

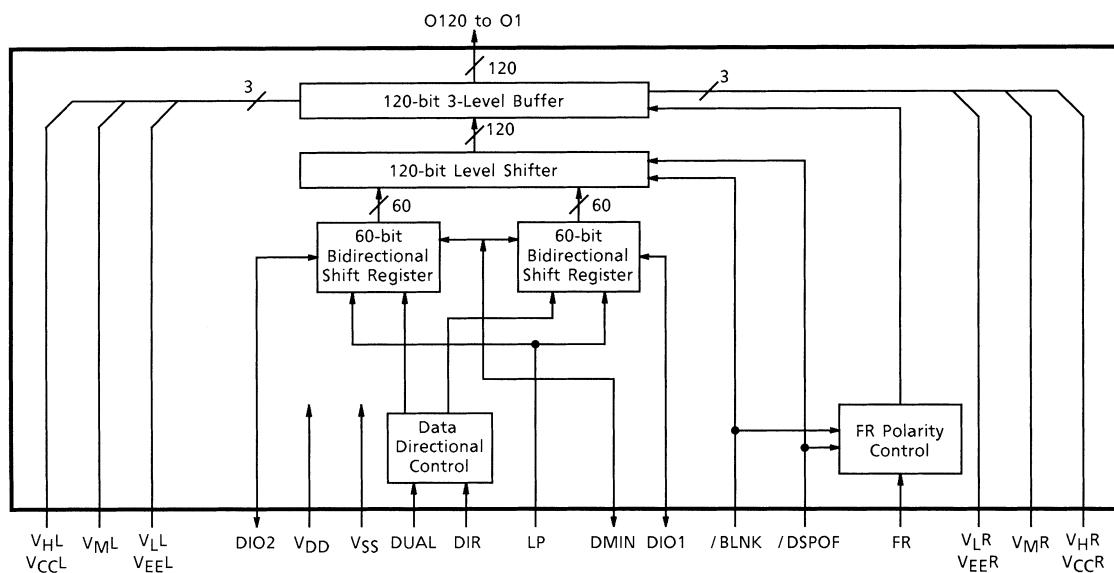
TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

T6C72A

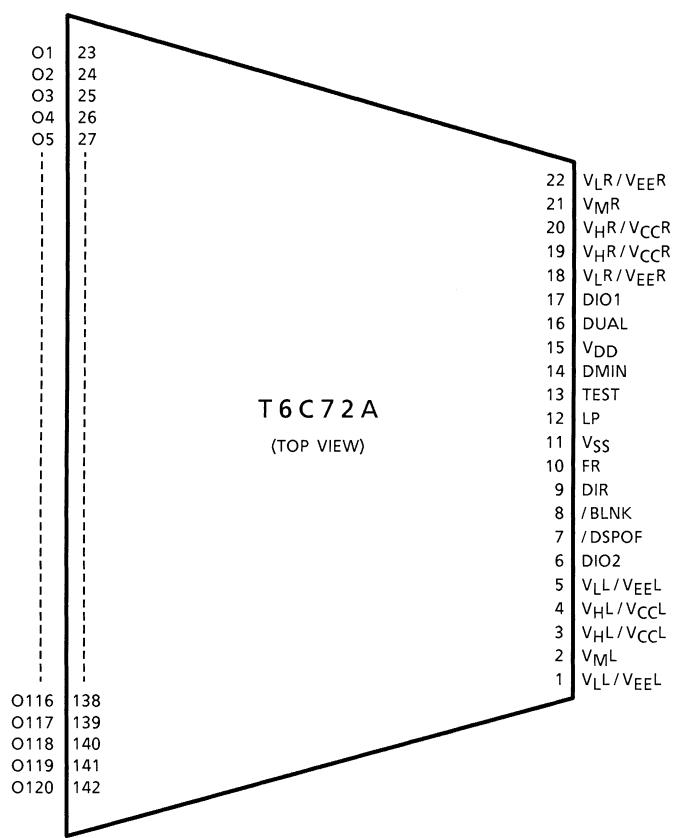
ROW DRIVER FOR A DOT MATRIX LCD

The T6C72A is a 120-channel-output row driver for an STN dot matrix LCD. The T6C72A features an 80-V LCD drive voltage. The T6C72A is able to drive LCD panels with a duty ratio of up to 1/480. It is recommended for use with the T6C71.

Features


- Display duty application : to 1/480
- LCD drive signal : 120
- Data transfer : 120-bit bidirectional and 60-bit 2 division bidirectional
 - (1) O1 → O120
 - (2) O1 ← O120
 - (3) O1 → O60, O61 → O120
 - (4) O1 ← O60, O61 ← O120
- LCD drive voltage : VCC = 18.5 to 42.5 V, VM = 2.5 V, VEE = -13.5 to -37.5 V
- Power supply voltage : 2.7 to 5.5 V
- Operating temperature : -20 to 75°C
- LCD drive output resistance: 0.4 kΩ (typ.) (VCC = VH = 32.5 V, VEE = VL = -27.5 V)
- Display-off function : When/DSPOF is L, all LCD drive outputs (O1 to O120) remain at the VM level.
- LCD drive output timing : Change on falling edge of LP
- Blanking function : Provision of a blanking interval prevents excessively high voltages being applied to the electrodes of the liquid crystal panel.
/BLNK = L: Blanking. All LCD drive outputs (O1 to O120) are set to the VM level.
/BLNK = H: (O1 to O120) are operational.

Unit: mm		
T6C72A	Lead Pitch	
	IN	OUT
(UAN, 3NS)	0.8	0.19


Please contact Toshiba or an authorized Toshiba dealer for information on package dimensions.

TCP (Tape Carrier Package)

Block Diagram

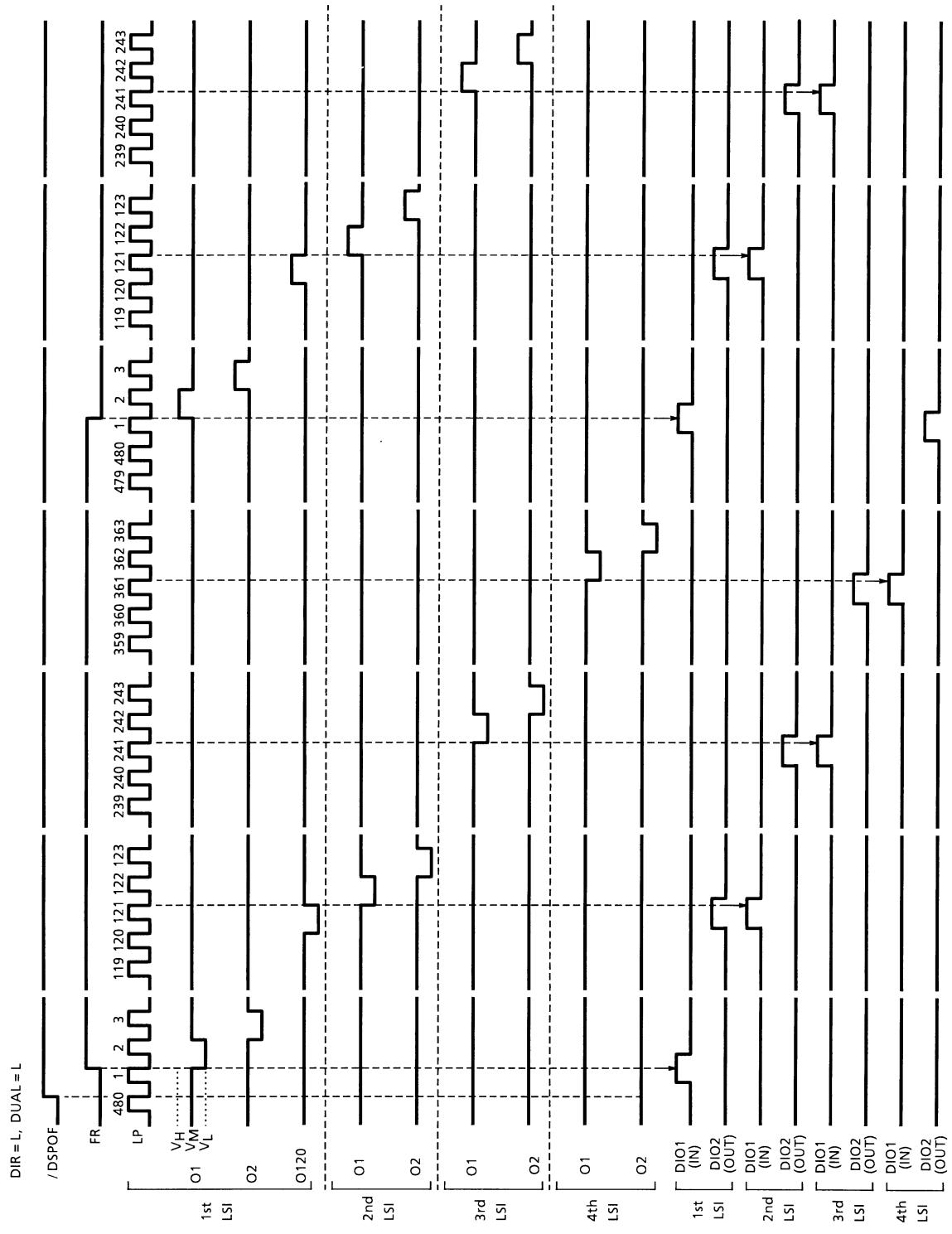
Pin Assignment

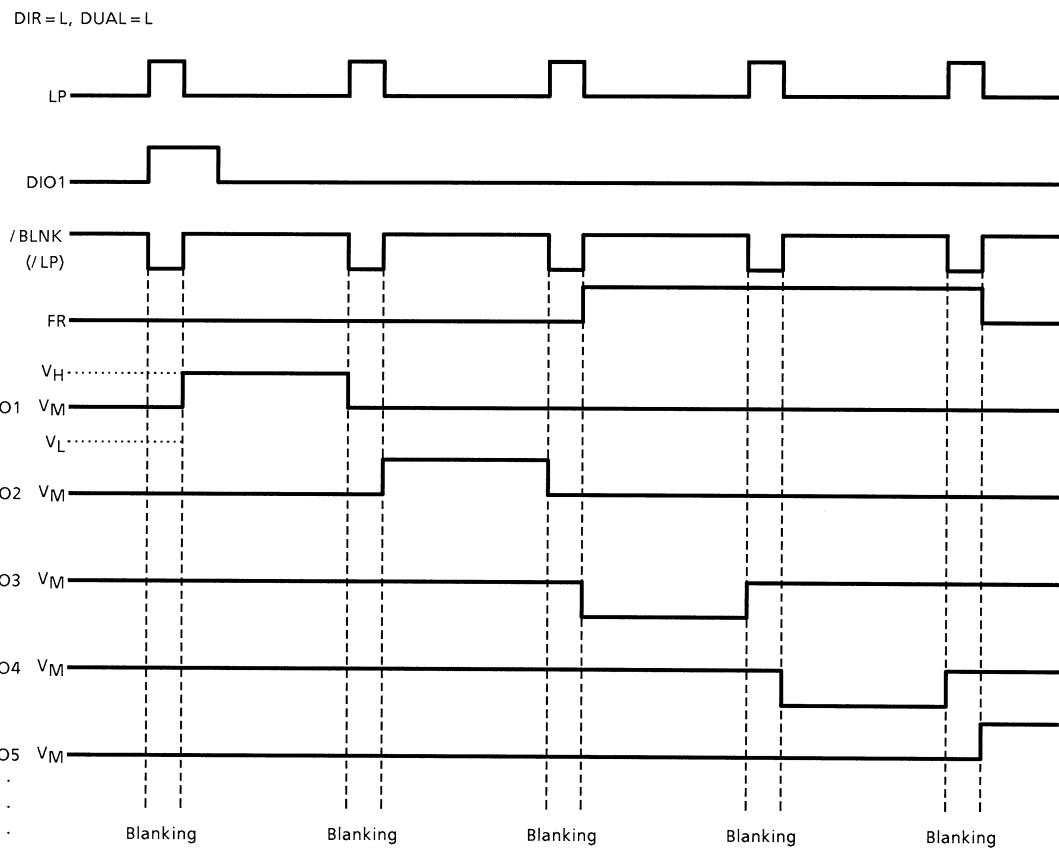
Note: The above diagram shows the pin configuration of the LSI chip, not that of the tape carrier package. It short-circuits V_LL and V_EEL/V_HL and V_CCL on the chip.

Pin Functions

Pin Name	I / O	Functions	Level
O1 to O120	Output	Output for LCD drive signal	$V_H / V_M / V_L$
DIO1, DIO2	I / O	Input / output for shift data DIR = L: DIO1 is input, DIO2 is output DIR = H: DIO1 is output, DIO2 is input	
DMIN	Input	Dual Mode (DUAL = H): data input Single Mode (DUAL = L): open	
LP	Input	(Shift Clock Pulse) Input for shift clock pulse	
FR	Input	(Frame) Input for frame signal	
DUAL	Input	(Dual Mode) Terminal for dual input mode (H) or single input mode (L) select	
DIR	Input	(Direction) Input for data flow direction select	$V_{DD} \text{ to } V_{SS}$
/ DSPOF	Input	(Display Off) / DSPOF = L: Display-off mode, (O1 to O120) remain at the V_M level. Latch outputs cleared after release / DSPOF = H: Display-on mode, (O1 to O120) are operational	
/ BLNK	Input	(Blanking Function) Blanking-off mode. (O1 to O120) remain at V_M level. Latch outputs not cleared Blanking-on mode. (O1 to O120) are operational	
TEST	Input	(Test) Fix or open to L	
V_{DD}	—	Power supply for internal logic (5 V)	
V_{SS}	—	Power supply for internal logic (0 V)	
V_{HL} / R V_{CCL} / R	—	Power supply for LCD drive circuit	—
V_{ML} / R	—	Power supply for LCD drive circuit	
V_{LL} / R V_{EEL} / R	—	Power supply for LCD drive circuit	

Relation between FR, Data Input and Output Level Format


FR	Data Input	/ DSPOF or / BLNK	Output Level
L	L	H	V_M
L	H	H	V_H
H	L	H	V_M
H	H	H	V_L
*	*	L	V_M


*: Don't Care

Data Input Format

DUAL	DIR	Data Flow	Data Input Terminals		
			DIO1	DIO2	DMIN
L	L	O1 → O120	IN	OUT	OPEN
L	H	O120 → O1	OUT	IN	OPEN
H	L	O1 → O60	IN	—	—
		O61 → O120	—	OUT	IN
H	H	O60 → O1	OUT	—	IN
		O120 → O61	—	IN	—

Timing Diagram 1

Timing Diagram 2 (Blanking Function)

Absolute Maximum Ratings

(Ensure that the following conditions are maintained,) (Note 1)

Item	Symbol	Pin Name	Rating	Unit
Supply Voltage 1	V_{DD}	V_{DD}	-0.3 to 7.0	V
Supply Voltage 2	$V_{CC} - V_{EE}$	$V_{CCL} / R, V_{EEL} / R$	-0.3 to 85	V
	$V_H - V_{EE}$	$V_{HL} / R, V_{EEL} / R$	-0.3 to 85	
Supply Voltage 3	$V_M - V_{EE}$	$V_{ML} / R, V_{EEL} / R$	-0.3 to 85	V
Supply Voltage 4	$V_L - V_{EE}$	$V_{LL} / R, V_{EEL} / R$	-0.3 to 85	V
Input Voltage	V_{in}	(Note 2)	-0.3 to $V_{DD} + 0.3$	V
Operating Temperature	T_{opr}	—	-20 to 75	°C
Storage Temperature	T_{stg}	—	-40 to 125	°C

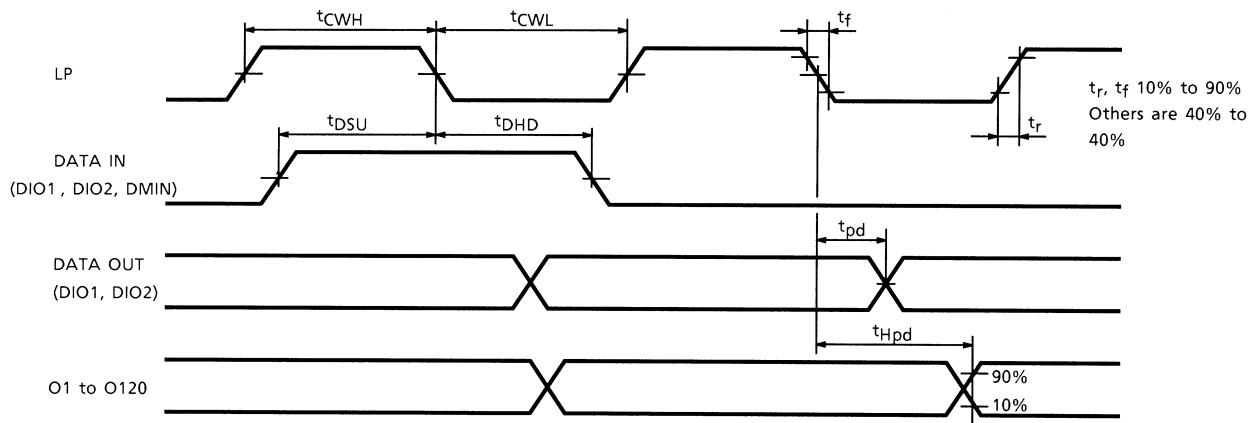
Note 1: Input voltage: $V_{SS} \rightarrow V_{DD} \rightarrow V_{EE} / V_L \rightarrow V_{CC} / V_H \rightarrow V_M$

Note 2: LP, FR, DIR, DUAL, DIO1, DIO2, DMIN, / DSPOF, / BLNK, TEST

Electrical Characteristics**DC Characteristics**

(Unless Otherwise Noted, $V_{SS} = 0$ V, $V_{DD} = 2.7$ to 5.5 V, $T_a = -20$ to 75 °C)

(Ensure that the following conditions are maintained,)


Item	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit	Pin Name
Supply Voltage 1	V_{DD}	—	—	2.7	5.0	5.5	V	V_{DD}
Supply Voltage 2	$V_{CC} - V_M$ $V_M - V_{EE}$	—	—	16	—	40	V	V_{CCL} / R V_{EEL} / R
Input Voltage	H Level	V_{IH}	—	0.6 V_{DD}	—	V_{DD}	V	(Note 2)
	L Level	V_{IL}	(Note 3)		0	—		
Output Voltage	H Level	V_{OH}	—	$V_{DD} - 0.5$	—	V_{DD}	V	DIO1 DIO2
	L Level	V_{OL}	$I_{OL} = 0.5$ mA		0	—		
Output Resistance	H Level	R_{OH}	—	$V_{OUT} = V_H - 0.5$ V (Note 4)	—	0.4	1.0	kΩ
	M Level	R_{OM}	$V_{OUT} = V_M + 0.5$ V		—	0.4	1.0	
		R_{OM}	$V_{OUT} = V_M - 0.5$ V		—	0.4	1.0	
	L Level	R_{OL}	$V_{OUT} = V_L + 0.5$ V		—	0.4	1.0	
Current Consumption	I _{DD} Ope	—	$V_{DD} = 5.5$ V	$V_{CC} - V_{EE} = 80$ V	—	—	60	V _{DD}
			$V_{DD} = 2.7$ V		—	—	30	
	I _{CC} Ope	—	$V_{DD} = 5.5$ V		—	—	200	V _{CCL} / R
			$V_{DD} = 2.7$ V		—	—	200	
	I _{CC} Leak	—	$V_{DD} = 5.5$ V	Standby	-10	—	10	V _{CCL} / R

Note 3: $V_{DD} = 4.5$ to 5.5 V, $V_{DD} = 2.7$ V: $V_{IH} = 0.7$ V_{DD} (min), $V_{IL} = 0.2$ V_{DD} (max)

Note 4: $V_{DD} = 2.7$ V, $V_H = 32.5$ V, $V_M = 2.5$ V, $V_L = -27.5$ V

Note 5: No load, $f_{LP} = 48$ kHz, $f_{FR} = 2.4$ kHz, $f_{DIO} = 400$ Hz, $V_{IH} = V_{DD}$, $V_{IL} = V_{SS}$

AC Characteristics

Test Conditions (1) ($V_{DD} = 4.5$ to 5.5 V)

Item	Symbol	Test Condition	Min	Max	Unit
LP Pulse Width H	t_{CWH}	LP	30	—	ns
LP Pulse Width L	t_{CWL}	LP	195	—	ns
Input Rise / Fall Time	t_r, t_f	LP, FR, DIO1, DIO2, DMIN	—	50	ns
Data Set-up Time	t_{DSU}	DIO1, DIO2, DMIN	30	—	ns
Data Hold Time	t_{DHD}	DIO1, DIO2, DMIN	30	—	ns
Output Data Delay Time (Note 6)	t_{pd}	DIO1, DIO2, DMIN	40	150	ns
LCD Drive Data Delay Time (Note 7)	t_{Hpd}	O1 to O120	—	1.0	μ s

Note 6: $C_L = 30$ pF

Note 7: No load, $V_{SS} = 0$ V, $V_M = 2.5$ V, $V_H = 42.5$ V, $V_L = -37.5$ V

Test Conditions (2) ($V_{DD} = 2.7$ to 4.5 V)

Item	Symbol	Test Condition	Min	Max	Unit
LP Pulse Width H	t_{CWH}	LP	100	—	ns
LP Pulse Width L	t_{CWL}	LP	400	—	ns
Input Rise / Fall Time	t_r, t_f	LP, FR, DIO1, DIO2, DMIN	—	50	ns
Data Set-up Time	t_{DSU}	DIO1, DIO2, DMIN	60	—	ns
Data Hold Time	t_{DHD}	DIO1, DIO2, DMIN	30	—	ns
Output Data Delay Time (Note 8)	t_{pd}	DIO1, DIO2, DMIN	40	400	ns
LCD Drive Data Delay Time (Note 9)	t_{Hpd}	O1 to O120	—	1.2	μ s

Note 8: $C_L = 30$ pFNote 9: No load, $V_{SS} = 0$ V, $V_M = 2.5$ V, $V_H = 42.5$ V, $V_L = -37.5$ VNote: Insert the bypass capacitor (0.1 μ F) between V_{DD} and V_{SS} to decrease power supply noise.

Position the bypass capacitor as close to the LSI as possible.

Set/DSPDF to L at power on so as to protect power supply IC.

Pay attention to measure and treatment of latch-up because being high-withstand pressure product.

RESTRICTIONS ON PRODUCT USE

000707EBE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- Polyimide base film is hard and thin. Be careful not to injure yourself on the film or to scratch any other parts with the film. Try to design and manufacture products so that there is no chance of users touching the film after assembly, or if they do, that there is no chance of them injuring themselves. When cutting out the film, try to ensure that the film shavings do not cause accidents. After use, treat the leftover film and reel spacers as industrial waste.
- Light striking a semiconductor device generates electromotive force due to photoelectric effects. In some cases this can cause the device to malfunction.
This is especially true for devices in which the surface (back), or side of the chip is exposed. When designing circuits, make sure that devices are protected against incident light from external sources. Exposure to light both during regular operation and during inspection must be taken into account.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.