

1.8/2.5/3.3 V Low JITTER, LOW SKEW CLOCK BUFFER/LEVEL TRANSLATOR

Features

- Factory-programmed mux selects between 1 of 2 inputs and provides multiple precision, low-skew outputs
 - LVPECL, LVDS, HCSL: 4 outputs
 - CMOS, SSTL, HSTL: 8 outputs
- Versions available that support level translation in addition to clock buffering
 - Differential to single-ended
 - Single-ended to differential
- Ultra-low additive jitter: 0.055 ps rms typ
- Separate core and output supplies to minimize power consumption

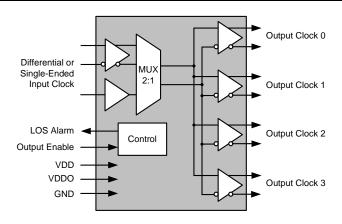
- Wide frequency range
 - LVPECL, LVDS: 5 to 710 MHz
 - HCSL: 5 to 250 MHz
 - SSTL, HSTL: 5 to 350 MHz
 - CMOS: 5 to 200 MHz
- Output-output skew: ±100 ps
- Propagation delay: 2.5 ns
- Low power, DC coupled LVPECL mode available
- Small size: 24-lead, 4 x 4 mm QFN
- Low power: 10 mA core supply
- 3.3/2.5/1.8 V supply

Ordering Information: See page 13.

Pin Assignments

Si5330 Transparent Top View CLK1A 17 2 CLK1B IN2 16 IN3 VDDO1 ω GND 15 RSVD_GND VDDO2 14 RSVD_GND CLK2A RSVD_GND CLK2B

Applications


- Gigabit Ethernet
- OC-3/12, SFI-5
- Processor, memory clocking
- PCI Express 2.0

- Broadcast Video
- xDSL
- PON
- T1/E1

Description

The Si5330 is a low-jitter, low-skew fanout buffer optimized for clock distribution applications. The device produces four differential or eight single-ended low-jitter output clocks at the same frequency as the input clock. All specifications are guaranteed over temperature and voltage. To minimize power consumption, the device core and output clocks have independent supplies. The output clocks can be powered by a 1.5, 1.8, 2.5, or 3.3 V supply, depending on the selected signal format. Operating from a 1.8, 2.5, or 3.3 V core supply, the Si5330 is guaranteed over the industrial temperature range of –40 to +85 °C.

Functional Block Diagram

TABLE OF CONTENTS

<u>Section</u>	<u>Page</u>
1. Electrical Specifications	4
2. Functional Description	8
2.1. Si5330 Device Evaluation	8
2.2. Device Reset	8
2.3. Loss of Signal Indicator	8
2.4. Self-Calibration	9
3. Pin Descriptions—Si5330	10
4. Orderable Part Numbers and Device Functionality	13
5. Package Outline: 24-Lead QFN	15
6. Recommended PCB Layout	16
Document Change List	17
Contact Information	18

1. Electrical Specifications

Table 1. Recommended Operating Conditions

 $(V_{DD} = 1.8 \text{ V} -5\% \text{ to } +10\%, 2.5 \text{ V} \pm 10\%, \text{ or } 3.3 \text{ V} \pm 10\%, T_A = -40 \text{ to } 85^{\circ}\text{C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	Notes
Ambient Temperature	T _A		-40	25	85	°C	

Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted.

Table 2. DC Characteristics

(V_{DD} = 1.8 V –5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, T_A = –40 to 85°C)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Core Supply Voltage	V _{DD}		2.97	3.3	3.63	V
			2.25	2.5	2.75	V
			1.71	1.8	1.98	V
Output Buffer Supply Voltage	V _{DDOn}		1.4	2.5	3.63	V
Core Supply Current	I _{DD}	100 MHz on all outputs, 25 MHz on the input	_	TBD	10	mA
Output Buffer Supply Current	I _{DDOx}	LVPECL, 710 MHz	_	TBD	30	mA
		Low Power LVPECL, 710 MHz	_	TBD	15	mA
		LVDS, 710 MHz	_	TBD	8	mA
		HCSL, 250 MHz 2 pF load capacitance	_	TBD	20	mA
		SSTL, 350 MHz	_	TBD	28	mA
		CMOS, 50 MHz 15 pF load capacitance	_	TBD	28	mA
		CMOS, 200 MHz 2 pF load capacitance	_	TBD	28	mA
		HSTL, 350 MHz	_	TBD	22	mA
Output Buffer Supply Current	I _{DDOx}	LVPECL, 710 MHz	_	TBD	30	mA
VDD POR Threshold Voltage	V _{PORTHR}		1.55	_	_	V
Propagation Delay	t _{PROP}		_	2.5	_	ns
Output Clock Duty Cycle	t _{ODC}	CLKn < 350 MHz	40	_	60	%
		350 MHz < CLKn < 710 MHz	_	_	100	ps
Output-Output Skew	t _{DSKEW}	Outputs at same frequency, signal format	_	_	100	ps

Table 2. DC Characteristics (Continued)

 $(V_{DD} = 1.8 \text{ V} -5\% \text{ to } +10\%, 2.5 \text{ V} \pm 10\%, \text{ or } 3.3 \text{ V} \pm 10\%, T_A = -40 \text{ to } 85^{\circ}\text{C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
CLKIN Loss of Signal Detect Time	t _{LOS}		_	2.6	5	μs
CLKIN Loss of Signal Release Time	t _{LOSRLS}		0.01	0.2	1	μs
POR to Output Clock Valid	t _{RDY}	V _{PORTHR} = 1.55 V	_	_	2	ms

Table 3. Input and Output Clock Characteristics

 $(V_{DD} = 1.8 \text{ V} -5\% \text{ to } +10\%, 2.5 \text{ V} \pm 10\%, \text{ or } 3.3 \text{ V} \pm 10\%, T_A = -40 \text{ to } 85^{\circ}\text{C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Input Clock (AC Coup	oled Differen	tial Input Clocks on Pins	1, 2)			
Frequency	f _{IN}		5	_	710	MHz
Differential Voltage	V_{PP}		0.5	_	2.4	V_{PP}
Rise/Fall Time	t _R /t _F	20%-80%	_	_	4	ns
Duty Cycle	DC	< 2 ns tr/tf	40	_	60	%
Input Impedance	R _{IN}		10	_	_	kΩ
Input Capacitance	C _{IN}		_	3.5	_	pF
Input Clock (Single-E	nded Input (Clock on Pin 3)		<u>'</u>		-
Frequency	f _{IN}	CMOS	5	_	200	MHz
		SSTL/HSTL	5	_	350	MHz
Input Voltage	VI		-0.1	_	3.63	V
Input Voltage Swing (HSTL Standard)		Input = 350 MHz , Tr/Tf = $.6 \text{ ns}$	0.6	_	_	V _{PP}
Input Voltage Swing (CMOS Standard)		200 MHz, Tr/Tf = 1.3 ns	0.8	_	3.73	V
Rise/Fall Time	t _R /t _F	20%-80%	_	_	4	ns
Duty Cycle	DC	< 2 ns tr/tf	40	_	60	%
Input Capacitance	C _{IN}		_	2	_	pF
Output Clocks (Differ	ential)					
Frequency	f _{OUT}	LVPECL, LVDS	5	_	710	MHz
	OUT	HCSL	5	_	250	MHz
LVPECL Output Option	V _{oc}	common mode	_	V _{DDO} – 1.4 V	_	V
Ориоп	V _{OD}	diff swing	1.1	1.6	1.92	V_{PP}
LVDS Output Option	V _{OC}	common mode	1.125	1.2	1.275	V
(2.5/3.3 V)	V _{OD}	diff swing	0.50	0.70	0.90	V _{PP}
LVDS Output Option	V _{oc}	common mode	0.8	0.875	0.95	V
(1.8 V)	V _{OD}	diff swing	0.5	0.7	0.9	V _{PP}
HCSL Output Option	V _{OC}	common mode	0.35	0.375	0.400	V
TIOSE Output Option	V _{OD}	diff swing	1.15	1.45	1.7	V _{PP}
Rise/Fall Time	t _R /t _F	20%-80%	_	_	450	ps

Table 3. Input and Output Clock Characteristics (Continued) (V_{DD} = 1.8 V –5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, T_A = –40 to 85°C)

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Duty Cycle	DC	50% CLKIN duty cycle CLKn < 350 MHz	45	_	55	%
Duty Cycle	DC	350 MHz < CLKn < 710 MHz	40	_	60	%
Output Clocks (Single	-Ended)					
Frequency	f _{OUT}	CMOS	5	_	200	MHz
, ,	1001	SSTL, HSTL	5	_	350	MHz
CMOS 20%-80% Rise/Fall Time 2 pF load	t _R /t _F		_	0.35	TBD	ns
Duty Cycle	DC	40–60% CLKIN duty cycle	45	_	55	%
CMOS Output Voltage	V _{OH}	4 mA load	V _{DDO} -0.3	_		V
Civios Odiput voltage	V_{OL}	4 mA load	_	_	0.3	V
	V_{OH}	SSTL-3, VDDOx = 2.97	0.45xV _{DDO} + 0.41	_	_	V
	V_{OL}	to 3.63 V	_	_	0.45xV _{DDO} - 0.41	٧
	V _{OH}	SSTL-2, VDDOx = 2.25	0.5xV _{DDO} + 0.41	_	_	V
SSTL Output Voltage	V _{OL}	to 2.75 V	_	_	0.5xV _{DDO} - 0.41	V
	V _{OH}	SSTL-18, VDDOx = 1.71	0.5xV _{DDO} + 0.34	_	_	V
	V _{OL}	to 1.98 V	_	_	0.5xV _{DDO} - 0.34	V
HSTL Output Voltage	V _{OH}	VDDO = 1.4 to 1.6 V	0.5xV _{DDO} + 0.30	_	_	V
11312 Output Voltage	V _{OL}	VDDO = 1.4 to 1.6 V	_	_	0.5xV _{DDO} – 0.30	V
OEB						
Input Voltage Low	V_{IL}		-0.1		0.3	V
Input Voltage High	V _{IH}		0.9		3.63	V
Input Capacitance	C _{IN}		_	_	4	pF
Input Resistance	R _{IN}		20	_	_	kΩ
Enable/Disable Rate	f _{INI}		_	_	100	kHz
LOS		1	T		T	
Output Voltage Low	V _{OL}	I _{SINK} = 3 mA	0	_	0.4	V
Rise/Fall Time	t _R /t _F	C_L < 10 pf, pull up \leq 1 k Ω	_	_	10	ns

Table 4. Jitter Specifications

 $(V_{DD} = 1.8 \text{ V} -5\% \text{ to } +10\%, 2.5 \text{ V} \pm 10\%, \text{ or } 3.3 \text{ V} \pm 10\%, T_A = -40 \text{ to } 85^{\circ}\text{C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Additive Phase Jitter (12 kHz–20 MHz)	t _{RPHASE}	0.8 V pk-pk input clock with rise/fall time = 150 ps CLKn = 175 MHz, LVDS/LVPECL format		0.055	0.15	ps RMS
Additive Phase Jitter (12 kHz–20 MHz)	t _{RPHASESN}	0.8 V pk-pk input clock with rise/fall time = 150 ps CLKn = 175 MHz, LVDS/LVPECL format, 100 mV sinusoidal supply noise @ 1 MHz.		0.065	_	ps RMS
Additive Phase Jitter (12 kHz–350 MHz)	t _{RPHASEWB}	0.8 V pk-pk input clock with rise/fall time = 150 ps CLKn = 710 MHz, LVDS/LVPECL format.	—	0.3	0.4	ps RMS

Table 5. Thermal Characteristics

Parameter	Symbol	Test Condition	Value	Unit
Thermal Resistance Junction to Ambient	Theta JA	Still Air	37	°C/W

Table 6. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Value	Unit
DC Supply Voltage	V_{DD}		-0.5 to 3.8	V
Storage Temperature Range	T _{STG}		-55 to 150	°C
ESD Tolerance		HBM (100 pF, 1.5 kΩ)	2	kV
ESD Tolerance		CDM	550	V
ESD Tolerance		MM	175	V
Latch-up Tolerance			JESD78 Co	mpliant

Note: Permanent device damage may occur if the Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. Functional Description

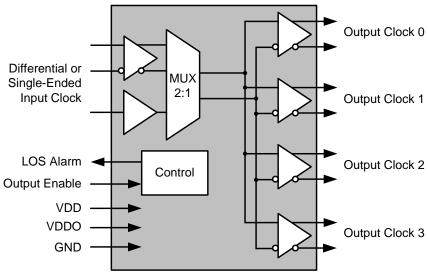


Figure 1. Si5330 Block Diagram

The Si5330 is a low jitter, low skew fanout buffer optimized for clock distribution applications. The device includes an internal mux that is factory-programmed to support either a single-ended or differential input clock source. From a single input, the device distributes four differential clocks from 5 to 710 MHz (LVPECL, LVDS, HCSL), eight single-ended clocks from 5 to 350 MHz (SSTL, HSTL), or eight single-ended clocks from 5 to 200 MHz (CMOS).

All output clocks are at the same frequency and supply voltage. LVDS, HCSL, CMOS, and SSTL buffers are available in 1.8, 2.5, and 3.3 V options. LVPECL buffers are available in 2.5 V and 3.3 V options. HSTL buffers are available in 1.5 V. Output to output skew is guaranteed between all output clocks as specified in Table 3.

The device also supports an option to provide format translation in addition to clock distribution. In this mode, the device can accept one differential input clock and generate eight CMOS clocks at the same frequency. Alternatively, the device can accept one single-ended input clock and generate four differential output clocks at the same frequency. In this mode of operation, the device can accept any single-ended or differential clock that meets the input voltage requirements as specified in Table 3.

The device includes an output enable pin that disables all output clocks. The Si5330 also includes a loss of signal indicator that monitors the quality of the input clock. The device core operates from a 1.8, 2.5, or 3.3 V

supply. The device outputs operate from a dedicated supply. All outputs operate at the same voltage, as specified by the selected signal format of the ordered device. Device operation is guaranteed over the industrial temperature range of –40 to +85 °C.

2.1. Si5330 Device Evaluation

Silicon Labs offers evaluation hardware and software that enables the rapid evaluation of any Si5330 clock buffer. The device evaluation board is the Si5338-EVB and is available to order from all Silicon Labs distributors and representatives. The evaluation board ships with device configuration software. The user can select any member of the Si5330 product family from a product selector guide and the software configures the Si5330 DUT to operate as that specific device, enabling easy evaluation.

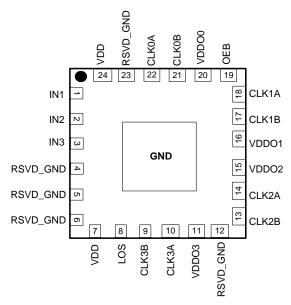
2.2. Device Reset

To completely reset the device, a power cycle must be performed.

2.3. Loss of Signal Indicator

The Si5330 monitors the input clock for loss of signal (LOS). The LOS algorithm monitors input clock edges and declares an LOS alarm when signal edges are not detected over a 5 µsec observation period. When a loss of signal event is detected, the device output clocks are squelched. When the input clock returns and is revalidated, the output clocks will reappear and normal operation will resume.

2.4. Self-Calibration


The device performs an internal self-calibration before operation to optimize performance. The output clocks appear after the device finishes self calibration.

The following events will trigger a self-calibration:

- Power on reset
- Input clock loss of signal

3. Pin Descriptions—Si5330

Note: Center pad must be tied to GND for normal operation.

Table 7. Si5330 Pin Descriptions

Pin#	Pin Name	I/O	Signal Type	Description
1	IN1	I	Multi	Differential Input Clock When Pin 3 is not used as a clock input, this pin functions as a differential input clock (positive terminal) for LVPECL, LVDS, and HCSL clock buffers. If unused, this pin must be tied to GND.
2	IN2	I	Multi	Differential Input Clock When Pin 3 is not used as a clock input, this pin functions as a differential input clock (negative terminal) for LVPECL, LVDS, and HCSL clock buffers. If unused, this pin must be tied to GND.
3	IN3	I	Multi	Clock Input When pins 1 and 2 are not used as clock inputs, this pin functions as an input receiver for CMOS/SSTL/HSTL clock signals. This input must be dc-coupled.
4	RSVD_GND	GND	GND	Ground. Must be connected to system ground.
5	RSVD_GND	GND	GND	Ground. Must be connected to system ground.
6	RSVD_GND	GND	GND	Ground. Must be connected to system ground.
7	VDD	VDD	Supply	Core Supply Voltage The device operates from a 1.8, 2.5, or 3.3 V supply. A 0.1 µF bypass capacitor should be located very close to this pin.

Table 7. Si5330 Pin Descriptions (Continued)

Pin#	Pin Name	I/O	Signal Type	Description
8	LOS	0	Open Drain	Loss of Signal Indicator. 0 = CLKIN present. 1 = Loss of signal (LOS). This pin requires an external ≤1 kΩ pull-up resistor.
9	CLK3B	0	Multi	Output Clock B for Channel 3 May be a single-ended output or half of a differential output with CLK3A being the other differential half.
10	CLK3A	0	Multi	Output Clock A for Channel 3 May be a single-ended output or half of a differential output with CLK3B being the other differential half.
11	VDDO3	VDD	Supply	Output Clock Supply Voltage Supply voltage for CLK3A,B. If CLK3 is not used, this pin must be tied to pin 7 and/or pin 24.
12	RSVD_GND	GND	GND	Ground. Must be connected to system ground.
13	CLK2B	0	Multi	Output Clock B for Channel 2 May be a single-ended output or half of a differential output with CLK2A being the other differential half.
14	CLK2A	0	Multi	Output Clock A for Channel 2 May be a single-ended output or half of a differential output with CLK2B being the other differential half.
15	VDDO2	VDD	Supply	Output Clock Supply Voltage Supply voltage for CLK2A,B. If CLK2 is not used, this pin must be tied to pin 7 and/or pin 24.
16	VDDO1	VDD	Supply	Output Clock Supply Voltage Supply voltage for CLK1A,B. If CLK1 is not used, this pin must be tied to pin 7 and/or pin 24.
17	CLK1B	0	Multi	Output Clock B for Channel 1 May be a single-ended output or half of a differential output with CLK1A being the other differential half. If unused, this pin must be tied to VDD pin 24.
18	CLK1A	0	Multi	Output Clock A for Channel 1 May be a single-ended output or half of a differential output with CLK1B being the other differential half.
19	OEB	I	CMOS	Output Enable Low. When low, all outputs are enabled. This input is 3.3 V tolerant.
20	VDD00	VDD	Supply	Output Clock Supply Voltage Supply voltage for CLK0A,B. If CLK2 is not used, this pin must be tied to pin 7 and/or pin 24.
21	CLK0B	0	Multi	Output Clock B for Channel 0 May be a single-ended output or half of a differential output with CLK0A being the other differential half.

Table 7. Si5330 Pin Descriptions (Continued)

Pin#	Pin Name	I/O	Signal Type	Description
22	CLK0A	0	Multi	Output Clock A for Channel 0 May be a single-ended output or half of a differential output with CLK0B being the other differential half.
23	RSVD_GND	GND	GND	Ground. Must be connected to system ground.
24	VDD	VDD	Supply	Core Supply Voltage. The device operates from a 1.8, 2.5, or 3.3 V supply. A 0.1 µF bypass capacitor should be located very close to this pin.
GND PAD	GND	GND	Supply	Ground Pad. This is the large pad in the center of the package. Nine or more vias should be used to connect this pad to a ground plane. Device specifications cannot be guaranteed unless the ground pad is properly connected to a ground plane on the PCB.

4. Orderable Part Numbers and Device Functionality

Part Number	Input	Output Format	Outputs	Frequency
LVPECL Buffers				
Si5330A-A00200-GM	Differential	3.3 V LVPECL	4	5 to 710 MHz
Si5330A-A00201-GM	Differential	3.3 V Low Power LVPECL	4	5 to 710 MHz
Si5330A-A00202-GM	Differential	2.5 V LVPECL	4	5 to 710 MHz
Si5330A-A00203-GM	Differential	2.5 V Low Power LVPECL	4	5 to 710 MHz
LVDS Buffers			1	
Si5330B-A00204-GM	Differential	3.3 V LVDS	4	5 to 710 MHz
Si5330B-A00205-GM	Differential	2.5 V LVDS	4	5 to 710 MHz
Si5330B-A00206-GM	Differential	1.8 V LVDS	4	5 to 710 MHz
HCSL Buffers			1	
Si5330C-A00207-GM	Differential	3.3 V HCSL	4	5 to 250 MHz
Si5330C-A00208-GM	Differential	2.5 V HCSL	4	5 to 250 MHz
Si5330C-A00209-GM	Differential	1.8 V HCSL	4	5 to 250 MHz
SSTL Buffers			1	
Si5330D-A00210-GM	Single-Ended	3.3 V SSTL	8	5 to 350 MHz
Si5330D-A00211-GM	Single-Ended	2.5 V SSTL	8	5 to 350 MHz
Si5330D-A00212-GM	Single-Ended	1.8 V SSTL	8	5 to 350 MHz
HSTL Buffers				
Si5330E-A00213-GM	Single-Ended	1.5 V HSTL	8	5 to 350 MHz
CMOS Buffers			1	
Si5330F-A00214-GM	Single-Ended	3.3 V CMOS	8	5 to 200 MHz
Si5330F-A00215-GM	Single-Ended	2.5 V CMOS	8	5 to 200 MHz
Si5330F-A00216-GM	Single-Ended	1.8 V CMOS	8	5 to 200 MHz
CMOS Buffers (Differential Input)				
Si5330G-A00217-GM	Differential	3.3 V CMOS	8	5 to 200 MHz
Si5330G-A00218-GM	Differential	2.5 V CMOS	8	5 to 200 MHz
Si5330G-A00219-GM	Differential	1.8 V CMOS	8	5 to 200 MHz
SSTL Buffers (Differential Input)				
Si5330H-A00220-GM	Differential	3.3 V SSTL	8	5 to 350 MHz
Si5330H-A00221-GM	Differential	2.5 V SSTL	8	5 to 350 MHz
Si5330H-A00222-GM	Differential	1.8 V SSTL	8	5 to 350 MHz

Si5330

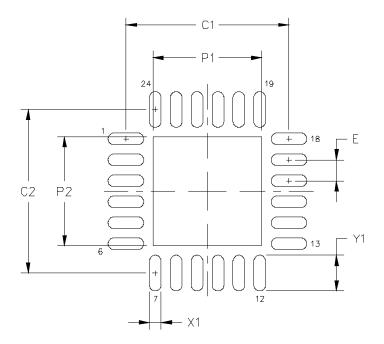
HSTL Buffers (Differential Inj	out)			
Si5330J-A00223-GM	Differential	1.5 V HSTL	8	5 to 350 MHz
LVPECL Buffers (Single-End	ed Input)			•
Si5330K-A00224-GM	Single-Ended	3.3 V LVPECL	4	5 to 350 MHz
Si5330K-A00225-GM	Single-Ended	3.3 V Low Power LVPECL	4	5 to 350 MHz
Si5330K-A00226-GM	Single-Ended	2.5 V LVPECL	4	5 to 350 MHz
Si5330K-A00227-GM	Single-Ended	2.5 V Low Power LVPECL	4	5 to 350 MHz
LVDS Buffers (Single-Ended	Input)			•
Si5330L-A00228-GM	Single-Ended	3.3 V LVDS	4	5 to 350 MHz
Si5330L-A00229-GM	Single-Ended	2.5 V LVDS	4	5 to 350 MHz
Si5330L-A00230-GM	Single-Ended	1.8 V LVDS	4	5 to 350 MHz
HCSL Buffers (Single-Ended	Input)			•
Si5330M-A00231-GM	Single-Ended	3.3 V HCSL	4	5 to 250 MHz
Si5330M-A00232-GM	Single-Ended	2.5 V HCSL	4	5 to 250 MHz
Si5330M-A00233-GM	Single-Ended	1.8 V HCSL	4	5 to 250 MHz

5. Package Outline: 24-Lead QFN



Figure 2. 24-Lead Quad Flat No-lead (QFN)

Table 8. Package Dimensions


Dimension	Min	Nom	Max
А	0.80	0.85	0.90
A1	0.00	0.02	0.05
b	0.18	0.25	0.30
D	4.00 BSC.		
D2	2.35	2.50	2.65
е	0.50 BSC.		
Е	4.00 BSC.		
E2	2.35	2.50	2.65
L	0.30	0.40	0.50
aaa	0.10		
bbb	0.10		
CCC	0.08		
ddd	0.10		
eee	0.05		

Notes:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- 3. This drawing conforms to the JEDEC Outline MO-220, variation VGGD-8.
- **4.** Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

6. Recommended PCB Layout

Table 9. PCB Land Pattern

Dimension	Min	Nom	Max
P1	2.50	2.55	2.60
P2	2.50	2.55	2.60
X1	0.20	0.25	0.30
Y1	0.75	0.80	0.85
C1	3.90		
C2	3.90		
Е	0.50		

Notes:

General

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994 specification.
- 3. This Land Pattern Design is based on the IPC-7351 guidelines.

Solder Mask Design

1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

Stencil Design

- 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pins.
- 4. A 2x2 array of 1.0 mm square openings on 1.25mm pitch should be used for the center ground pad.

Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

DOCUMENT CHANGE LIST

Revision 0.1 to Revision 0.2

- Clarified documentation to reflect that Pin 19 is OEB (OE Enable Low).
- Updated Table 4, "Jitter Specifications," on page 7.

Si5330

CONTACT INFORMATION

Silicon Laboratories Inc.

400 West Cesar Chavez Austin, TX 78701 Tel: 1+(512) 416-8500 Fax: 1+(512) 416-9669

Toll Free: 1+(877) 444-3032 Email: clockinfo@silabs.com Internet: www.silabs.com

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.

Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

