

GS1508 HD-LINX™ HDTV Cable Driver

Features

- SMPTE 292M compliant
- Dual cable driving outputs optimized for driving data up to 1.485Gb/s
- $\pm 7\%$ tolerance output
- $>17\text{dB}$ output return loss
- Minimum external components
- Seamless interface with the HD-LINX™ family of products
- Low-power
- Standard packaging
- Pb-free and Green

Applications

- 1.485Gb/s HDTV Serial Digital Receiver Interfaces for: Routers, Distribution Amplifiers, Switchers, and other transmitting equipment

Description

The GS1508 is a first generation very high-speed bipolar integrated circuit designed to drive two 75Ω co-axial cables. The GS1508 is a SMPTE 292M compliant cable driver that directly interfaces with other Gennum HDTV devices and can also be used as a general purpose high-speed cable driver.

The GS1508 features two complementary outputs, with amplitudes controlled within a precise $\pm 7\%$ variation. The output amplitude can be varied by adjusting the R_{SET} resistor value.

The serial inputs can be AC-coupled. The GS1508 is a low-power device that does not require external pull-down resistors. The GS1508 is packaged in an 8-pin SOIC, and operates from a single 5V power supply.

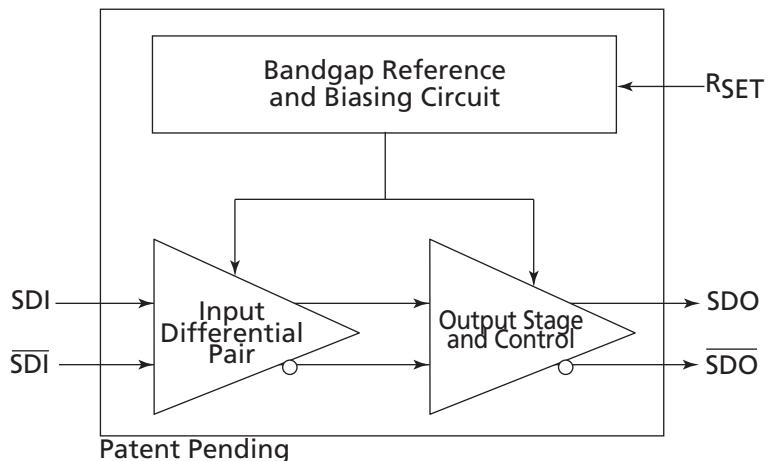


Figure A: Block Diagram

1. Pin Out

1.1 Pin Assignment

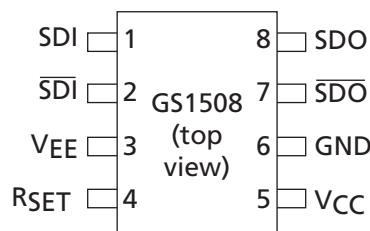


Figure 1-1: Pin Assignment

1.2 Pin Descriptions

Table 1-1: Pin Descriptions

Pin Number	Symbol	Type	Description
1, 2	SDI, SDI-bar	Input	Serial data inputs (non-inverting and inverting).
3	VEE	Power	Most negative supply voltage.
4	RSET	Input	Output amplitude control resistor.
5	VCC	Power	Most positive supply voltage.
6	GND	Power	Not connected internally. Connect to Ground. Used for isolation.
7, 8	SDO-bar, SDO	Output	Serial data outputs (non-inverting and inverting).

2. Electrical Characteristics

2.1 Absolute Maximum Ratings

Table 2-1: Absolute Maximum Ratings

$T_A = 25^\circ\text{C}$ unless otherwise indicated

Parameter	Value
Supply Voltage	5.5V
Input Voltage Range (any input)	-0.3 to $(V_{CC} + 0.3)\text{V}$
Operating Temperature Range	0°C to 70°C
Storage Temperature	-65°C to +150°C
Power Dissipation	300mW
Lead Temperature (soldering, 10 sec)	260°C
Input ESD Voltage	2000V

2.2 DC Electrical Characteristics

Table 2-2: DC Electrical Characteristics

$V_{CC} = 5\text{V}$, $T_A = 0^\circ\text{C}$ to 70°C unless otherwise shown.

Specifications assume 800mV output amplitude level settings into end terminated 75Ω transmission lines. Data Rate = 1485Mb/s unless otherwise shown.

Parameter	Condition	Symbol	Min	Typ	Max	Units	Notes	Test Level
Supply Voltage	—	V_{CC}	4.75	5.00	5.25	V	—	1
System Power Consumption	Driving two 75Ω cables	P_D	—	215	265	mW	—	1
Supply Current	—	I_S	—	43	54	mA	—	1
Common Mode Input Voltage Range	—	$V_{CM,IN}$	$2.5 + (V_{DIFF}/2)$	—	$V_{CC} - (V_{DIFF}/2)$	V	—	2
Common Mode Output Voltage Range	—	$V_{CM,OUT}$	—	$V_{CC} - V_{OUT}$	—	V	—	2

2.3 AC Electrical Characteristics

Table 2-3: AC Electrical Characteristics

$V_{CC} = 5V$, $T_A = 0^\circ C$ to $70^\circ C$ unless otherwise shown.

Specifications assume 800mV output amplitude level settings into end terminated 75Ω transmission lines. Data Rate = 1485Mb/s unless otherwise shown.

Parameter	Condition	Symbol	Min	Typ	Max	Units	Notes	Test Level
Serial Digital Rate	—	—	DC	1485	—	Mb/s	—	1
Additive Jitter	1485Mb/s	—	—	5	—	ps _{RMS}	1	3
Differential Input	—	—	150	—	800	mV	diff p-p	2
Differential Output	—	—	750	800	850	mV	p-p	1
Output Rise/Fall Times	(20% to 80%)	—	—	120	250	ps	2	1
Mismatch in Output Rise/Fall Times	—	—	—	15	30	ps	—	4
Overshoot	—	—	—	1	8	%	—	4
Duty Cycle Distortion	—	—	—	15	30	ps	—	1
Output Return Loss	5MHz to 1485MHz	—	—	17	—	dB	2	4

NOTES:

1. RMS additive jitter measured using Pseudo Random bit sequence ($2^{23} - 1$).
2. Measured with Gennum Evaluation Board (EB1508).

Test Levels:

1. 100% tested at $25^\circ C$.
2. Guaranteed by design.
3. Correlated value.
4. Tested with EB1508.

3. Detailed Description

3.1 Input Interfacing

SDI/ $\overline{\text{SDI}}$ are high-impedance differential inputs (see [Figure 4-1](#) for equivalent input circuit).

Several conditions must be observed when interfacing to these inputs:

1. The differential input signal amplitude must be between 150 and 800mVpp.
2. The common mode voltage range must be as specified in the [DC Electrical Characteristics](#) table. For a 400mV input from the GS1504 HD cable equalizer, this corresponds to a common mode voltage range of between 2.7V and 4.8V.
3. For input trace lengths longer than approximately 1cm, the inputs should be terminated as shown in the [Typical Application Circuit](#).

The GS1508 inputs are self biased, allowing for simple AC-coupling to the device. For serial digital HDTV, a minimum capacitor value of $4.7\mu\text{F}$ should be used to allow coupling of pathological test signals. A tantalum capacitor is recommended.

3.2 Output Interfacing

The GS1508 outputs are current-mode, and will drive 800mV into a 75Ω load. These outputs are protected from accidental static damage with internal static protection diodes.

The SMPTE 292M standard requires that the output of a cable driver have a source impedance of 75Ω and a return loss of at least 15dB between 5MHz and 1.485GHz.

In order for an HD SDI output circuit using the GS1508 to meet this specification, the output circuit shown in the [Typical Application Circuit](#) is recommended.

The values of L_{COMP} and C_{COMP} will vary depending on PCB layout, but typical values are 12nH and 0.5pF respectively. The small value of C_{COMP} can be easily swamped by parasitic PCB capacitance, so it is recommended that the ground plane be removed under the GS1508 output circuitry (see the [Application Information](#) section in this data sheet for further details). A $4.7\mu\text{F}$ capacitor is used for AC-coupling the output of the GS1508. This value is chosen to ensure that pathological signals can be coupled without a significant DC component occurring.

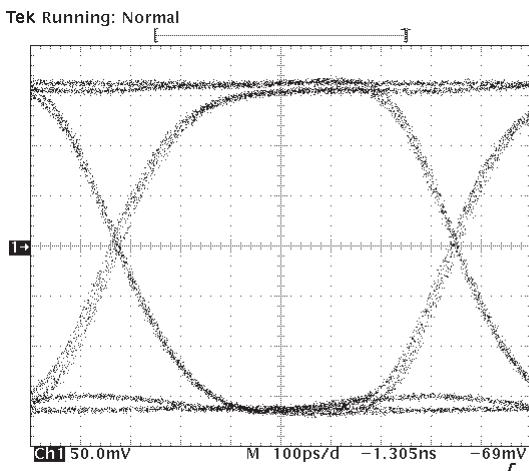


Figure 3-1: Output Optimized for Waveform Symmetry, $L=8.2\text{nH}$, $R=75\Omega$
(Typical ORL=13.5dB)

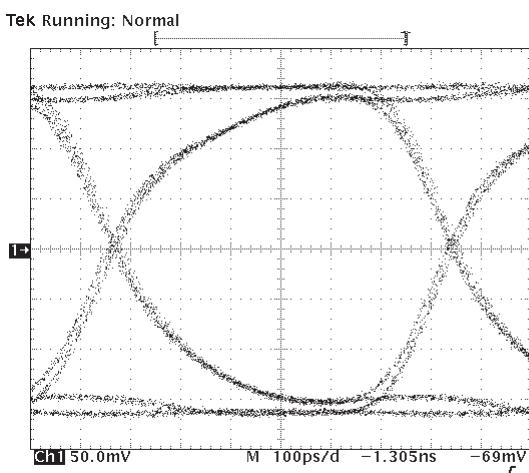


Figure 3-2: Output Optimized for Return Loss, $L=12\text{nH}$, $C=0.5\text{pF}$, $R=75\Omega$
(Typical ORL=18dB)

Figure 3-1 and Figure 3-2 show the eye diagram of the GS1508 output for two different output compensation conditions.

Figure 3-2 shows the GS1508 output optimized for wideband return loss of 18dB.

Figure 3-1 shows the GS1508 output optimized for output waveform symmetry. In this case, the output may not exhibit a return loss of 15dB.

When measuring return loss at the GS1508 output, it is necessary to take the measurement for both a logic HIGH and a logic LOW output condition. This is because the output protection diodes act as varactors (voltage controlled capacitor), as shown in Figure 3-3.

Consequently, the output capacitance of the GS1508 is dependent on the logic state of the output.

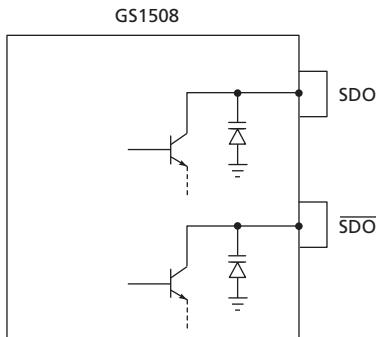


Figure 3-3: Static Protection Diodes

3.3 Output Return Loss Measurement

To perform a practical return loss measurement, it is necessary to force the GS1508 output to a DC high or low condition. The actual measured return loss will be based on the outputs being static at V_{CC} or $V_{CC}-1.6V$. Under normal operating conditions, the outputs of the GS1508 swing between $V_{CC}-0.4V$ and $V_{CC}-1.2V$, so the measured value of return loss will not represent the actual operating return loss.

A simple method of calculating the values of actual operating return loss is to interpolate the two return loss measurements. With this method, the values of return loss are estimated at $V_{CC}-0.4V$ and $V_{CC}-1.2V$ based on the measurements at V_{CC} and $V_{CC}-1.6V$.

The two values of return loss (high and low) will typically differ by several decibels. If the measured return loss is R_H for logic high and R_L for logic low, then the two values can be interpolated as follows:

$$R_{IH} = R_H - (R_H - R_L)/4 \text{ and}$$

$$R_{IL} = R_L + (R_H - R_L)/4$$

Where R_{IH} is the interpolated logic high value and R_{IL} is the interpolated logic low value.

For example: if $R_H = -18dB$ and $R_L = -14dB$; the interpolated values are $R_{IH} = -17dB$ and $R_{IL} = -15dB$.

3.4 Output Amplitude Adjustment

The output amplitude of the GS1508 can be adjusted by changing the value of the R_{SET} resistor as shown in Figure 3-4 and Table 3-1. For an 800mV_{p-p} output with a nominal $\pm 7\%$ tolerance, a value of 53.6% is required. A $\pm 1\%$ SMT resistor should be used.

The R_{SET} resistor is part of the high-speed output circuit of the GS1508. The resistor should be placed as close as possible to the R_{SET} pin. In addition, PCB capacitance should be minimized at this node by removing the PCB groundplane beneath the R_{SET} resistor and the R_{SET} pin.

Figure 3-4: GS1508 Output Amplitude vs. $1/R_{SET}$

Table 3-1: R_{SET} vs. V_{OUT}

R_{SET} (Ω)	$1/R_{SET}$	Output Swing
500.0	0.0020	0.095
150.0	0.0067	0.298
75.0	0.0133	0.575
53.6	0.0187	0.785
43.2	0.0231	0.937

NOTE: For reliable operation of the GS1508 over the full temperature range, do not use an R_{SET} value below 49.9Ω .

4. Input/Output Circuits

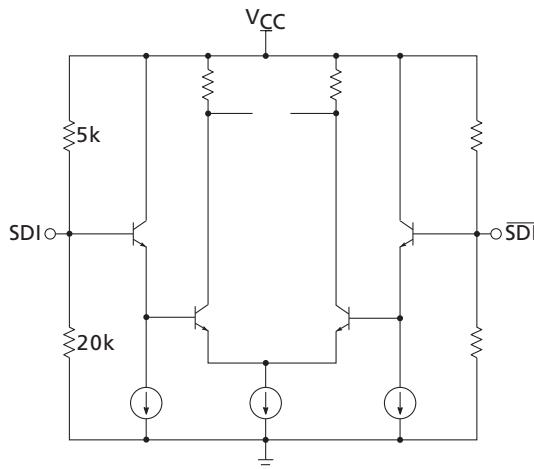


Figure 4-1: SDI/SDĪ

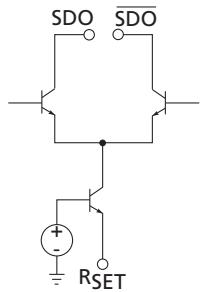


Figure 4-2: SDO/SDŌ

5. Application Information

5.1 Typical Application Circuit

Figure 5-1: GS1508 Typical Application Circuit

Table 5-1: Typical Application Circuit Component Values

Component	Value	Comments
R _{SET}	53.6	For 800mV output
Z ₀	50Ω	For 50Ω PCB trace impedance
L _{COMP}	12nH	Typical value. Component value will vary depending on PCB layout
C _{COMP}	0.5pF	Typical value. Component value will vary depending on PCB layout

5.2 PCB Layout

Special attention must be paid to component layout when designing serial digital interfaces for HDTV. Figure 5-3 through Figure 5-6 show the artwork for a four-layer printed circuit evaluation board for the GS1508. The schematic is shown in Figure 5-2. An FR-4 dielectric can be used, however, controlled impedance transmission lines are required for PCB traces longer than approximately 1cm. Note the following PCB artwork features used to optimize performance:

- PCB trace width for HD rate signals is closely matched to SMT component width to minimize reflections due to change in trace impedance
 - The PCB ground plane is removed under the GS1508 output components to minimize parasitic capacitance
 - The PCB ground plane is removed under the GS1508 R_{SET} pin and resistor to minimize parasitic capacitance
 - Input and output BNC connectors are surface-mounted in-line to eliminate a transmission line stub caused by a BNC mounting via high-speed traces, which are curved to minimize impedance changes due to change of PCB trace width

5.3 GS1508 Evaluation Board

5.3.1 EB1508 PCB Schematic

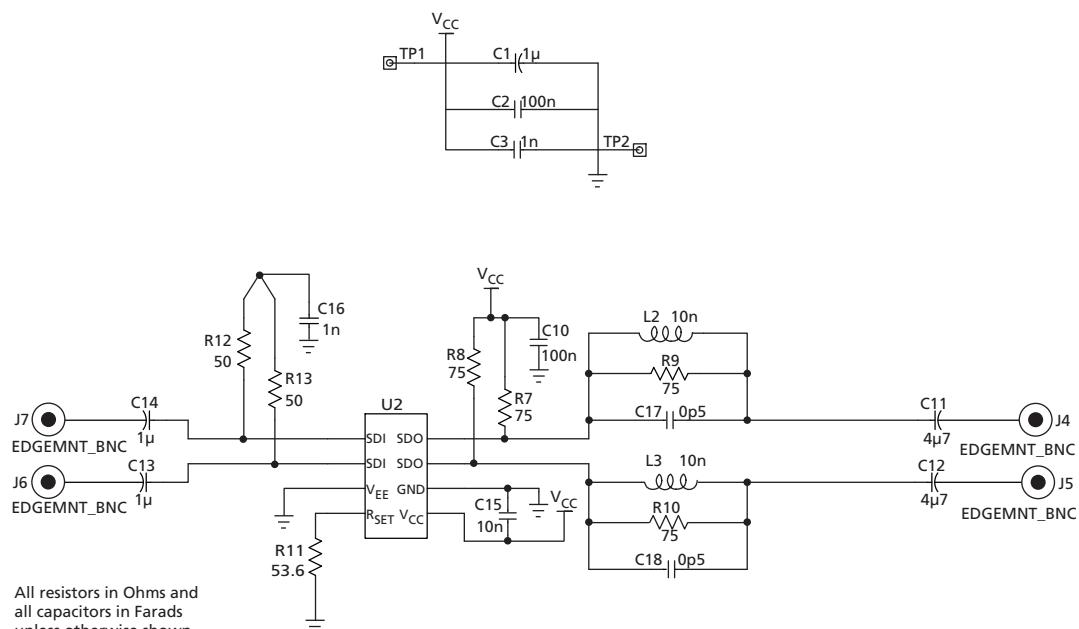


Figure 5-2: Schematic Diagram for the GS1508 Evaluation Board

5.3.2 EB-1508 PCB Layout

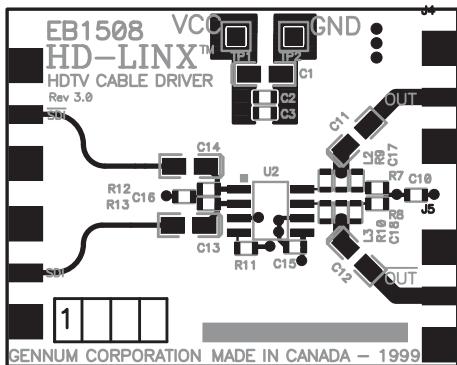


Figure 5-3: Top Layer

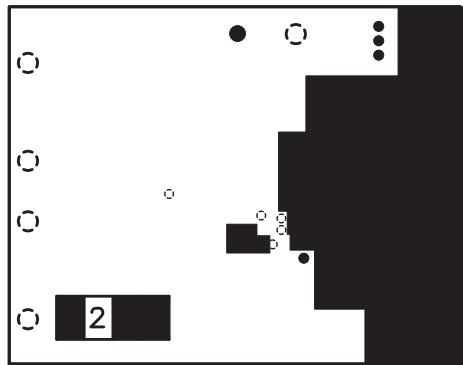


Figure 5-4: Ground Layer

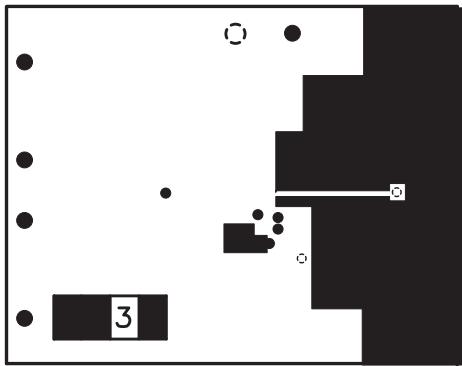


Figure 5-5: Power Layer

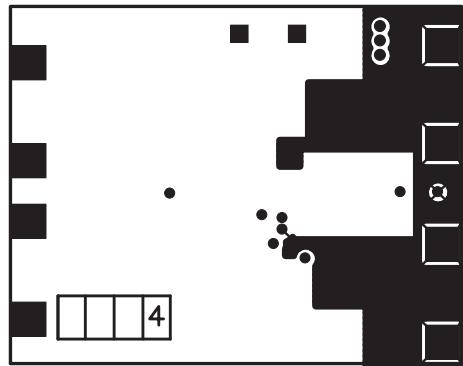
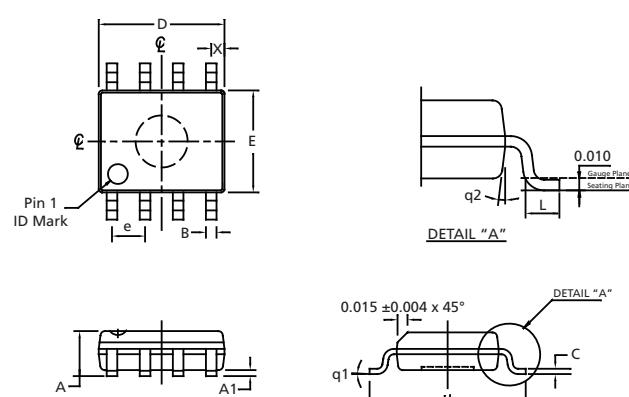



Figure 5-6: Bottom Layer

6. Package and Ordering Information

6.1 Package Dimensions

SYMBOL	8 SOIC	
	Min.	Max.
A	0.054	0.068
A1	0.004	0.0098
B	0.014	0.019
D	0.189	0.196
E	0.150	0.157
H	0.229	0.244
e	0.050 BSC	
C	0.0075	0.0098
L	0.016	0.034
X	0.0215 REF	
q1	0°	8°
q2	7° BSC	

NOTES:

1. All dimensions in inches unless otherwise stated.
2. Lead coplanarity should be 0 to 0.004" max.
3. Package surface finishing: VDI 24-27 (dual).
4. Package surface finishing: VDI 13-15 (16L SOIC[NB] matrix).
5. All dimensions exclude mold flashes.
6. The lead width (B) to be determined at 0.0075" from the lead tip.

Figure 6-1: Package Dimensions

6.2 Ordering Information

Part Number	Package	Temperature	Pb-free and Green
GS1508-CKAE3	8-pin SOIC	0°C to 70°C	Yes
GS1508-CTAE3	8-pin SOIC, tape & reel (250pc)	0°C to 70°C	Yes

Revision History

Version	ECR	PCN	Date	Changes and/or Modifications
6	154757	—	August 2010	Converted document to new format. Corrected Figure 6-1: Package Dimensions and Ordering Information.

DOCUMENT IDENTIFICATION

DATA SHEET

The product is in production. Gennum reserves the right to make changes to the product at any time without notice to improve reliability, function or design, in order to provide the best product possible.

CAUTION

ELECTROSTATIC SENSITIVE DEVICES

DO NOT OPEN PACKAGES OR HANDLE EXCEPT AT A STATIC-FREE WORKSTATION

GENNUM CORPORATE HEADQUARTERS

4281 Harvester Road, Burlington, Ontario L7L 5M4 Canada

Phone: +1 (905) 632-2996

E-mail: corporate@gennum.com

Fax: +1 (905) 632-2055

www.gennum.com

OTTAWA

232 Herzberg Road, Suite 101
Kanata, Ontario K2K 2A1
Canada

Phone: +1 (613) 270-0458
Fax: +1 (613) 270-0429

CALGARY

3553 - 31st St. N.W., Suite 210
Calgary, Alberta T2L 2K7
Canada

Phone: +1 (403) 284-2672

UNITED KINGDOM

North Building, Walden Court
Parsonage Lane,
Bishop's Stortford Hertfordshire, CM23 5DB
United Kingdom

Phone: +44 1279 714170
Fax: +44 1279 714171

INDIA

#208(A), Nirmala Plaza,
Airport Road, Forest Park Square
Bhubaneswar 751009
India

Phone: +91 (674) 653-4815
Fax: +91 (674) 259-5733

SNOWBUSH IP - A DIVISION OF GENNUM

439 University Ave. Suite 1700
Toronto, Ontario M5G 1Y8
Canada

Phone: +1 (416) 925-5643
Fax: +1 (416) 925-0581

E-mail: sales@snowbush.com
Web Site: <http://www.snowbush.com>

MEXICO

288-A Paseo de Maravillas
Jesus Ma., Aguascalientes
Mexico 20900

Phone: +1 (416) 848-0328

JAPAN KK

Shinjuku Green Tower Building 27F
6-14-1, Nishi Shinjuku
Shinjuku-ku, Tokyo, 160-0023
Japan

Phone: +81 (03) 3349-5501
Fax: +81 (03) 3349-5505
E-mail: gennum-japan@gennum.com
Web Site: <http://www.gennum.co.jp>

TAIWAN

6F-4, No.51, Sec.2, Keelung Rd.
Sinyi District, Taipei City 11502
Taiwan R.O.C.

Phone: (886) 2-8732-8879
Fax: (886) 2-8732-8870

E-mail: gennum-taiwan@gennum.com

GERMANY

Hainbuchenstraße 2
80935 Muenchen (Munich), Germany
Phone: +49-89-35831696
Fax: +49-89-35804653

E-mail: gennum-germany@gennum.com

NORTH AMERICA WESTERN REGION

691 South Milpitas Blvd., Suite #200
Milpitas, CA 95035
United States
Phone: +1 (408) 934-1301
Fax: +1 (408) 934-1029
E-mail: naw_sales@gennum.com

NORTH AMERICA EASTERN REGION

4281 Harvester Road
Burlington, Ontario L7L 5M4
Canada
Phone: +1 (905) 632-2996
Fax: +1 (905) 632-2055
E-mail: nae_sales@gennum.com

KOREA

8F Jinnex Lakeview Bldg.
65-2, Bangidong, Songpaku
Seoul, Korea 138-828
Phone: +82-2-414-2991
Fax: +82-2-414-2998
E-mail: gennum-korea@gennum.com

Gennum Corporation assumes no liability for any errors or omissions in this document, or for the use of the circuits or devices described herein. The sale of the circuit or device described herein does not imply any patent license, and Gennum makes no representation that the circuit or device is free from patent infringement.

All other trademarks mentioned are the properties of their respective owners.

GENNUM and the Gennum logo are registered trademarks of Gennum Corporation.

© Copyright 1998 Gennum Corporation. All rights reserved.

www.gennum.com