

### MICROCIRCUIT DATA SHEET

Original Creation Date: 09/30/97

Last Update Date: 11/18/98
Last Major Revision Date: 09/30/97

### General Description

MNLM3940-3.3-X REV 0B0

1A LOW DROPOUT REGULATOR

The LM3940 is a 1A low dropout regulator designed to provide 3.3V from a 5V supply. The LM3940 is ideally suited for systems which contain both 5V and 3.3V logic, with prime power provided from a 5V bus.

Because the LM3940 is a true low dropout regulator, it can hold its 3.3V output in regulation with input voltages as low as 4.5V.

### Industry Part Number

NS Part Numbers

LM3940

LM3940J-3.3-QML\* LM3940WG3.3-QML\*\*

Prime Die

LM3940

### Controlling Document

5962-9688401QEA\*, QXA\*\*

| Processing                     | Subgrp              | Description                                                                                                  | Temp ( $^{\circ}$ C)              |
|--------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------|
| MIL-STD-883, Method 5004       | 1<br>2<br>3         | Static tests at<br>Static tests at<br>Static tests at                                                        | +25<br>+125<br>-55                |
| Quality Conformance Inspection | 4<br>5              | Dynamic tests at<br>Dynamic tests at                                                                         | +25<br>+125                       |
| MIL-STD-883, Method 5005       | 6<br>7<br>8A        | Dynamic tests at Functional tests at Functional tests at                                                     | -55<br>+25<br>+125                |
|                                | 8B<br>9<br>10<br>11 | Functional tests at<br>Functional tests at<br>Switching tests at<br>Switching tests at<br>Switching tests at | +125<br>-55<br>+25<br>+125<br>-55 |
|                                |                     | -                                                                                                            |                                   |

### **Features**

- Excellent load regulation
- Guaranteed 1A output current
- Requires only one external component
- Built-in protection against excess temperature
- Short circuit protected

### Applications

- Logic Systems

### (Absolute Maximum Ratings)

(Note 1)

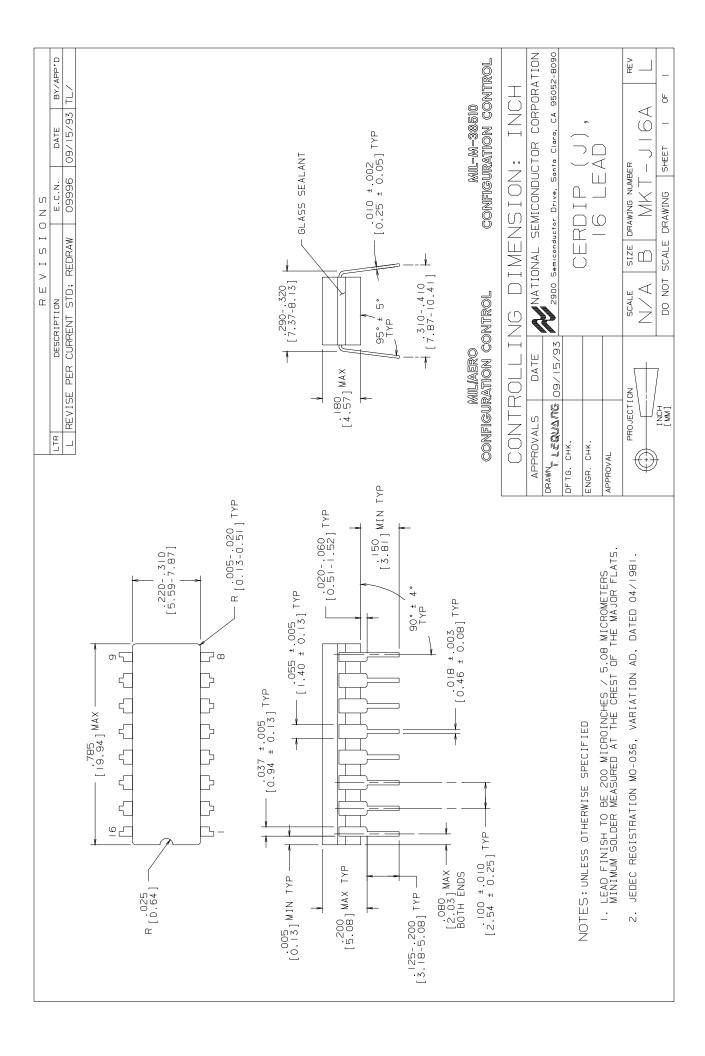
Input Supply Voltage 7.5V Internal Power Dissipation (Note 2, 3) Internally Limited Operating Ambient Temperature -55 C to +125 C Storage Temperature Range -65 C to +150 C Maximum Junction Temperature 150 C Thermal Resistance (Note 3) ThetaJA CERDIP (Still Air) 74 C/W (500LF/Min Air flow) 37 C/W CERAMIC SOIC (Still Air) 122 C/W (500LF/Min Air flow) 77 C/W ThetaJC CERDIP 4 C/W CERAMIC SOIC 5 C/W Package Weight CEDIP 1970mg CERAMIC SOIC 360mg Lead Temperature (Soldering, 5 seconds) 260 C ESD Susceptibility (Note 4) 4kV

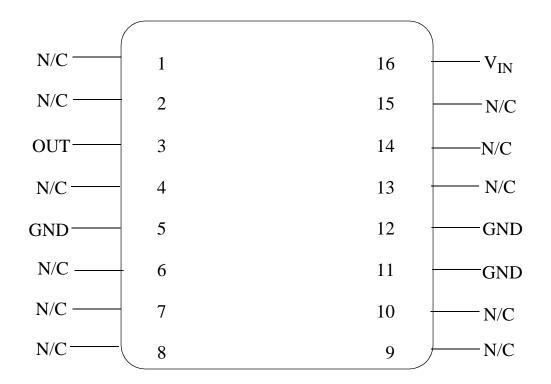
- Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions see the Electrical Characteristics. The guaranteed specification apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
- Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by Tjmax (maximum junction temperature), ThetaJA (package junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is Pdmax = (Tjmax TA)/ThetaJA or the number given in the Absolute Maximum Ratings, whichever is lower.
- Note 3: The package material for these devices allows much improved heat transfer over our standard ceramic packages. In order to take full advantage of this improved heat transfer, heat sinking must be provided between the package base (directly beneath the die), and either metal traces on, or thermal vias through, the printed circuit board. Without this additional heat sinking, device power dissipation must be calculated using junction-to-ambient, rather than junction-to-case, thermal resistance. It must not be assumed that the device leads will provide substantial heat transfer out of the package, since the thermal resistance of the leadframe material is very poor, relative to the material of the package base. The stated junction-to-case thermal resistance is for the package material only, and does not account for the additional thermal resistance between the package base and the printed circuit board. The user must determine the value of the additional thermal resistance and must combine this with the stated value for the package, to calculate the total allowed power dissipation for the device.
- Note 4: Human body model, 100pF discharged through 1.5K Ohms

### Electrical Characteristics

### DC PARAMETERS:

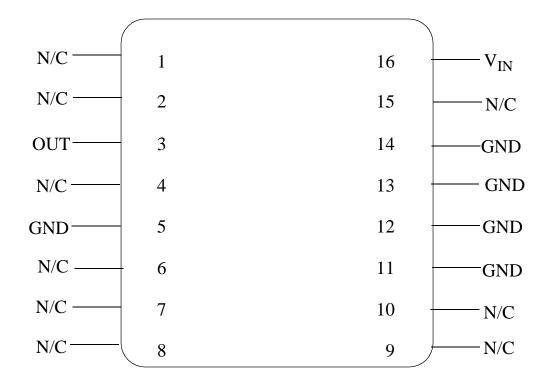
(The following conditions apply to all the following parameters, unless otherwise specified.) DC: Vin = 5V, IL = 1A, Cout = 33uF


| SYMBOL                  | PARAMETER                | CONDITIONS                           | NOTES | PIN-<br>NAME | MIN  | MAX  | UNIT | SUB-<br>GROUPS |
|-------------------------|--------------------------|--------------------------------------|-------|--------------|------|------|------|----------------|
| Vout                    | Output Voltage           | 5mA ≤ IL ≤ 1A                        |       |              | 3.20 | 3.40 | V    | 1              |
|                         |                          | 5mA ≤ IL ≤ 1A                        |       |              | 3.13 | 3.47 | V    | 2, 3           |
| Delta<br>Vo/Delta<br>Vi | Line Regulation          | IL = $5mA$ , $4.5V \le Vin \le 5.5V$ |       |              |      | 40   | mV   | 1              |
|                         |                          | IL = $5mA$ , $4.5V \le Vin \le 5.5V$ |       |              |      | 99   | mV   | 2, 3           |
| Delta<br>Vo/IL          | Load Regulation          | 50mA ≤ IL ≤ 1A                       |       |              |      | 50   | mV   | 1              |
| VO/ 111                 |                          | 50mA ≤ IL ≤ 1A                       |       |              |      | 80   | mV   | 2, 3           |
| Iq                      | Quiescent Current        | $4.5V \le Vin \le 5.5V$ , IL = 5mA   |       |              |      | 15   | mA   | 1              |
|                         |                          | $4.5V \le Vin \le 5.5V$ , IL = 5mA   |       |              |      | 20   | mA   | 2, 3           |
|                         |                          | Vin = 5V, IL = 1A                    |       |              |      | 200  | mA   | 1              |
|                         |                          |                                      |       |              |      | 250  | mA   | 2, 3           |
| Vo - Vin                | Dropout Voltage          | IL = 1A                              | 1     |              |      | 0.8  | V    | 1              |
|                         |                          |                                      | 1     |              |      | 1.0  | V    | 2, 3           |
|                         |                          | IL = 100mA                           | 1     |              |      | 150  | mV   | 1              |
|                         |                          |                                      | 1     |              |      | 200  | mV   | 2, 3           |
| IL(SC)                  | Short Circuit<br>Current | R1 = 0                               |       |              | 1.2  |      | А    | 1, 2,          |


Note 1: Dropout voltage is defined as the input-output differential voltage where the regulator output drops to a value that is 100 mV below the value that is measured at Vin = 5V.

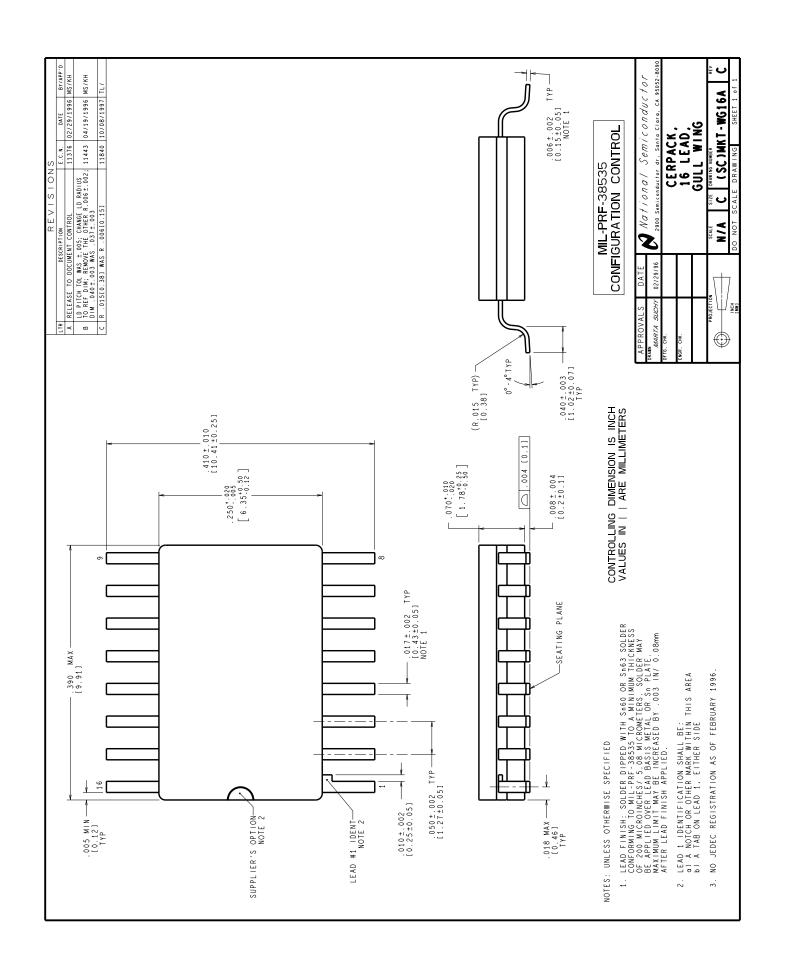
## Graphics and Diagrams

| GRAPHICS# | DESCRIPTION                          |  |
|-----------|--------------------------------------|--|
| 06332HRA2 | CERDIP (J), 16 LEAD (B/I CKT)        |  |
| 06351HRA1 | CERPACK (W), 16 LEAD (B/I CKT)       |  |
| J16ARL    | CERDIP (J), 16 LEAD (P/P DWG)        |  |
| P000377A  | CERAMIC SOIC (WG), 16 LEAD (PINOUT)  |  |
| P000389A  | CERDIP (J), 16 LEAD (PINOUT)         |  |
| WG16ARC   | CERAMIC SOIC (WG), 16 LEAD (P/P DWG) |  |


See attached graphics following this page.






# LM3940WG 16 - LEAD CERAMIC SOIC CONNECTION DIAGRAM TOP VIEW P000377A





# LM3940J 16 - LEAD DIP CONNECTION DIAGRAM TOP VIEW P000389A





### Revision History

| Rev | ECN #    | Rel Date | Originator  | Changes                                                           |
|-----|----------|----------|-------------|-------------------------------------------------------------------|
| 0A0 | М0002963 | 11/18/98 | Rose Malone | Initial Release of MDS: MNLM3940-3.3-X, Rev. 0A0.                 |
| 0B0 | М0003105 | 11/18/98 |             | Update MDS: MNLM3940-3.3-X, Rev. 0A0 to MNLM3940-3.3-X, Rev. 0B0. |