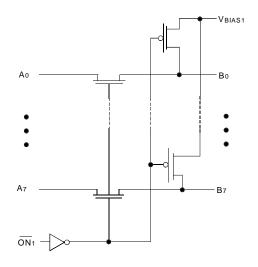
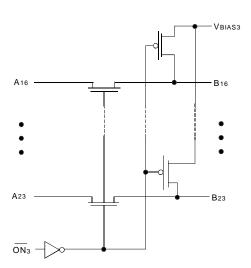
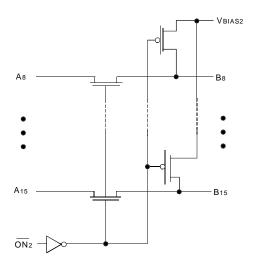


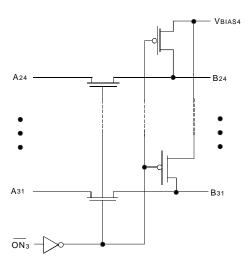
QUICKSWITCH® PRODUCTS HIGH-SPEED CMOS 32-BIT LOW RESISTANCE QUICKSWITCH WITH PRECHARGED OUTPUTS

IDTQS34XR800

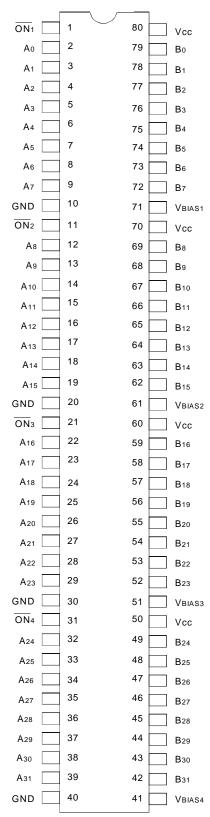

FEATURES:


- 2.5 Ω bidirectional switches connect inputs to outputs
- Zero propagation delay
- Undershoot clamp diodes on all switch and control pins
- Outputs precharge voltage to minimize signal distortion during live insertion
- TTL-compatible input and output levels
- Zero ground bounce
- Flow-through pinout for easy layout
- Available in 80-pin MillipaQ (Q3)


DESCRIPTION:


The QS34XR800 is a 32-bit high-speed CMOS bus switch controlled by a four enable $(\overline{ON}x)$ input in a flow-through pinout. When $\overline{ON}x$ is low, the switch is on and port A is connected to port B. When $\overline{ON}x$ is high, the switch between port A and port B is open and port B is precharged to the bias voltage. The low ON resistance (2.5Ω) of the QS34XR800 allows inputs to be connected to outputs without adding propagation delay and without generating additional noise. The QS34XR800 also precharges the B port to a user-selectable bias voltage to minimize live-insertion noise, which is useful in VME bus applications.

FUNCTIONAL BLOCK DIAGRAM



INDUSTRIAL TEMPERATURE RANGE

NOVEMBER 1999

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM ⁽²⁾	Supply Voltage to Ground	- 0.5 to +7	٧
VTERM ⁽³⁾	DC Switch Voltage Vs	- 0.5 to +7	V
VTERM ⁽³⁾	DC Input Voltage VIN	- 0.5 to +7	V
VAC	AC Input Voltage (pulse width ≤20ns)	-3	V
Іоит	DC Output Current	120	mA
Рмах	Maximum Power Dissipation (Ta = 85°C)	.5	W
Tstg	Storage Temperature	- 65 to +150	°C

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc Terminals.
- 3. All terminals except Vcc.

CAPACITANCE

 $(T_A = +25^{\circ}C, f = 1.0MHz, V_{IN} = 0V, V_{OUT} = 0V)$

Pins	Тур.	Max. (1)	Unit
Control Inputs	3	4	pF
Quickswitch Channels (Switch OFF)	5	8	pF

NOTE:

1. This parameter is guaranteed at characterization but not tested.

PIN DESCRIPTION

Pin Names	I/O	Description	
A0 - A31	I/O	Bus A	
Bo - B31	I/O	Bus B	
ŌNx	I	Bus Switch Enable	
VBIASX	I	Bias Voltage	

FUNCTION TABLE(1)

ON _x (2)	Bm-Bn	Function
L	Am - An	Connect
Н	VBIASX	Precharge

NOTES:

H = HIGH Voltage Level
 L = LOW Voltage Level

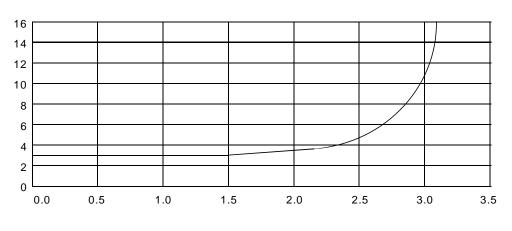
2. For $X = 1$	m = 0	n = 7
X = 2	m = 8	n = 15
X = 3	m = 16	n = 23
X = 4	m = 24	n = 31

MILLIPAQ TOP VIEW

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Industrial: $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = 5.0V \pm 10\%$


Symbol	Parameter	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage	Guaranteed Logic HIGH for Control Pins	2			V
VIL	Input LOW Voltage	Guaranteed Logic LOW for Control Pins	_	_	0.8	٧
VBIAS	Bias Voltage	$Vcc = 5V, \overline{ON}x = HIGH$	1.3	_	Vcc	٧
lo	Bias Current	$Vcc = 4.5V$, $Vbias = 2.4V$, $Vout = 0$, $\overline{ON}x = HIGH$	0.25	_	_	mA
lin	Input Leakage Current (Control Inputs)	0V ≤ VIN ≤ Vcc	_	_	±1	μΑ
loz	Off-State Current (Hi-Z)	0V ≤ V _{OUT} ≤ V _{CC}	_	_	±1	μΑ
Ron	Switch On Resistance (2)	Vcc = Min., Vin = 0V, Ion = 30mA	_	2.5	5	Ω
Ron	Switch On Resistance (2)	Vcc = Min., Vin = 2.4V, Ion = 15mA	_	4	8.5	Ω

NOTES:

- 1. Typical values are at Vcc = 5.0V, Ta = 25°C.
- 2. During input/output leakage, testing all pins are at HIGH or LOW state.

TYPICAL ON RESISTANCE vs Vin AT Vcc = 5V

RON (ohms)

VIN (Volts)

POWER SUPPLY CHARACTERISTICS

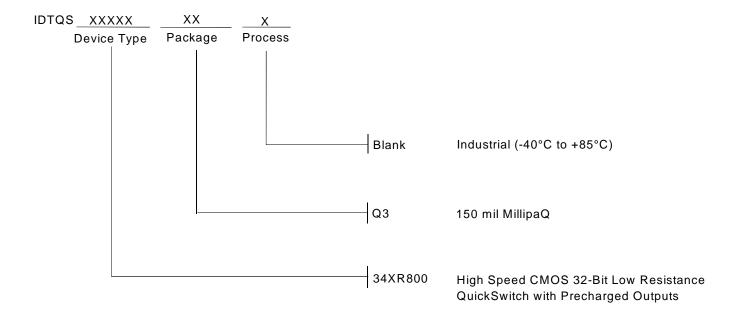
Symbol	Parameter	Test Conditions ⁽¹⁾	Typ. ⁽²⁾	Max.	Unit
Icco	Quiescent Power Supply Current	Vcc = Max., Vin = GND or Vcc, f = 0	0.2	6	μΑ
Δlcc	Power Supply Current per Control Input HIGH	$VCC = Max., VIN = 3.4V^{(3)}, f = 0$	_	6.5	mA
ICCD	Dynamic Power Supply Current per MHz ⁽⁴⁾	Vcc = Max., A and B pins open Data inputs = GND Control Input Toggling at 50% Duty Cycle	ı	0.25	mA/MHz

NOTES:

- 1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
- 2. Typical values are at Vcc = 5.0V, TA = 25°C.
- 3. Per TLL driven input (VIN = 3.4V, control inputs only). A and B pins do not contribute to Δ Icc.
- 4. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is guaranteed but not production tested.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

 $TA = -40^{\circ}C \text{ to } +85^{\circ}C, VCC = 5.0V \pm 10\%$


CLOAD = 50pF, RLOAD = 500Ω unless otherwise noted.

Symbol	Parameter	Min. ⁽¹⁾	Тур.	Max.	Unit
tPLH	Data Propagation Delay (1,2)			0.12	
tphl	A to B or B to A		-	0.12	ns
tpzl	Switch Turn-On Delay	1.5		7.5	
tpzh	ONx to A or B	1.5	_	7.5	ns
tplz	Switch Turn-Off Delay (1)	1.5		/ [
tphz	ONx to A or B	1.5	_	6.5	ns

NOTES:

- 1. This parameter is guaranteed but not tested
- 2. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.12ns for C_L = 50pF. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*