74HC240; 74HCT240

Octal buffer/line driver; 3-state; inverting Rev. 7 — 5 August 2024

Product data sheet

1. General description

The 74HC240; 74HCT240 is an 8-bit inverting buffer/line driver with 3-state outputs. The device can be used as two 4-bit buffers or one 8-bit buffer. The device features two output enables ($1\overline{OE}$ and $2\overline{OE}$), each controlling four of the 3-state outputs. A HIGH on $n\overline{OE}$ causes the outputs to assume a high-impedance OFF-state. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC} .

2. Features and benefits

- Wide supply voltage range from 2.0 V to 6.0 V
- CMOS low power dissipation
- · High noise immunity
- Latch-up performance exceeds 100 mA per JESD 78 Class II Level B
- · Complies with JEDEC standards:
 - JESD8C (2.7 V to 3.6 V)
 - JESD7A (2.0 V to 6.0 V)
- Input levels:
 - For 74HC240: CMOS level
 - For 74HCT240: TTL level
- Inverting 3-state outputs
- · ESD protection:
 - HBM: ANSI/ESDA/JEDEC JS-001 class 2 exceeds 2000 V
 - CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V
- · Multiple package options
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

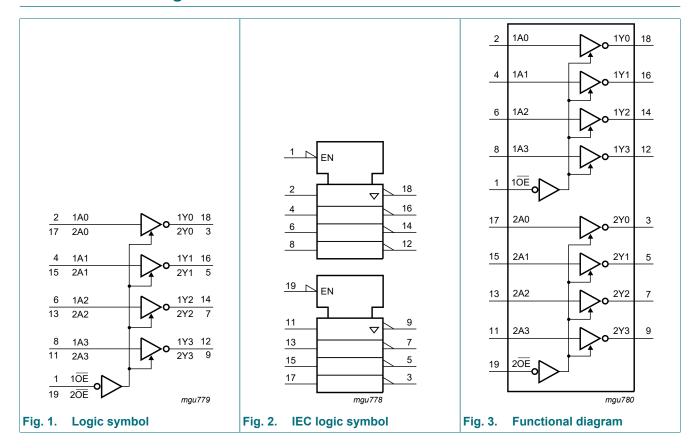
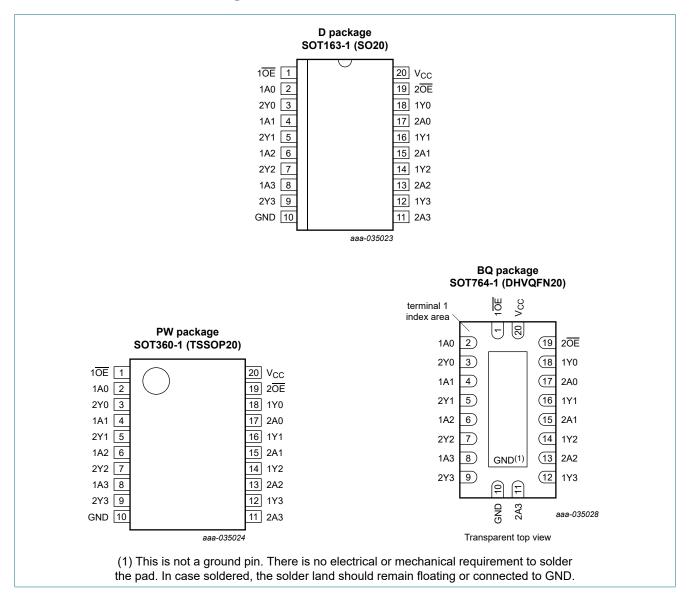

3. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74HC240D 74HCT240D	-40 °C to +125 °C	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-1
74HC240PW 74HCT240PW	-40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-1
74HC240BQ 74HCT240BQ	-40 °C to +125 °C	DHVQFN20	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 20 terminals; body 2.5 × 4.5 × 0.85 mm	SOT764-1



4. Functional diagram

5. Pinning information

5.1. Pinning

5.2. Pin description

Table 2. Pin description

Symbol	Pin	Description
1 OE , 2 OE	1, 19	output enable input (active LOW)
1A0, 1A1, 1A2, 1A3	2, 4, 6, 8	data input
2Y0, 2Y1, 2Y2, 2Y3	3, 5, 7, 9	bus output
GND	10	ground (0 V)
2A0, 2A1, 2A2, 2A3	17, 15, 13, 11	data input
1Y0, 1Y1, 1Y2, 1Y3	18, 16, 14, 12	bus output
V _{CC}	20	supply voltage

6. Functional description

Table 3. Function table

H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

Input nOE		Output
nŌE	nAn	nYn
L	L	Н
L	Н	L
Н	X	Z

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7	V
I _{IK}	input clamping current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$	-	±20	mA
I _{OK}	output clamping current	V_{O} < -0.5 V or V_{O} > V_{CC} + 0.5 V	-	±20	mA
Io	output current	-0.5 V < V _O < V _{CC} + 0.5 V	-	±35	mA
I _{CC}	supply current		-	70	mA
I _{GND}	ground current		-70	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	[1]	-	500	mW

^[1] For SOT163-1 (SO20) package: P_{tot} derates linearly with 12.3 mW/K above 109 °C. For SOT360-1 (TSSOP20) package: P_{tot} derates linearly with 10.0 mW/K above 100 °C. For SOT764-1 (DHVQFN20) package: P_{tot} derates linearly with 12.9 mW/K above 111 °C.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	•	74HC240)	7	0	Unit	
			Min	Тур	Max	Min	Тур	Max	
V_{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	0	-	V _{CC}	V
Vo	output voltage		0	-	V_{CC}	0	-	V _{CC}	V
Δt/ΔV	input transition rise and fall rate	V _{CC} = 2.0 V	-	-	625	-	-	-	ns/V
		V _{CC} = 4.5 V	-	1.67	139	-	1.67	139	ns/V
		V _{CC} = 6.0 V	-	-	83	-	-	-	ns/V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C			°C to 5 °C	-40 ° +12	Unit	
			Min	Тур	Max	Min	Max	Min	Max	_
74HC24	0									
V _{IH}	HIGH-level	V _{CC} = 2.0 V	1.5	1.2	-	1.5	-	1.5	-	V
	input voltage	V _{CC} = 4.5 V	3.15	2.4	-	3.15	-	3.15	-	V
		V _{CC} = 6.0 V	4.2	3.2	-	4.2	-	4.2	-	V
V _{IL}		t voltage $\begin{array}{l} \text{V}_{CC} = 4.5 \text{ V} \\ \text{V}_{CC} = 6.0 \text{ V} \\ \text{V}_{CC} = 6.0 \text{ V} \\ \text{V}_{CC} = 2.0 \text{ V} \\ \text{V}_{CC} = 4.5 \text{ V} \\ \text{V}_{CC} = 6.0 \text{ V} \\ \text{H-level} \\ \text{tut voltage} \\ \begin{array}{l} \text{I}_{O} = -20 \mu\text{A; V}_{CC} = 2.0 \text{ V} \\ \text{I}_{O} = -20 \mu\text{A; V}_{CC} = 4.5 \text{ V} \\ \text{I}_{O} = -20 \mu\text{A; V}_{CC} = 6.0 \text{ V} \\ \text{I}_{O} = -6.0 \text{ mA; V}_{CC} = 6.0 \text{ V} \\ \text{I}_{O} = -7.8 \text{ mA; V}_{CC} = 6.0 \text{ V} \\ \text{I}_{O} = 20 \mu\text{A; V}_{CC} = 2.0 \text{ V} \\ \text{I}_{O} = 20 \mu\text{A; V}_{CC} = 6.0 \text{ V} \\ \text{I}_{O} = 20 \mu\text{A; V}_{CC} = 4.5 \text{ V} \\ \text{I}_{O} = 20 \mu\text{A; V}_{CC} = 4.5 \text{ V} \\ \text{I}_{O} = 20 \mu\text{A; V}_{CC} = 4.5 \text{ V} \\ \text{I}_{O} = 20 \mu\text{A; V}_{CC} = 6.0 \text{ V} \\ \text{I}_{O} = 7.8 \text{ mA; V}_{CC} = 4.5 \text{ V} \\ \text{I}_{O} = 7.8 \text{ mA; V}_{CC} = 6.0 \text{ V} \\ \text{I}_{O} = 7.0$	-	8.0	0.5	-	0.5	-	0.5	V
	voltage	V _{CC} = 4.5 V	-	2.1	1.35	-	1.35	-	1.35	V
	$V_{CC} = 6.0 \text{ V}$ HIGH-level output voltage $V_{I} = V_{IH} \text{ or } V_{IL}$ $I_{O} = -20 \mu\text{A; } V_{CC} = 2.0 \text{ V}$ $I_{O} = -20 \mu\text{A; } V_{CC} = 4.5 \text{ V}$ $I_{O} = -20 \mu\text{A; } V_{CC} = 6.0 \text{ V}$ $I_{O} = -6.0 \text{ mA; } V_{CC} = 4.5 \text{ V}$ $I_{O} = -7.8 \text{ mA; } V_{CC} = 6.0 \text{ V}$ LOW-level output voltage $V_{I} = V_{IH} \text{ or } V_{IL}$		-	2.8	1.8	-	1.8	-	1.8	V
V _{OH}										
	output voltage	I_{O} = -20 μ A; V_{CC} = 2.0 V	1.9	2.0	-	1.9	-	1.9	-	V
		I _O = -20 μA; V _{CC} = 4.5 V	4.4	4.5	-	4.4	-	4.4	-	V
		I_{O} = -20 μ A; V_{CC} = 6.0 V	5.9	6.0	-	5.9	-	5.9	-	V
		I_{O} = -6.0 mA; V_{CC} = 4.5 V	3.98	4.32	-	3.84	-	3.7	-	V
		I_{O} = -7.8 mA; V_{CC} = 6.0 V		5.81	-	5.34	-	5.2	-	V
V _{OL}		V _I = V _{IH} or V _{IL}								
4	output voltage	$I_O = 20 \mu A; V_{CC} = 2.0 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 20 \mu A; V_{CC} = 4.5 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 20 \mu A; V_{CC} = 6.0 V$	-	0	0.1	-	0.1	-	0.1	V
		I_{O} = 6.0 mA; V_{CC} = 4.5 V	-	0.15	0.26	-	0.33	-	0.4	V
		$I_O = 7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.26	-	0.33	-	0.4	V
I _I		$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±0.1	-	±1.0	-	±1.0	μΑ
I _{OZ}	_		-	-	±0.5	-	±5.0	-	±10	μΑ
I _{CC}	supply current		-	-	8.0	-	80	-	160	μΑ
C _I	•		-	3.5	-	-	-	-	-	pF
74HCT2	40								•	
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	1.6	-	2.0	-	2.0	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	1.2	0.8	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = -20 μA	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -6 mA	3.98	4.32	-	3.84	-	3.7	-	V
V _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								1
	output voltage	I _O = 20 μA	-	0	0.1	-	0.1	-	0.1	V
		I _O = 6.0 mA	-	0.16	0.26	-	0.33	-	0.4	V

Symbol	Parameter	Conditions		25 °C			C to	-40 ° +12	Unit	
			Min	Тур	Max	Min	Max	Min	Max	
II	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	±0.1	-	±1.0	-	±1.0	μΑ
l _{OZ}	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 5.5$ V; $V_O = V_{CC}$ or GND	-	-	±0.5	-	±5.0	-	±10	μA
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$; $I_O = 0 \text{ A}$	-	-	8.0	-	80	-	160	μΑ
ΔI _{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 \text{ V}$; other inputs at V_{CC} or GND; $V_{CC} = 4.5 \text{ V}$ to 5.5 V ; $I_O = 0 \text{ A}$								
		nAn or inputs	-	150	540	-	675	-	735	μΑ
		n OE input	-	70	252	-	315	-	343	μΑ
Cı	input capacitance		-	3.5	-	-	-	-	-	pF

10. Dynamic characteristics

Table 7. Dynamic characteristics

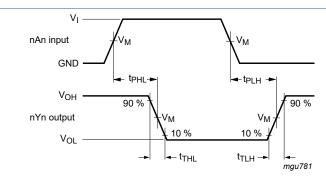
GND = 0 V; for test circuit see Fig. 6.

74HC240 t _{pd} p	Parameter	Conditions			25 °C			°C to 5 °C	-40 °C to +125 °C		Unit
				Min	Тур	Max	Min	Max	Min	Max	
74HC24	0										
t _{pd}	propagation delay	nAn to nYn; see Fig. 4	[1]								
		V _{CC} = 2.0 V		-	30	100	-	125	-	150	ns
		V _{CC} = 4.5 V		-	11	20	-	25	-	30	ns
		V _{CC} = 5.0 V; C _L = 15 pF		-	9	-	-	-	-	-	ns
		V _{CC} = 6.0 V		-	9	17	-	21	-	26	ns
t _{en}	enable time	nOE to nYn; see Fig. 5	[2]								
		V _{CC} = 2.0 V		-	39	150	-	190	-	225	ns
		V _{CC} = 4.5 V		-	14	30	-	38	-	45	ns
		V _{CC} = 6.0 V		-	11	26	-	33	-	38	ns
t _{dis}	disable time	nOE to nYn or see Fig. 5	[3]								
		V _{CC} = 2.0 V		-	41	150	-	190	-	225	ns
		V _{CC} = 4.5 V		-	15	30	-	38	-	45	ns
		V _{CC} = 6.0 V		-	12	26	-	33	-	38	ns
t _t	transition time	see Fig. 4	[4]								
		V _{CC} = 2.0 V		-	14	60	-	75	-	90	ns
		V _{CC} = 4.5 V		-	5	12	-	15	-	18	ns
		V _{CC} = 6.0 V		-	4	10	-	13	-	15	ns
C _{PD}	power dissipation capacitance	per buffer; V _I = GND to V _{CC}	[5]	-	30	-	-	-	-	-	pF

Symbol	Parameter	Conditions		25 °	3		°C to 5 °C	-40 ° +12	Unit	
			Mi	п Тур	Max	Min	Max	Min	Max	
74HCT2	40									
t _{pd}	propagation delay	nAn to nYn; see Fig. 4 [1]							
		V _{CC} = 4.5 V	-	11	20	-	25	-	30	ns
		V _{CC} = 5.0 V; C _L = 15 pF	-	9	-	-	-	-	-	ns
t _{en}	enable time	$\overline{\text{NOE}}$ to nYn; V _{CC} = 4.5 V; [2 see Fig. 5]] -	13	30	-	38	-	45	ns
t _{dis}	disable time	$\overline{\text{NOE}}$ to nYn; V _{CC} = 4.5 V; [3 see Fig. 5]] -	13	25	-	31	-	38	ns
t _t	transition time	V _{CC} = 4.5 V; see <u>Fig. 4</u> [4] -	5	12	-	15	-	18	ns
C_{PD}	power dissipation capacitance	per buffer; V_I = GND to V_{CC} - 1.5 V [5] -	30	-	-	-	-	-	pF

- t_{pd} is the same as t_{PHL} and t_{PLH} .
- t_{en} is the same as t_{PZH} and t_{PZL} .
- t_{dis} is the same as t_{PHZ} and t_{PLZ} . [3]
- [4] t_t is the same as t_{THL} and t_{TLH}.
 [5] C_{PD} is used to determine the dynamic power dissipation (P_D in μW): P_D = C_{PD} × V_{CC} ² × f_i × N + Σ (C_L × V_{CC} ² × f_o) where:

f_i = input frequency in MHz;


f_o = output frequency in MHz;

C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

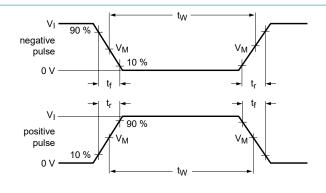
N = number of inputs switching; $\Sigma (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}.$

10.1. Waveforms and test circuit

Measurement points are given in Table 8.

 V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Fig. 4. Input (nAn) to output (nYn) propagation delays and output transition times


Measurement points are given in <u>Table 8</u>.

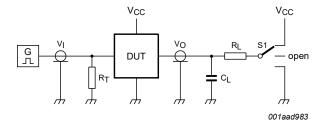

V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Fig. 5. 3-state enable and disable times

Table 8. Measurement points

Туре	Input	Output		
	V _M	V _M	V _X	V _Y
74HC240	0.5 × V _{CC}	0.5 × V _{CC}	0.1 × V _{CC}	0.9 × V _{CC}
74HCT240	1.3 V	1.3 V	0.1 × V _{CC}	0.9 × V _{CC}

Test data is given in Table 9.

Definitions test circuit:

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator;

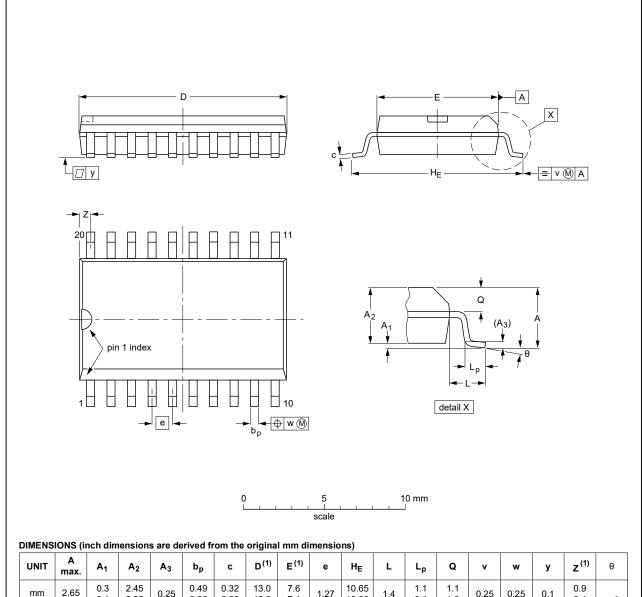
C_L = Load capacitance including jig and probe capacitance;

R_L = Load resistance;

S1 = Test selection switch.

Fig. 6. Test circuit for measuring switching times

Table 9. Test data


Туре	Input		Load		S1 position				
	$egin{array}{c cccc} V_I & t_r, t_f & C_L & R_L & t_{PHL}, \end{array}$		$m{t_{ m r}},m{t_{ m f}}$ $m{C_{ m L}}$ $m{R_{ m L}}$ $m{t_{ m PHL}},m{t_{ m PLF}}$		t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}		
74HC240	V _{CC}	6 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}		
74HCT240	3 V	6 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}		

9 / 15

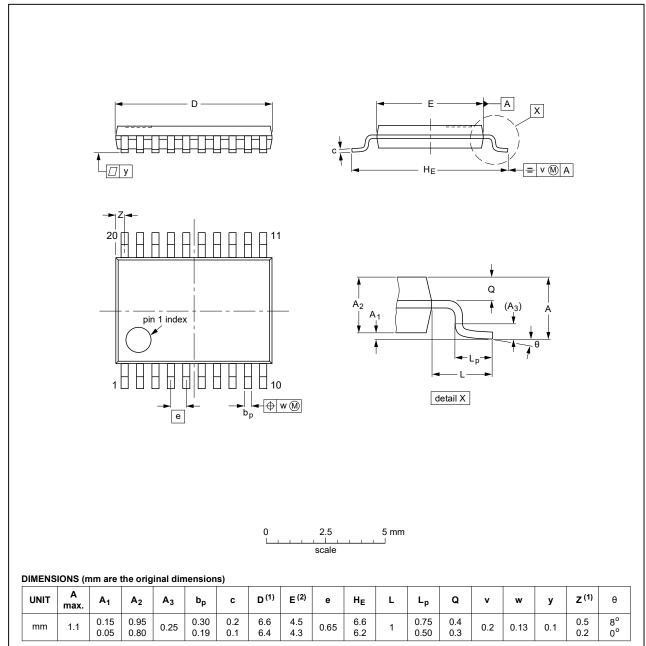
11. Package outline

SO20: plastic small outline package; 20 leads; body width 7.5 mm

SOT163-1

UN	IIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
m	m	2.65	0.3 0.1	2.45 2.25	0.25	0.49 0.36	0.32 0.23	13.0 12.6	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
incl	nes	0.1	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.51 0.49	0.30 0.29	0.05	0.419 0.394	0.055	0.043 0.016	0.043 0.039	0.01	0.01	0.004	0.035 0.016	0°

Note


1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE	REFERENCES			EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT163-1	075E04	MS-013				99-12-27 03-02-19

Fig. 7. Package outline SOT163-1 (SO20)

TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm

SOT360-1

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE	REFERENCES			EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT360-1		MO-153				99-12-27 03-02-19

Fig. 8. Package outline SOT360-1 (TSSOP20)

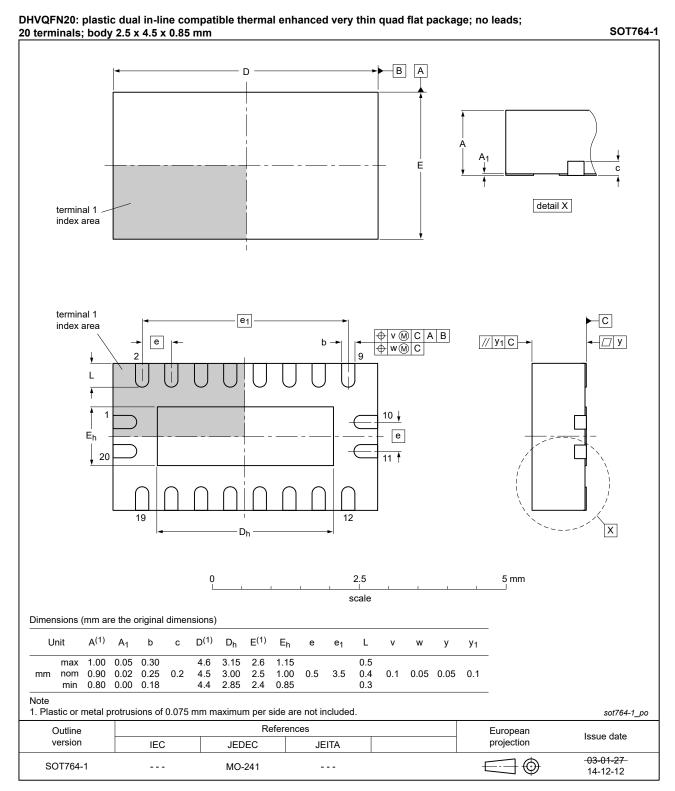


Fig. 9. Package outline SOT764-1 (DHVQFN20)

12. Abbreviations

Table 10. Abbreviations

Acronym	Description
ANSI	American National Standards Institute
CDM	Charged Device Model
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
ESDA	ElectroStatic Discharge Association
НВМ	Human Body Model
JEDEC	Joint Electron Device Engineering Council
TTL	Transistor-Transistor Logic

13. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT240 v.7	20240805	Product data sheet	-	74HC_HCT240 v.6
Modifications:	Section 2: E	SD specification updated	according to the la	itest JEDEC standard.
74HC_HCT240 v.6	20210903	Product data sheet	-	74HC_HCT240 v.5
Modifications:	Type number	ers 74HC240DB and 74HC	T240DB (SOT339	9-1) removed.
74HC_HCT240 v.5	20200715	Product data sheet	-	74HC_HCT240 v.4
Modifications:	guidelines o Legal texts I Section 2 up	have been adapted to the i	new company nar	ne where appropriate.
74HC_HCT240 v.4	20160225	Product data sheet	-	74HC_HCT240 v.3
Modifications:	Type number	ers 74HC240N and 74HCT	240N (SOT146-1	removed.
74HC_HCT240 v.3	20070802	Product data sheet	-	74HC_HCT240_CNV v.2
Modifications:	guidelines o Legal texts	of this data sheet has beer of NXP Semiconductors. have been adapted to the number 74HC240BQ and	new company nar	ne where appropriate.
74HC_HCT240_CNV v.2	19970828	Product specification	-	-

14. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by sustained.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contents

1. General description	1
2. Features and benefits	1
3. Ordering information	1
4. Functional diagram	2
5. Pinning information	3
5.1. Pinning	3
5.2. Pin description	3
6. Functional description	4
7. Limiting values	
7. Lilling values	
Recommended operating conditions Static characteristics	4
8. Recommended operating conditions	4
Recommended operating conditions Static characteristics	5
8. Recommended operating conditions 9. Static characteristics 10. Dynamic characteristics	5 6
8. Recommended operating conditions 9. Static characteristics 10. Dynamic characteristics 10.1. Waveforms and test circuit	6 6
8. Recommended operating conditions 9. Static characteristics 10. Dynamic characteristics 10.1. Waveforms and test circuit 11. Package outline	6

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 5 August 2024

[©] Nexperia B.V. 2024. All rights reserved