VRoHS

RF Power LDMOS Transistor

High Ruggedness N-Channel Enhancement-Mode Lateral MOSFET

This high ruggedness device is designed for use in high VSWR industrial, medical, broadcast, aerospace and mobile radio applications. Its unmatched input and output design supports frequency use from 1.8 to 512 MHz.

Typical Performance: V_{DD} = 65 Vdc

Frequency (MHz)	Signal Type	P _{out} (W)	G _{ps} (dB)	η _D (%)
1.8–54 (1)	CW	40 CW	23.0	62.6
30–512 (1)	CW	35 CW	17.3	32.0
230	CW	35 CW	24.8	75.8

Load Mismatch/Ruggedness

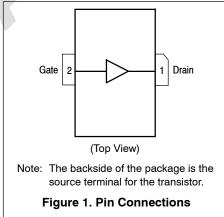
Frequency (MHz)	Signal Type	VSWR	P _{in} (dBm)	Test Voltage	Result
230	CW	> 65:1 at all Phase Angles	23.5 (3 dB Overdrive)	65	No Device Degradation

 The values shown are the minimum measured performance numbers across the indicated frequency range.

Features

- · Unmatched input and output allowing wide frequency range utilization
- 50 ohm native output impedance
- · Device can be used single-ended or in a push-pull configuration
- Qualified up to a maximum of 65 V_{DD} operation
- Characterized from 30 to 65 V for extended power range
- High breakdown voltage for enhanced reliability
- Suitable for linear application with appropriate biasing
- Integrated ESD protection with greater negative gate-source voltage range for improved Class C operation
- Included in NXP product longevity program with assured supply for a minimum of 15 years after launch

Typical Applications


- Industrial, scientific, medical (ISM)
 - Laser generation
 - Plasma generation
 - Particle accelerators
 - MRI, RF ablation and skin treatment
 - Industrial heating, welding and drying systems
- Radio and VHF TV broadcast
- Aerospace
 - HF communications
 - Radar
- Mobile radio
 - HF and VHF communications
 - PMR base stations

MRFX035H

PREPRODUCTION

1.8-512 MHz, 35 W CW, 65 V WIDEBAND RF POWER LDMOS TRANSISTOR

This document contains information on a preproduction product. Specifications and information herein are subject to change without notice.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +179	Vdc
Gate-Source Voltage	V_{GS}	-6.0, +10	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-40 to +150	°C
Operating Junction Temperature Range (1,2)	TJ	-40 to +225	°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	154 0.769	W W/°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (2,3)	Unit
Thermal Resistance, Junction to Case CW: Case Temperature 74.2°C, 35 W CW, 65 Vdc, I _{DQ} = 15 mA, 230 MHz	$R_{\theta JC}$	1.3	°C/W

Table 3. ESD Protection Characteristics

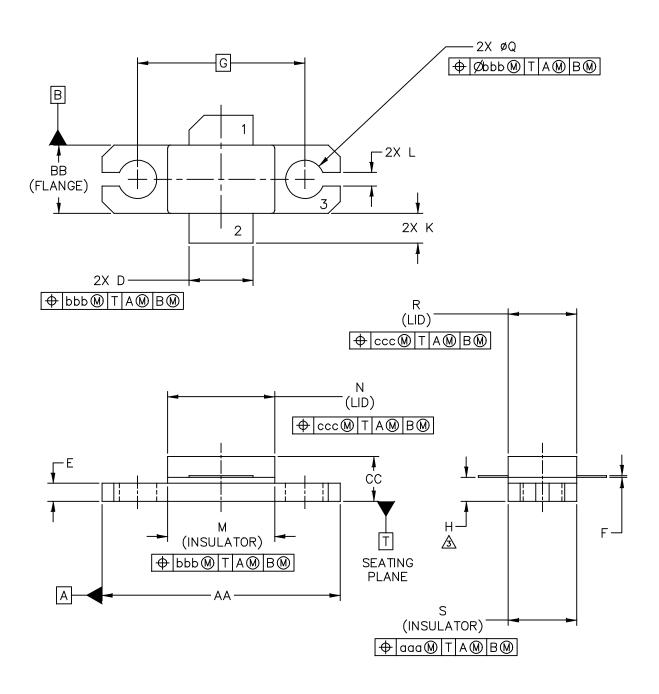
Test Methodology	Class
Human Body Model (per JS-001-2017)	2, passes 2500 V
Charge Device Model (per JS-002-2014)	C3, passes 1200 V

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit	
Off Characteristics					
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}		_	400	nAdc
Drain-Source Breakdown Voltage (V _{GS} = 0 Vdc, I _D = 250 μAdc)	V _{(BR)DSS}	179	193	_	Vdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}		_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 179 Vdc, V _{GS} = 0 Vdc)	I _{DSS}		_	300	μAdc
On Characteristics					
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 640 μAdc)	V _{GS(th)}	1.7	2.75	3.0	Vdc
Gate Quiescent Voltage $(V_{DD} = 65 \text{ Vdc}, I_D = 15 \text{ mAdc}, \text{Measured in Functional Test})$	V _{GS(Q)}	2.5	3.0	3.5	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 100 mAdc)	V _{DS(on)}		0.17	_	Vdc
Dynamic Characteristics					
Reverse Transfer Capacitance (V _{DS} = 65 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}	_	0.13	_	pF
Output Capacitance (V _{DS} = 65 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{oss}		13.7	_	pF
Input Capacitance (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)	C _{iss}	_	42.8	_	pF

- 1. Continuous use at maximum temperature will affect MTTF.
- 2. MTTF calculator available at http://www.nxp.com/RF/calculators. (Calculator available when part is in production.)
- 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.

(continued)


Table 4. Electrical Characteristics $(T_A = 25^{\circ}C \text{ unless otherwise noted})$ (continued)

Characteristic	Symbol	Min	Тур	Max	Unit		
Functional Tests (In NXP Production Test Fixture, 50 ohm system) V _{DD} = 65 Vdc, I _{DQ} = 15 mA, P _{out} = 35 W CW, f = 230 MHz							
Power Gain	G _{ps}	23.5	24.8	26.5	dB		
Drain Efficiency	η_{D}	72.0	75.8	_	%		
Input Return Loss	IRL	_	-16	-11	dB		

 $\textbf{Load Mismatch/Ruggedness} \text{ (In NXP Production Test Fixture, 50 ohm system) } \textbf{I}_{DQ} = \textbf{15 mA}$

Frequency (MHz)	Signal Type	VSWR	P _{in} (dBm)	Test Voltage, V _{DD}	Result
230	CW	> 65:1 at all Phase Angles	23.5 (3 dB Overdrive)	65	No Device Degradation

PACKAGE DIMENSIONS

© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OU	TLINE	PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMEN	NT NO: 98ASA00795D	REV: A
NI-360H-2SE	STANDAF	RD: NON-JEDEC		
		SOT1791	-1	17 FEB 2016

NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH

<u>/3.\</u>

DIMENSION H IS MEASURED .030 INCH (0.762 MM) AWAY FROM THE FLANGE TO CLEAR THE EPOXY FLOW OUT REGION PARALLEL TO DATUM B.

	IN	CH	MIL	LIMETER			INCH	MIL	MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
AA	.795	.805	20.19	20.45	N	.357	.363	9.07	9.22	
BB	.225	.235	5.72	5.97	Q	.125	.135	3.18	3.43	
СС	.125	.175	3.18	4.45	R	.227	.233	5.77	5.92	
D	.210	.220	5.33	5.59	S	.225	.235	5.72	5.97	
E	.055	.065	1.40	1.65						
F	.004	.006	0.10	0.15	aaa		.005		0.13	
G	.562	BSC	14	.28 BSC	bbb		.010		0.25	
Н	.077	.087	1.96	2.21	ccc		.015		0.38	
K	.085	.115	2.16	2.92						
L	.040	.050	1.02	1.27						
М	.355	.365	9.02	9.27						
(NDUCTORS N.V. S RESERVED		MECHANICA	L OU	UTLINE PRINT VERSION NOT TO SCALE				
TITLE:	:	DOCUMENT NO: 98ASA00795D REV:					REV: A			
	NI-360H-2SB				Ī	STANDAR	RD: NON-JEDEC	2		
						SOT1791-1 17 FEB 201				

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners.

© 2018 NXP B.V.

