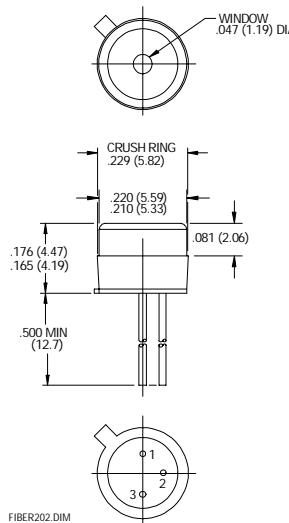


HFD3033

Silicon PIN Photodiode


FEATURES

- Fiber optic PIN photodiode
- Plastic TO-18 style cap
- Low capacitance
- High speed: 1.2 ns typical
- High responsivity: 0.33 A/W typical

FIBER106.TIF

OUTLINE DIMENSIONS in inches (mm)

FIBER202.DIM

Pinout

1. Anode
2. Cathode
3. Not connected

Notes

1. Glass microlens is 0.024 in. diameter mounted on a 0.0065 in. diameter active area.
2. Nominal spacing between inside window and top of microlens is 0.012 in..

HFD3033

Silicon PIN Photodiode

ELECTRO-OPTICAL CHARACTERISTICS ($T_c = 25^\circ\text{C}$ unless otherwise stated)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Flux Responsivity	R	0.30	0.33		A/W	$\lambda_p = 850 \text{ nm}$, 50 μm fiber core
Dark Current	I_D	0.05	1.5		nA	$V_R = 30 \text{ V}$
Response Time	t_R	1.2	3		ns	$V_R = 3.5 \text{ V}$ (10-90%)
	t_F	1.2	3		ns	$V_R = 3.5 \text{ V}$ (90-10%)
Total Capacitance	C	1.5			pF	$V_R = 5 \text{ V}$
Field of View	FoV	32			Degrees	

ABSOLUTE MAXIMUM RATINGS

(25°C Free-Air Temperature unless otherwise noted)

Storage temperature -40 to +100°C

Operating temperature -40 to +100°C

Lead solder temperature 260°C, 10 s

Reverse voltage 50 V

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

Honeywell reserves the right to make changes in order to improve design and supply the best products possible.

Honeywell

HFD3033

Silicon PIN Photodiode

ORDER GUIDE

Description Catalog Listing

Standard PIN photodiode, TO-18 HFD3033-002
case

This package is also available in special interface receptacles for interfacing to standard fiber optic cables.

CAUTION

The inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation to equipment, take normal ESD precautions when handling this product.

FIBER INTERFACE

Honeywell detectors are designed to interface with multimode fibers with sizes (core/cladding diameters) ranging from 50/125 to 200/230 microns. Honeywell performs final tests using 50/125 micron core fiber. The fiber chosen by the end user will depend upon a number of application issues (distance, link budget, cable attenuation, splice attenuation, and safety margin). The 50/125 and 62.5/125 micron fibers have the advantages of high bandwidth and low cost, making them ideal for higher bandwidth installations. The use of 100/140 and 200/230 micron core fibers results in greater power being coupled by the transmitter, making it easier to splice or connect in bulkhead areas. Optical cables can be purchased from a number of sources.

Fig. 1 Relative Response vs Polar Angle

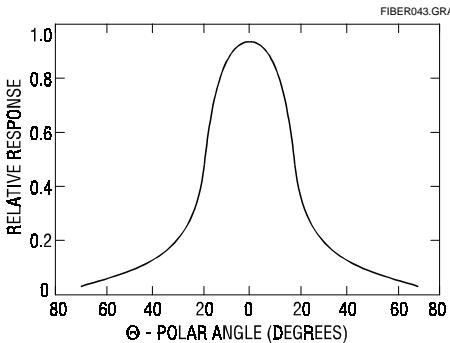


Fig. 3 Relative Responsivity vs Temperature

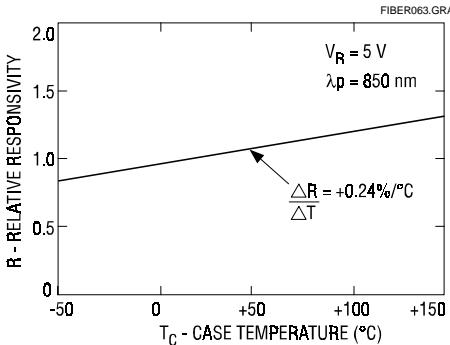


Fig. 2 Spectral Responsivity

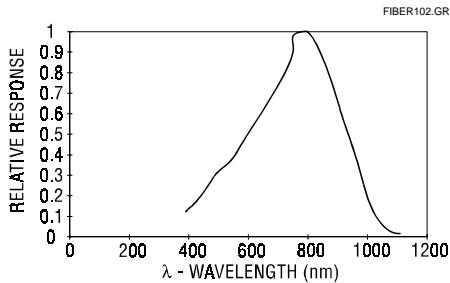
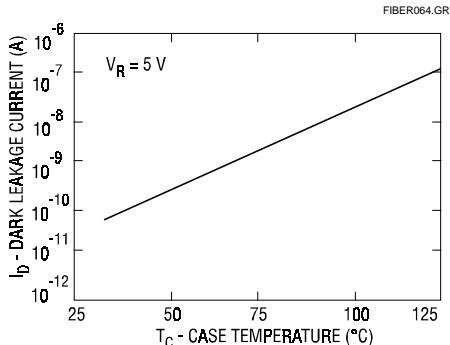



Fig. 4 Dark Leakage Current vs Temperature

