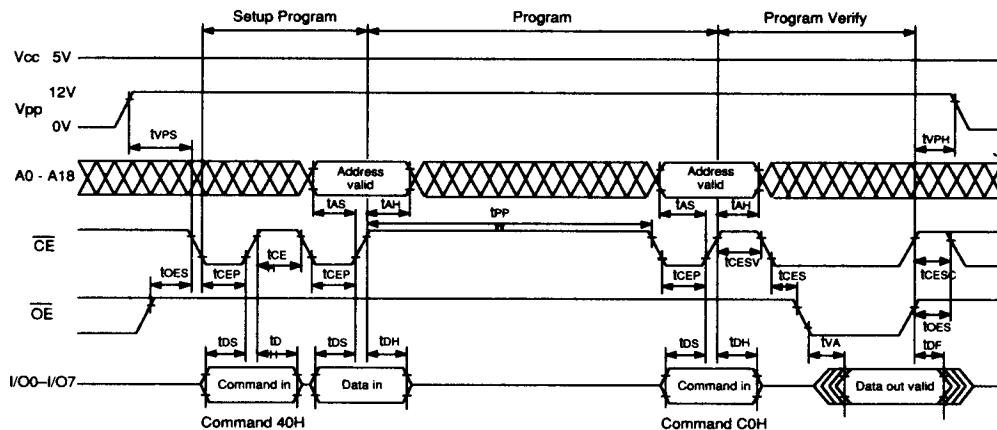
(TD.ABE.HN28F4001)

HITACHI

■ MANUAL PROGRAMMING FLOWCHART

The HN28F4001 can be programmed with the fast, high-reliability programming algorithm shown in the following flowchart. This algorithm provides fast programming time without any voltage stress to the device or deterioration in reliability of programmed data.

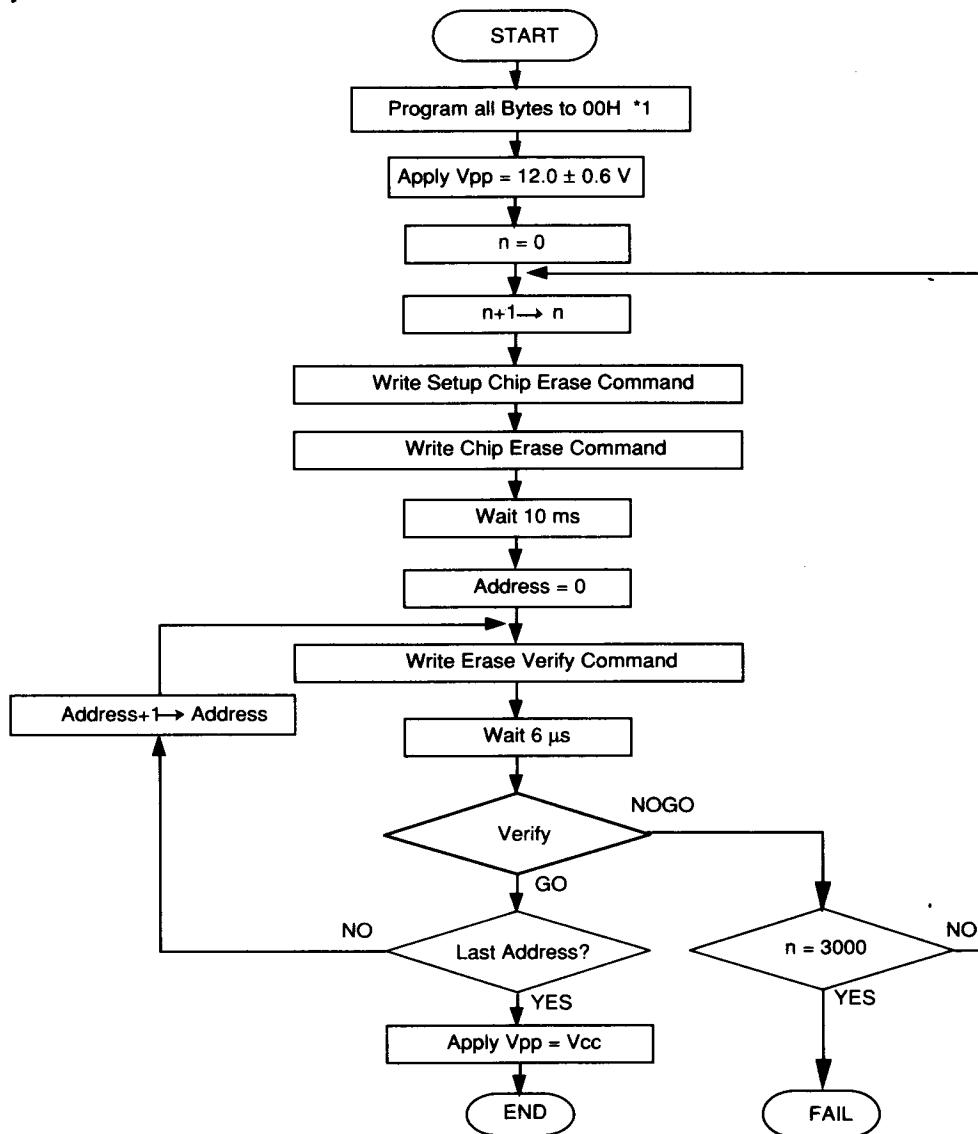
3


(FC.P.HN28F4001)

HITACHI

Hitachi America, Ltd. • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

3-25


■ MANUAL PROGRAMMING TIMING WAVEFORM

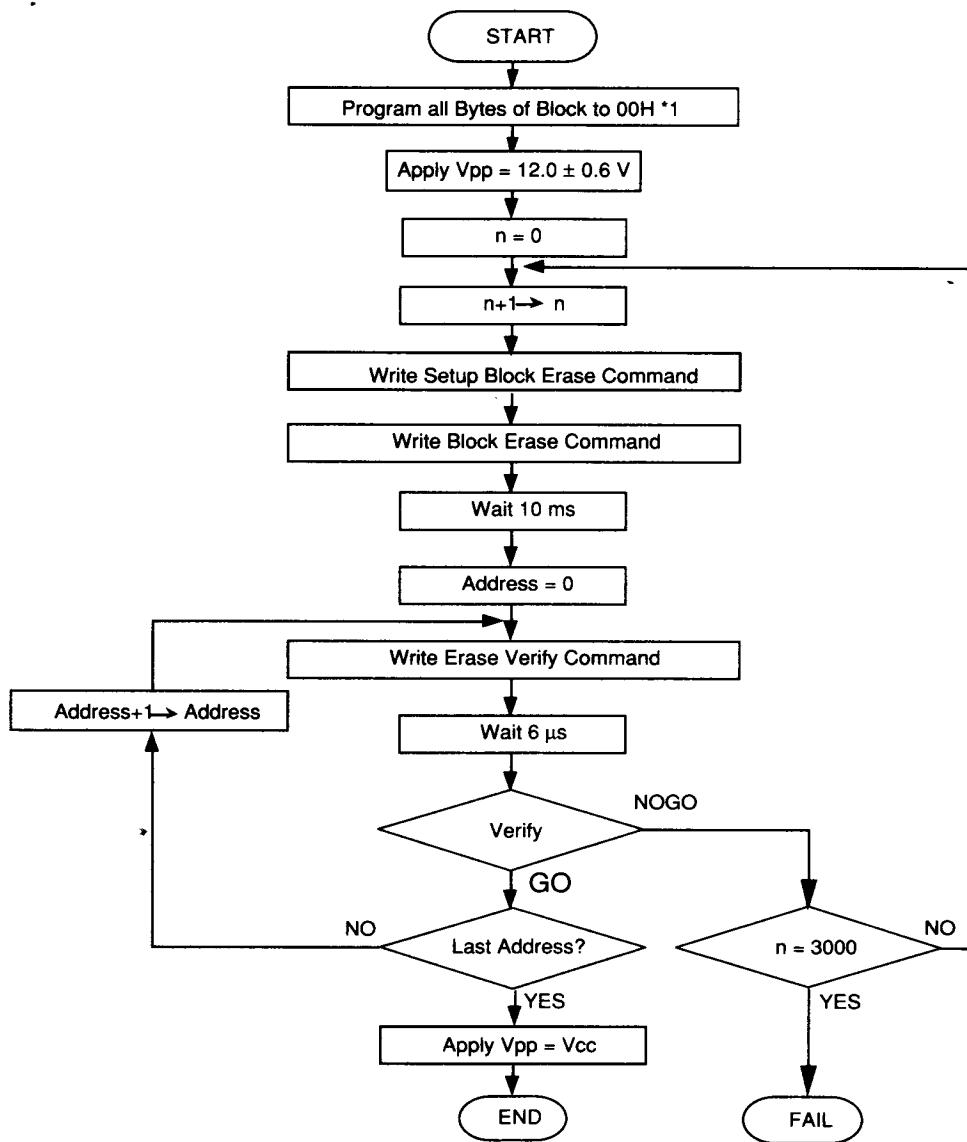
(TD.MP.HN28F4001)

■ MANUAL CHIP ERASE FLOWCHART

The HN28F4001 can be erased with the fast, high-reliability chip erase algorithm shown in the following flowchart. This algorithm provides a fast erase time without any voltage stress to the device or deterioration in data reliability.

*1. Refer to Manual Programming Flowchart

(FC.CE.HN28F4001)

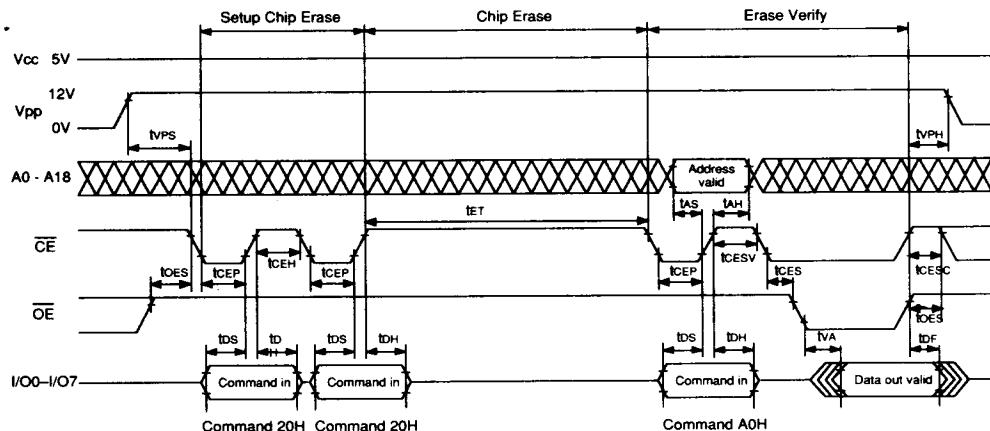

HITACHI

Hitachi America, Ltd. • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

3-27

■ MANUAL BLOCK ERASE FLOWCHART

The HN28F4001 can be erased with the fast, high-reliability block erase algorithm shown in the following flowchart. This algorithm provides a fast block (16KBytes) erase time without any voltage stress to the device or deterioration in data reliability.

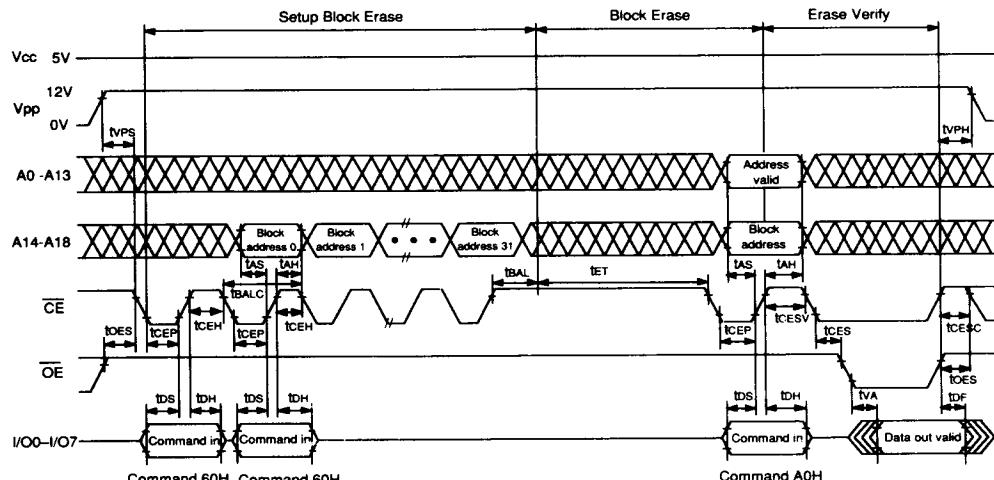


*1. Refer to Manual Programming Flowchart

(FC.BE.HN28F4001)

HITACHI

■ MANUAL CHIP ERASE TIMING WAVEFORM



(TD.CE.HN28F4001)

3

■ MANUAL BLOCK ERASE TIMING WAVEFORM

As indicated below, a single random block or any combination of multiple blocks can be erased simultaneously.

(TD.BE.HN28F4001)

HITACHI

Hitachi America, Ltd. • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

3-29

■ DEVICE IDENTIFIER MODE DESCRIPTION

The Device Identifier Mode allows binary codes to be read from the outputs that identify the manufacturer and the type of device. Using this mode with programming equipment, the device will automatically match its own erase and programming algorithm.

■ HN28F4001 SERIES IDENTIFIER CODE

Identifier	A ₀	I/O ₇	I/O ₆	I/O ₅	I/O ₄	I/O ₃	I/O ₂	I/O ₁	I/O ₀	Hex Data
Manufacturer Code	V _{IL}	0	0	0	0	0	1	1	1	07
Device Code	V _{IH}	1	0	0	0	0	0	0	0	80

Notes:

1. Device identifier code can be read out by applying 12.0 V ± 0.5 V to A9 when V_{PP}=V_{CC}, or inputting command while V_{PP}=12 V.
2. V_{CC} = V_{PP}=5.0 V ± 10% when applying 12 V to A9.
V_{CC} =5.0 V ± 10% and V_{PP}=12.0 V ± 0.6 V in command inputs.
3. A1 to A8, A10 to A18, CE, and OE = V_{IL}.

HITACHI