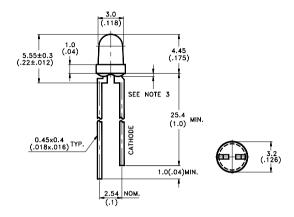


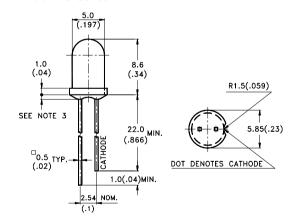
T-1(3mm), T-1³/₄(5mm) Low Current LED Lamps

LTL-4221NLC/307ELC Hi. Eff. Red LTL-4231NLC/307GLC Green LTL-4251NLC/307YLC Yellow

Features


- · Low power consumption
- · High efficiency
- · CMOS/MOS compatible
- TTL compatible
- · Wide viewing angle

Description


These tinted diffused LED lamps were designed and optimized specifically for low DC current operation. Luminous intensity and forward voltage are tested at 2 mA to assure consistent brightness at TTL output current levels.

Package Dimensions

LTL-42x1NLC Series

LTL-307xLC Series

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is \pm 0.25mm (.010") unless otherwise noted.
- 3. Protruded resin under flange is 1.5mm (.059") max.
- 4. Lead spacing is measured where the leads emerge from the package.
- 5. Specifications are subject to change without notice.

Devices

Part No. LTL-	Lens	Source Color		
4221NLC	Red Diffused	Hi. Eff. Red		
4231NLC	Green Diffused	Green		
4251NLC	Yellow Diffused	Yellow		

Part No. LTL-	Lens	Source Color		
307ELC	Red Diffused	Hi. Eff. Red		
307GLC	Green Diffused	Green		
307YLC	Yellow Diffused	Yellow		

Absolute Maximum Ratings at Ta=25℃

Parameter	Maximun	n Rating	Unit	
Power Dissipation $Tamb \leqq 90 ^{\circ}\! \mathbb{C}$	Hi. Eff. Red 20 Green 20 Yellow 20		mW	
Forward Current	7		mA	
Forward Surge Current (10 μ sec Pulse)	500		mA	
Reverse Voltage	5		V	
Operating Temperature Range	-55℃ to +100 ℃			
Storage Temperature Range	-55℃ to +100 ℃			
Lead Soldering Temperature [1.6mm (0.063in) From Body]	260°C for 5 Seconds			

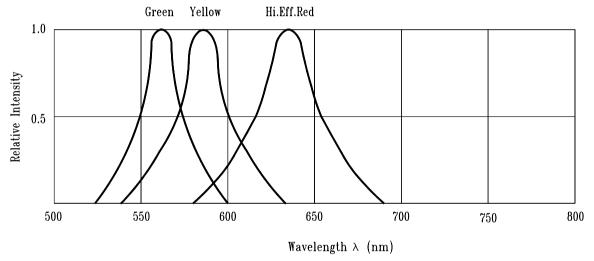


Fig.1 Relative Intensity vs. Wavelength

Electrical /Opitcal Characteristics and Curves at Ta=25°C

<u> </u>							
Parameter	Symbol	Part No. LTL-	Min.	Тур.	Max.	Unit.	Test Condition.
Luminous Intensity	Iv	4221NLC 4231NLC 4251NLC	0.7 0.4 0.4	2.5 1.1 1.1		mcd	Ir=2 mA Note 1,4
Viewing Angle	2 θ ½	42x1NLC		60		deg	Note 2 (Fig.6)
Peak Emission Wavelength	λР	4221NLC 4231NLC 4251NLC		635 565 585		nm	Measurement @Peak (Fig.1)
Dominant Wavelength	λd	4221NLC 4231NLC 4251NLC		623 569 588		nm	Note 3
Spectral Line Half Width	Δλ	4221NLC 4231NLC 4251NLC		40 30 35		nm	
Forward Voltage	VF	4221NLC 4231NLC 4251NLC		1.7 1.9 1.8	2.2 2.2 2.7	V	IF=2mA
Reverse Current	lr	42x1NLC			10	μΑ	V _R =5V

Notes:1.Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eyeresponse curve.

- 2. $\theta \frac{1}{2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 3. The dominant wavelength, λ d is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
- 4.1 \vee needs \pm 15% additionary for guaranteed limits.

Fig.5 LUMINOUS INTENSITY VS. AMBIENT TEMPERATURE

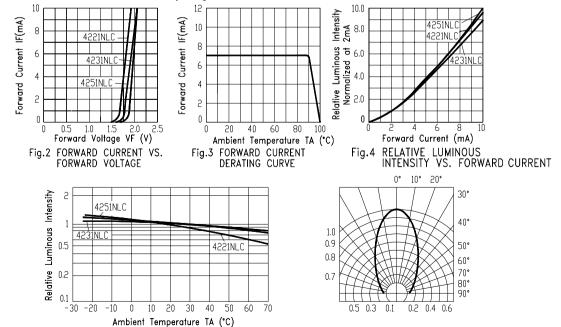


Fig. 6 SPATIAL DISTRIBUTION

Electrical /Opitcal Characteristics and Curves at Ta=25℃

<u> </u>						_	
Parameter	Symbol	Part No. LTL-	Min.	Тур.	Max.	Unit.	Test Condition.
Luminous Intensity	Iv	307ELC 307GLC 307YLC	1.1 1.1 1.1	3.7 3.7 3.7		mcd	Ir=2 mA Note 1,4
Viewing Angle	2 θ ½	307xLC		50		deg	Note 2 (Fig.11)
Peak Emission Wavelength	λР	307ELC 307GLC 307YLC		635 565 585		nm	Measurement @Peak (Fig.1)
Dominant Wavelength	λd	307ELC 307GLC 307YLC		623 569 588		nm	Note 3
Spectral Line Half Width	Δλ	307ELC 307GLC 307YLC		40 30 35		nm	
Forward Voltage	VF	307ELC 307GLC 307YLC		1.7 1.9 1.8	2.2 2.2 2.7	V	IF=2mA
Reverse Current	lR	307xLC			10	μΑ	V _R =5V

Notes:1.Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eyeresponse curve.

- $2.\theta \frac{1}{2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 3. The dominant wavelength, λ d is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
- 4.1√ needs ± 15% additionary for guaranteed limits.

Ambient Temperature TA (°C)
Fig.10 LUMINOUS INTENSITY VS.
AMBIENT TEMPERATURE

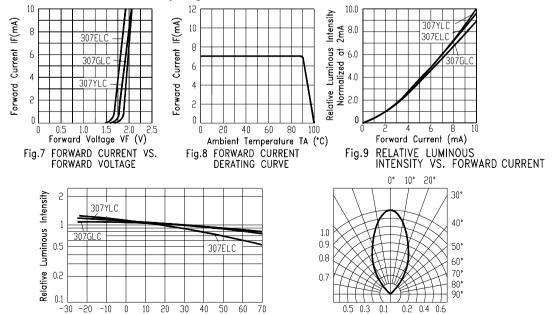


Fig.11 SPATIAL DISTRIBUTION