INTEGRATED CIRCUITS

DATA SHEET

HEF4794B 8-stage shift-and-store register LED driver

Product specification
File under Integrated Circuits, IC04

June 1994

Philips Semiconductors

PHILIPS

. 7110826 0073749 079

HEF4794B

APPLICATIONS

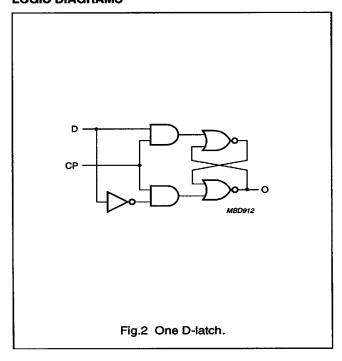
- Automotive
- Industrial.

GENERAL DESCRIPTION

The HEF4794B is an 8-stage serial shift register having a storage latch associated with each stage for strobing data from the serial input to parallel LED driver outputs O_0 to O_7 . Data is shifted on positive-going clock transitions. The data in each shift register stage is

transferred to the storage register when the strobe (STR) input is HIGH. Data in the storage register appears at the outputs whenever the output enable (EO) signal is HIGH.

Two serial outputs (O_S and O_S ') are available for cascading a number of HEF4794B devices. Data is available at O_S on positive-going clock edges to allow high-speed operation in cascaded systems in which the clock rise time is fast. The same serial information is available at O_S ' on the next negative-going clock edge and provides cascading HEF4794B devices when the clock rise time is slow.

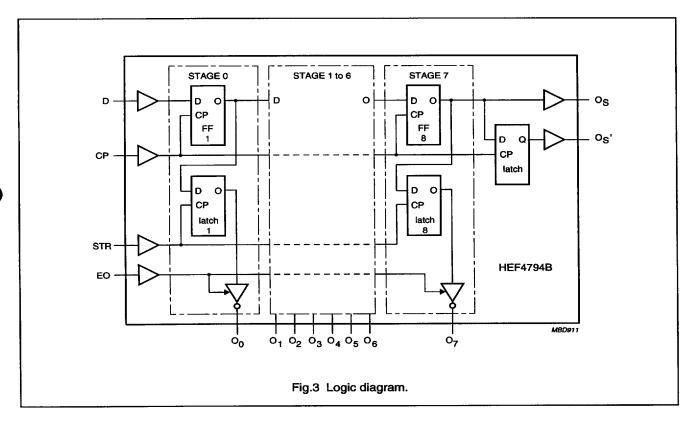

ORDERING INFORMATION

TYPE NUMBER	PACKAGES							
TYPE NUMBER	PINS	PIN POSITION	MATERIAL	CODE				
HEF4794BT	16	SO16	plastic	SOT109-1				
HEF4794BP	16	DIP16	plastic	SOT38-3				

FUNCTIONAL DIAGRAM

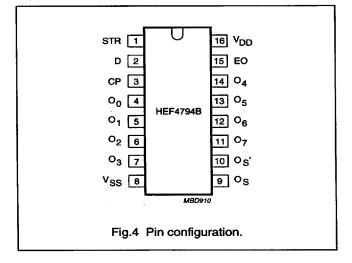
v_{DD} 116 HEF4794B D O_S 10 8-STAGE SHIFT CP 3 REGISTER os STR 8-BIT STORAGE REGISTER EO 15 **OPEN-DRAIN OUTPUTS** 14 13 02 03 04 05 06 07 Fig.1 Functional diagram.

LOGIC DIAGRAMS



June 1994

2


| 7110826 0073750 890 **| |**

HEF4794B

PINNING

SYMBOL	PIN	DESCRIPTION
STR	1	strobe input
D	2	data input
СР	3	clock input
O ₀ to O ₃	4 to 7	parallel outputs 0 to 3 (open drain)
V _{SS}	8	ground
O _S , O _S '	9 and 10	serial outputs
O ₇	11	parallel output 7 (open drain)
O ₆	12	parallel output 6 (open drain)
O ₅	13	parallel output 5 (open drain)
O ₄	14	parallel output 4 (open drain)
EO	15	output enable input
V _{DD}	16	supply voltage

June 1994

3

- 7110826 0073751 727 -

HEF4794B

FUNCTIONAL DESCRIPTION

Table 1 Function table; note 1.

INPUTS				ALLEL PUTS	SERIAL OUTPUTS		
СР	EO	STR	D	O ₀ O _n		Os	O _S '
1	L	Х	Х	Z	Z	O ₆ '	nc
1	L	Х	Х	Z	Z	nc	07
1	Н	L	Х	nc	nc	O ₆ '	nc
1	Н	H	L	L	O _{n - 1}	O ₆ '	nc
1	Н	Н	Н	Н	O _{n - 1}	O6,	nc
\downarrow	Н	Н	H	nc	nc	nc	07

FAMILY DATA

See "Family Specifications" except for: rating for DC current into any open-drain output is 40 mA.

IDD LIMITS CATEGORY MSI

See "Family Specifications" for ratings.

Note

1. H = HIGH state;

L = LOW state;

X = don't care;

 \uparrow = positive-going transition;

 \downarrow = negative-going transition;

Z = high-impedance OFF state;

nc = no change;

 O_6 ' = the information in the seventh shift register stage.

At the positive clock edge the information in the 7^{th} register stage is transferred to the 8^{th} register stage and the O_S output.

DC CHARACTERISTICS

 $V_{SS} = 0 V.$

			T _{amb} (°C)						
SYMBOL	PARAMETER	CONDITIONS	-40		+25		+85		UNIT
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
V _{OL}	LOW level output voltage	$V_I = V_{SS}$ or V_{DD} ; $II_OI < 20$ mA; $V_{DD} = 5$ V	-	0.75	_	0.75	-	1.5	٧
		$V_1 = V_{SS}$ or V_{DD} ; $II_OI < 20$ mA; $V_{DD} = 10$ V	_	0.75	_	0.75	-	1.5	٧
		$V_{I} = V_{SS} \text{ or } V_{DD};$ $II_{O}I < 20 \text{ mA; } V_{DD} = 15 \text{ V}$	_	0.75	_	0.75	_	1.5	٧
I _{OZH} HIGH level output		$V_O = 15 \text{ V}; V_{DD} = 5 \text{ V}$	_	2	-	2	_	15	μА
	leakage current;	$V_O = 15 \text{ V}; V_{DD} = 10 \text{ V}$	_	2	_	2	-	15	μА
	3-state	$V_0 = 15 \text{ V}; V_{DD} = 15 \text{ V}$	-	2	<u> </u>	2	-	15	μΑ

June 1994

HEF4794B

AC POWER CHARACTERISTICS

 $V_{SS} = 0 \text{ V}$; $T_{amb} = 25 \,^{\circ}\text{C}$; input transition times $\leq 20 \, \text{ns}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	TYPICAL FORMULA FOR P (μW) ⁽¹⁾
Р	dynamic power dissipation per package	V _{DD} = 5 V	$1200f_i + \Sigma (f_o C_L) \times V_{DD}^2$
		V _{DD} = 10 V	$5550f_i + \Sigma (f_o C_L) \times V_{DD}^2$
		V _{DD} = 15 V	$15000f_{i} + \Sigma (f_{o}C_{L}) \times V_{DD}^{2}$

Note

1. Where:

R_L = ∞;

 $f_i = input frequency (MHz);$

 $f_o = output frequency (MHz);$

C_L = load capacitance (pF);

 $\Sigma(f_0C_L)$ = sum of outputs;

 V_{DD} = supply voltage (V).

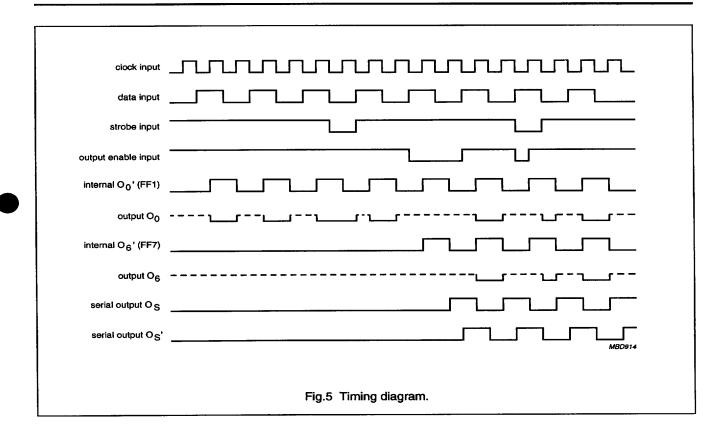
AC TIMING CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns; unless otherwise specified.

SYMBOL	PARAMETER	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT	TYPICAL EXTRAPOLATION FORMULA
t _{PHL}	propagation delay time CP to Os;	5	_	160	320	ns	132 ns + (0.55 ns/pF)C _L
	HIGH-to-LOW	10	-	65	130	ns	53 ns + (0.23 ns/pF)C _L
		15	-	45	90	ns	37 ns + (0.16 ns/pF)C _L
t _{PLH}	propagation delay time CP to Os;	5	_	130	260	ns	102 ns + (0.55 ns/pF)C _L
	LOW-to-HIGH	10	_	55	110	ns	44 ns + (0.23 ns/pF)C _L
		15	_	40	80	ns	32 ns + (0.16 ns/pF)C _L
t _{PHL}	propagation delay time CP to O_S '; HIGH-to-LOW	5	_	120	240	ns	92 ns + (0.55 ns/pF)C _L
		10	_	50	100	ns	39 ns + (0.23 ns/pF)C _L
		15	_	40	80	ns	32 ns + (0.16 ns/pF)C _L
t _{PLH}	propagation delay time CP to Os';		_	130	260	ns	102 ns + (0.55 ns/pF)C _L
	LOW-to-HIGH	10	-	60	120	ns	49 ns + (0.23 ns/pF)C _L
		15	-	45	90	ns	37 ns + (0.16 ns/pF)C _L
t _{PZL}	propagation delay time CP to O _n ; OFF-to-LOW	5	-	240	480	ns	
		10	 -	80	160	ns	note 1
1		15	 -	55	110	ns	
t _{PLZ}	propagation delay time CP to On;	5	-	170	340	ns	
	LOW-to-OFF	10	-	75	150	ns	note 1
		15		60	120	ns	

June 1994

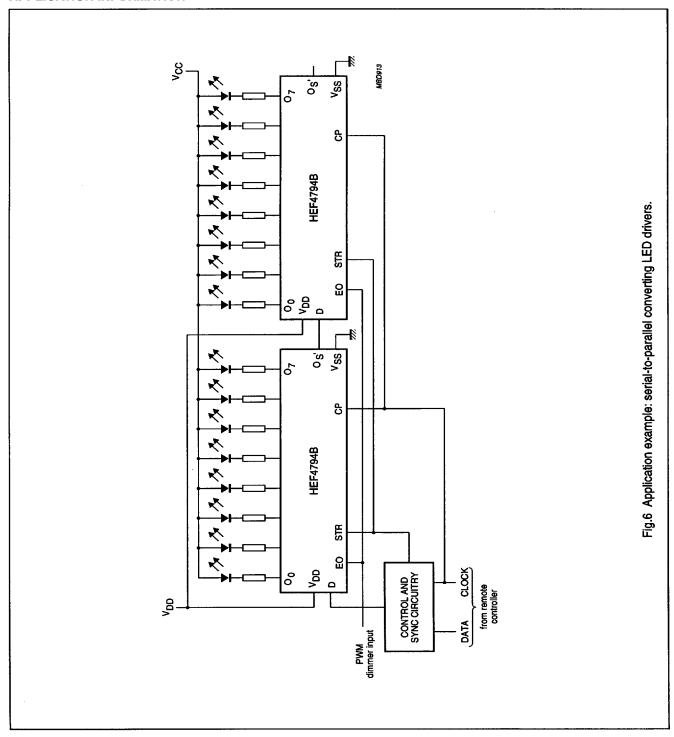
HEF4794B


SYMBOL	PARAMETER	V _{DD} (V)	MIN.	TYP.	мах.	UNIT	TYPICAL EXTRAPOLATION FORMULA
t _{PZL}	propagation delay time STR to O _n ; OFF-to-LOW	5	-	140	280	ns	
		10	_	70	140	ns	note 1
		15	_	55	110	ns	
t _{PLZ}	propagation delay time STR to On;	5	-	100	200	ns	
	LOW-to-OFF	10	_	40	100	ns	note 1
		15	Ī-	35	70	ns	
t _{THL}	output transition time O _S and O _S ';	5	-	85	170	ns	35 ns + (1.0 ns/pF)C _L
	HIGH-to-LOW	10	_	40	80	ns	19 ns + (0.42 ns/pF)C _L
		15	_	30	60	ns	16 ns + (0.28 ns/pF)C _L
t _{TLH}	output transition time O _S and O _S ';	5	-	85	170	ns	35 ns + (1.0 ns/pF)C _L
	LOW-to-HIGH	10	-	40	80	ns	19 ns + (0.42 ns/pF)C _L
		15	-	30	60	ns	16 ns + (0.28 ns/pF)C _L
t _{PZL}	output enable time EO to O _n ; OFF-to-LOW	5	_	100	200	ns	
		10	_	55	110	ns	note 1
		15	-	50	100	ns	
tpLZ	output disable time EO to O _n ; LOW-to-OFF	5	_	80	160	ns	note 1
		10	_	40	80	ns	
		15	_	30	60	ns	
twcpl	minimum clock pulse width LOW	5	60	30	_	ns	
		10	30	15	-	ns	
		15	24	12	-	ns	
twstrh	minimum strobe pulse width HIGH	5	80	40	_	ns	
		10	60	30	_	ns	,
		15	24	12	-	ns	
t _{su}	set-up time D to CP	5	60	30	_	ns	
		10	20	10	_	ns	
		15	15	5	-	ns	
th	hold time D to CP	5	+5	-15	_	ns	
		10	20	5	-	ns	
		15	20	5	_	ns	
f _{clk(max)}	maximum clock frequency	5	5	10	-	MHz	
, ,		10	11	22	-	MHz	
		15	14	28	_	MHz	

Note

1. Definition of symbol equivalent to 3-state outputs.

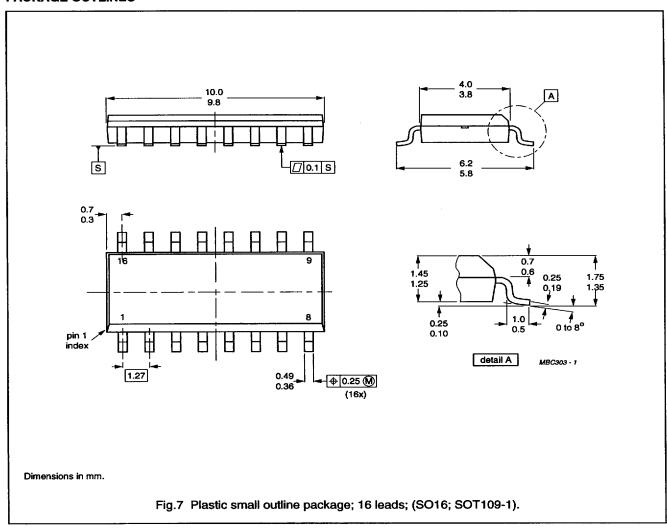
June 1994


HEF4794B

June 1994

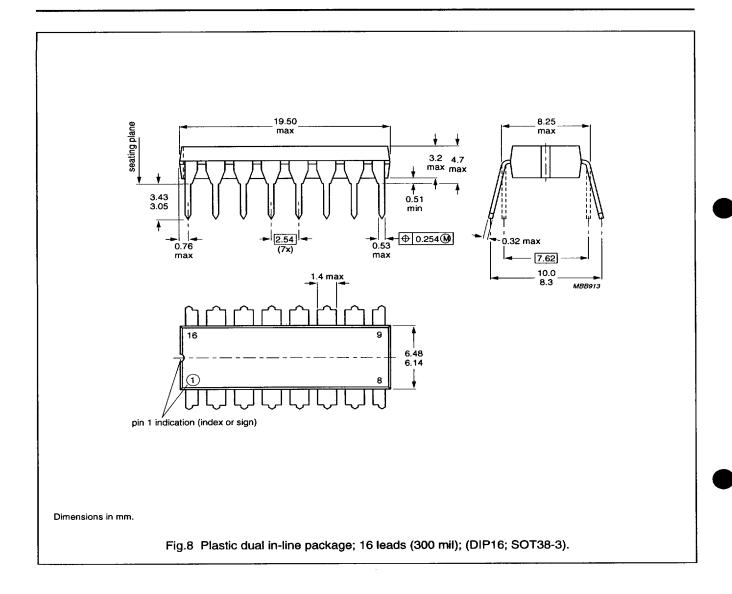
HEF4794B

APPLICATION INFORMATION


June 1994

8

= 7110826 0073756 209 **=**


HEF4794B

PACKAGE OUTLINES

June 1994

HEF4794B

HEF4794B

SOLDERING

Plastic small-outline packages

BY WAVE

During placement and before soldering, the component must be fixed with a droplet of adhesive. After curing the adhesive, the component can be soldered. The adhesive can be applied by screen printing, pin transfer or syringe dispensing.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder bath is 10 s, if allowed to cool to less than 150 °C within 6 s. Typical dwell time is 4 s at 250 °C.

A modified wave soldering technique is recommended using two solder waves (dual-wave), in which a turbulent wave with high upward pressure is followed by a smooth laminar wave. Using a mildly-activated flux eliminates the need for removal of corrosive residues in most applications.

By SOLDER PASTE REFLOW

Reflow soldering requires the solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the substrate by screen printing, stencilling or pressure-syringe dispensing before device placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt, infrared, and vapour-phase reflow. Dwell times vary between 50 and 300 s according to method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 min at 45 °C. REPAIRING SOLDERED JOINTS (BY HAND-HELD SOLDERING IRON OR PULSE-HEATED SOLDER TOOL)

Fix the component by first soldering two, diagonally opposite, end pins. Apply the heating tool to the flat part of the pin only. Contact time must be limited to 10 s at up to 300 °C. When using proper tools, all other pins can be soldered in one operation within 2 to 5 s at between 270 and 320 °C. (Pulse-heated soldering is not recommended for SO packages.)

For pulse-heated solder tool (resistance) soldering of VSO packages, solder is applied to the substrate by dipping or by an extra thick tin/lead plating before package placement.

Plastic dual in-line packages

BY DIP OR WAVE

The maximum permissible temperature of the solder is 260 °C; this temperature must not be in contact with the joint for more than 5 s. The total contact time of successive solder waves must not exceed 5 s.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

REPAIRING SOLDERED JOINTS

Apply a low voltage soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below 300 °C, it must not be in contact for more than 10 s; if between 300 and 400 °C, for not more than 5 s.

June 1994

HEF4794B

DEFINITIONS

Data sheet status						
Objective specification This data sheet contains target or goal specifications for product development.						
Preliminary specification This data sheet contains preliminary data; supplementary data may be published						
Product specification	This data sheet contains final product specifications.					
Limiting values						
more of the limiting values of the device at these or at	n accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or may cause permanent damage to the device. These are stress ratings only and operation any other conditions above those given in the Characteristics sections of the specification limiting values for extended periods may affect device reliability.					
Application information						
Where application informat	tion is given, it is advisory and does not form part of the specification.					

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

June 1994 12