

Silicon Controlled Rectifiers

. . . PNPN devices designed for high volume consumer applications such as temperature, light, and speed control; process and remote control, and warning systems where reliability of operation is important.

- Passivated Surface for Reliability and Uniformity
- Power Rated at Economical Prices
- Practical Level Triggering and Holding Characteristics
- Flat, Rugged, Thermopad Construction for Low Thermal Resistance, High Heat Dissipation and Durability.

MCR506 Series

SCRs
6 AMPERES RMS
50 thru 600 VOLTS

MAXIMUM RATINGS ($T_J = 25^\circ\text{C}$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Peak Repetitive Forward and Reverse Blocking Voltage(1) ($T_J = 25$ to 110°C , $R_{GK} = 1 \text{ k}\Omega$)	V_{DRM} V_{RRM}		Volts
MCR506-2		50	
MCR506-3		100	
MCR506-4		200	
MCR506-6		400	
MCR506-8		600	
RMS Forward Current (All Conduction Angles)	$I_T(\text{RMS})$	6	Amp
Average Forward Current ($T_C = 93^\circ\text{C}$)	$I_T(\text{AV})$	3.82	Amp
Peak Non-repetitive Surge Current (1/2 Cycle, 60 Hz, $T_J = -40$ to 110°C)	I_{TSM}	40	Amp
Circuit Fusing Considerations ($t = 8.3 \text{ ms}$)	I^2t	2.6	A^2s
Peak Gate Power	P_{GM}	0.5	Watt
Average Gate Power	$P_{G(\text{AV})}$	0.1	Watt
Peak Forward Gate Current	I_{GM}	0.2	Amp
Peak Reverse Gate Voltage	V_{RGM}	6	Volts
Operating Junction Temperature Range	T_J	-40 to 110	$^\circ\text{C}$
Storage Temperature Range	T_{stg}	-40 to 150	$^\circ\text{C}$
Mounting Torque(2)	—	6	in. lb.

1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.
2. Torque rating applies with use of torque washer (Shakeproof WD19523 or equivalent). Mounting torque in excess of 6 in. lb. does not appreciably lower case-to-sink thermal resistance. Anode lead and heat sink contact pad are common. (See AN290 B)
For soldering purposes (either terminal connection or device mounting), soldering temperatures shall not exceed $+225^\circ\text{C}$. For optimum results, an activated flux (oxide removing) is recommended.

MCR506 Series

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	3	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	75	°C/W

ELECTRICAL CHARACTERISTICS ($T_C = 25^\circ\text{C}$, $R_{GK} = 1000$ Ohms unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Peak Forward Blocking Current ($V_D = \text{Rated } V_{DRM}$, $T_J = 110^\circ\text{C}$)	I_{DRM}	—	—	200	μA
Peak Reverse Blocking Current ($V_R = \text{Rated } V_{RRM}$, $T_J = 110^\circ\text{C}$)	I_{RRM}	—	—	200	μA
Forward "On" Voltage ($I_{TM} = 12$ A Peak)	V_{TM}	—	—	1.9	Volts
Gate Trigger Current (Continuous dc) ($V_{AK} = 7$ Vdc, $R_L = 100$ Ohms) ($V_{AK} = 7$ Vdc, $R_L = 100$ Ohms, $T_C = -40^\circ\text{C}$)	I_{GT}	—	—	200 500	μA
Gate Trigger Voltage (Continuous dc) ($V_{AK} = 7$ Vdc, $R_L = 100$ Ohms, $T_C = 25^\circ\text{C}$)	V_{GT}	—	—	1	Volts
Gate Non-Trigger Voltage ($V_{AK} = \text{Rated } V_{DRM}$, $R_L = 100$ Ohms, $T_J = 110^\circ\text{C}$)	V_{GD}	0.2	—	—	Volts
Holding Current ($V_{AK} = 7$ Vdc, $T_C = 25^\circ\text{C}$)	I_H	—	—	5	mA
Forward Voltage Application Rate ($V_D = \text{Rated } V_{DRM}$, Exponential Waveform, $T_J = 110^\circ\text{C}$)	dv/dt	—	10	—	V/μs

FIGURE 1 — CURRENT DERATING

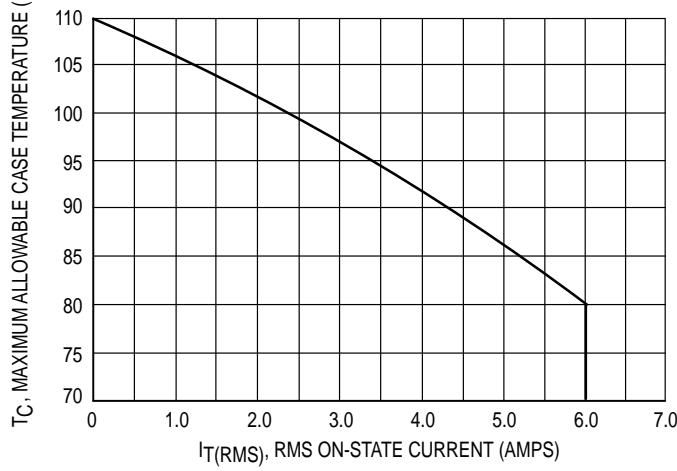
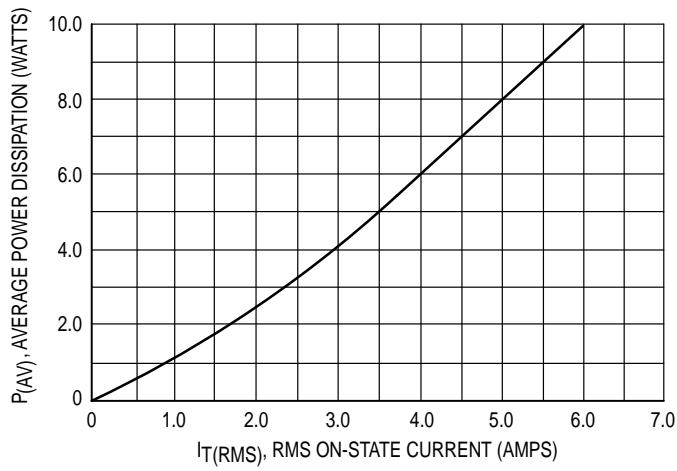
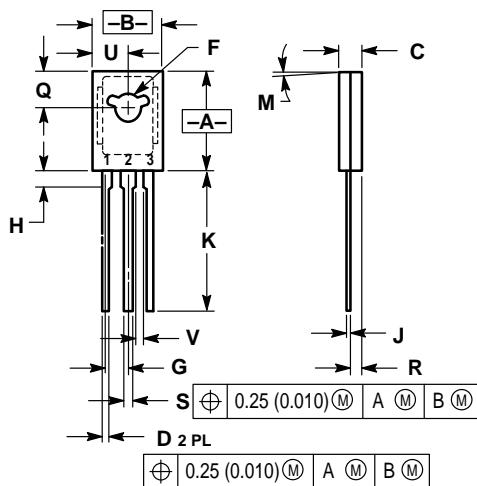




FIGURE 2 — POWER DISSIPATION

PACKAGE DIMENSIONS

STYLE 2:
PIN 1. CATHODE
2. ANODE
3. GATE

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.425	0.435	10.80	11.04
B	0.295	0.305	7.50	7.74
C	0.095	0.105	2.42	2.66
D	0.020	0.026	0.51	0.66
F	0.115	0.130	2.93	3.30
G	0.094	BSC	2.39	BSC
H	0.050	0.095	1.27	2.41
J	0.015	0.025	0.39	0.63
K	0.575	0.655	14.61	16.63
M	5° TYP		5° TYP	
Q	0.148	0.158	3.76	4.01
R	0.045	0.055	1.15	1.39
S	0.025	0.035	0.64	0.88
U	0.145	0.155	3.69	3.93
V	0.040	—	1.02	—

CASE 77-08
(TO-225AA)

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

