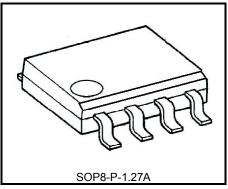
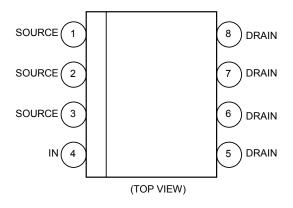
Toshiba Intelligent Power Device Silicon Monolithic Power MOS Integrated Circuit

TPD1045F

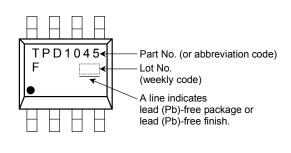

Low-Side Power Switch for Motor, Solenoid and Lamp Drive

The TPD1045F is a low-side power switch.

The IC has a vertical MOSFET output which can be directly driven from a CMOS or TTL logic circuit (e.g., an MPU). The IC is equipped with intelligent self-protection functions.

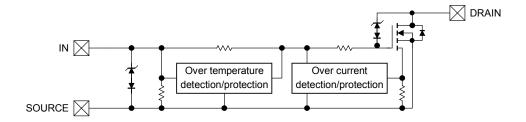

Features

- A monolithic power IC with a new structure combining a control block and a vertical power MOSFET (L^2 - π -MOSV) on single chip.
- Can directly drive a power load from a CMOS or TTL logic.
- Built-in protection circuits against overvoltage (active clamp),
 Over temperature (thermal shutdown), and overcurrent (switching mode).
- Low Drain-Source ON-resistance: RDS (ON) = 100 m Ω (max) (@VIN = 5 V, ID = 2 A, Tch = 25°C)
- 8-pin SOP package with embossed-tape packing.



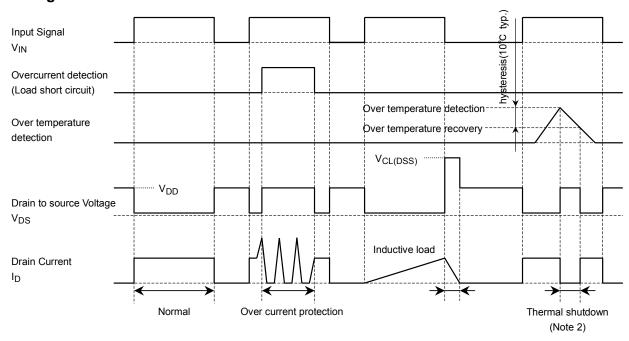
Weight: 0.08 g (typ.)

Pin Assignment (top view)


Marking

Note 1: Due to its MOS structure, this product is sensitive to static electricity.

2005-08-08


Block Diagram

Pin Description

Pin No.	Symbol	Pin Description
1, 2, 3	SOURCE	Source (ground) pin
4	IN	Input pin. This pin is connected to a pull-down resistor internally, so that even when input wiring is open-circuited, output can never be turned on inadvertently.
5 ,6, 7, 8	DRAIN	Drain pin. When the load is short circuited and current in excess of the detection current (10A min) flows to the drain (output) pin, the drain (output) automatically turns on or off.

Timing Chart

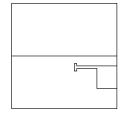
Note 2: The overheating detector circuits feature hysteresis. After overheating is detected, normal operation is restored only when the channel temperature falls by the hysteresis amount (10°C typ.) in relation to the overheating detection temperature.

2

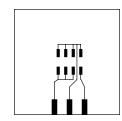
Truth Table

V _{IN}	V _{DS}	Output State	State
L	Н	OFF	Normal
Н	L	ON	Normai
L	Н	OFF	Overcurrent
Н	Н	current limiting(switcing)	Overcurrent
L	Н	OFF	Overtemperature
Н	Н	ON	Overtemperature

Maximum Ratings (Ta = 25°C)


Characteristics	Symbol	Rating	Unit
Drain-source voltage	V _{DS (DC)}	50	V
Drain current	I _{D (DC)}	Internally Limited	Α
Input voltage	V _{IN}	-0.3~7	٧
Power dissipation(Note 3-a)	P _{D(1)}	1.1	W
Power dissipation(Note 3-b)	P _{D(2)}	0.425	W
Single Pulse Active Clamp Tolerance (Note 4)	E _{AS}	158	mJ
Active Clamp Current	I _{AR}	5	Α
Repetitive Active Clamp Tolerance (Note 3-a) (Note 5)	E _{AR}	0.11	mJ
Operating temperature	T _{opr}	-40~125	°C
Channel temperature	T _{ch}	150	°C
Storage temperature	T _{stg}	−55 ~ 150	°C

Thermal Characteristics


Characteristics	Symbol	max	Unit	
Thermal resistance, channel to	Dub (alban)	113.5 (Note 3-a)	°C W	
ambient	R _{th(ch-a)}	294.0 (Note 3-b)	7 6700	

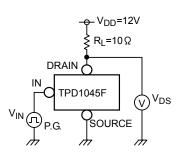
Note 3:

3-a : glass epoxy board (a)

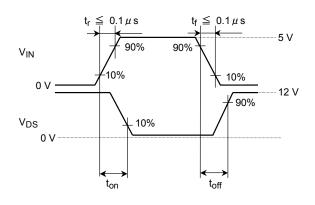
FR-4 25.4 × 25.4 × 0.8 (unit: mm) 3-b : glass epoxy board (b)

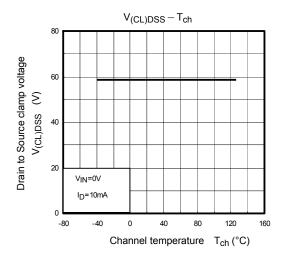
FR-4 25.4 × 25.4 × 0.8 (unit: mm)

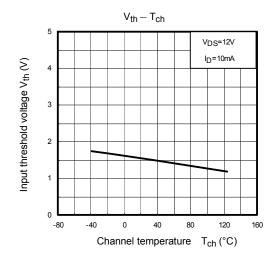
Note 4 : V_{DD} = 25 V, T_{ch} = 25 °C (initial), L = 7.4 mH, I_{AR} = 5 A, R_G = 25 Ω Note 5 : Repetitive rating : Pulse Width limited by maximum channel temperature.

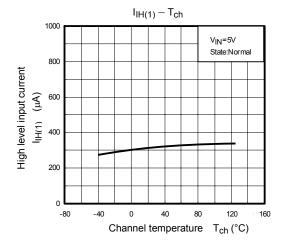

Electrical Characteristics

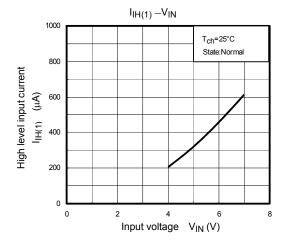
Characteristics		Symbol	Test Circuit	Test Condition		Min	Тур	Max	Unit
Drain to Source clamp voltage		V _{(CL)DSS}	-	$T_{ch}=25^{\circ}C$	$V_{IN} = 0 V$,	50	58	-	٧
Diam to Gource	Drain to Source clamp voltage			$T_{ch} = -40 \sim 125$ °C	$I_D = 10 \text{ mA}$	50	1	ı	
Input threshold	voltage	V_{th}	_	$T_{ch}=25^{\circ}C$	V _{DS} = 12 V,	1.0	1.5	2.8	V
Input threshold voltage		v th	- !	$T_{ch} = -40\sim125^{\circ}C$	$I_D = 10 \text{ mA}$	0.8	-	3.0	V
Protective circuit operation input voltage range		V _{IN (opr)}	-	T _{ch} = -40~125°C	-	4	-	7	٧
Drain cut-off current		I _{DSS}	-	$T_{ch}=25^{\circ}C$	V _{IN} = 0 V, V _{DS} = 12 V	ı	1	10	μΑ
				T _{ch} = -40~125°C		-	-	30	
			-	$T_{ch} = 25^{\circ}C$	V _{IN} = 5 V, at normal operation	-	300	750	
		I _{IH} (1)		T _{ch} = -40~125°C		-	-	750	
High level input current		I _{IH (2)}	-	T _{ch} = -40~125°C	V _{IN} = 5 V, when protective circuit is actuated	-	-	1200	μΑ
Drain to Source	Drain to Source on resistance			$T_{ch} = 25^{\circ}C$	V _{IN} = 5 V,	-	70	100	mΩ
Dialii to Source	on resistance	R _{DS} (ON)	_	T _{ch} = -40~125°C	I _D = 2 A	-	-	150	III 75
Load-short tolerance		V _{DS}	-	T _{ch} = -40~125°C	V _{IN} = 4∼7 V	18	-	-	V
Over temperature	temperature detection	T _{OT(1)}	-	-	V _{IN} = 5 V	150	170	200	°C
detection	temperature recovery	T _{OT(2)}	-			125	160	-	°C
Over current detection		loc		$T_{ch}=25^{\circ}C$	V _{IN} = 5 V	5	10	-	А
				$T_{ch} = -40\sim125^{\circ}C$		5	-	-	
Switching time		t _{on}		$T_{ch}=25^{\circ}C$	$\begin{aligned} V_{DD} &= 12 \ V, \\ V_{IN} &= 0 \ V/5 \ V, \\ R_L &= 10 \ \Omega \end{aligned}$	1	25	100	μs
			1	$T_{ch} = -40\sim125^{\circ}C$		ı	-	100	
		t _{off}	'	$T_{ch}=25^{\circ}C$		ı	30	100	
				T _{ch} = -40~125°C		1	-	100	
Drain to Source diode forward voltage		V _{DSF}	-	T _{ch} = 25°C	$V_{IN} = 0 V$, $I_F = 5 A$	-	-	1.8	٧

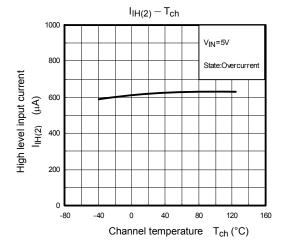

Test Circuit 1

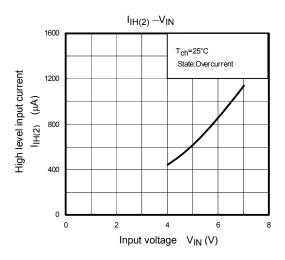

Switching time measuring circuit

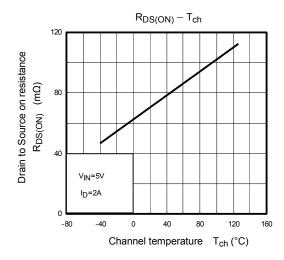

Test circuit

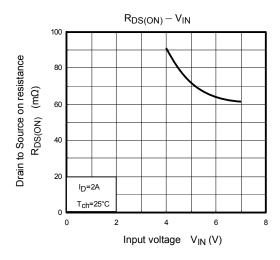


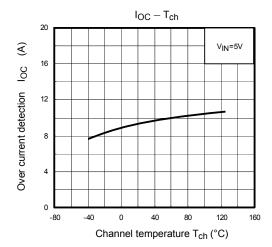

Measured waveforms

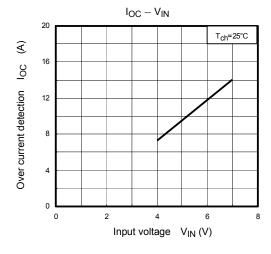


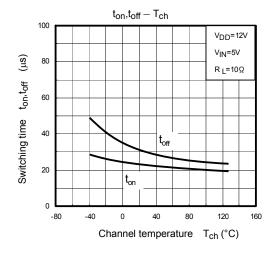


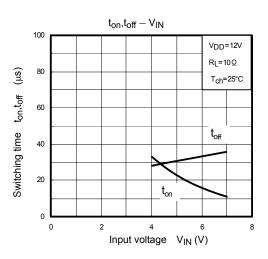


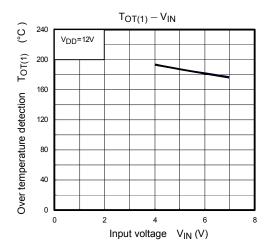


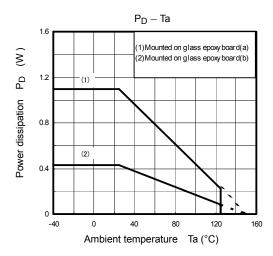


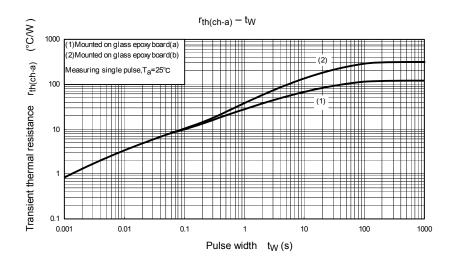


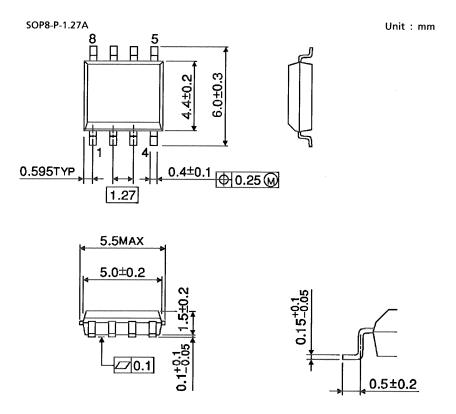












7 2005-08-08

Package Dimensions

Weight: 0.08 g (typ.)

RESTRICTIONS ON PRODUCT USE

030619EBA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility
 is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from
 its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety
 in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such
 TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 - In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.