

DUAL RETRIGGERABLE MONOSTABLE MULTIVIBRATOR WITH RESET

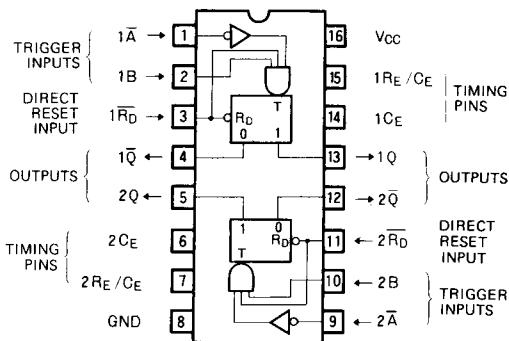
DESCRIPTION

The M74LS123P is a semiconductor integrated circuit containing two retriggerable monostable multivibrator circuits with direct reset inputs.

FEATURES

- Long pulse widths can be generated using the retriggerable function
- Output pulses can be stopped at any time with direct reset inputs
- A, B complementary inputs provided
- High breakdown input voltage ($V_I \geq 15V$)
- Q and \bar{Q} outputs provided
- Wide operating temperature range ($T_a = -20 \sim +75^\circ C$)

APPLICATION

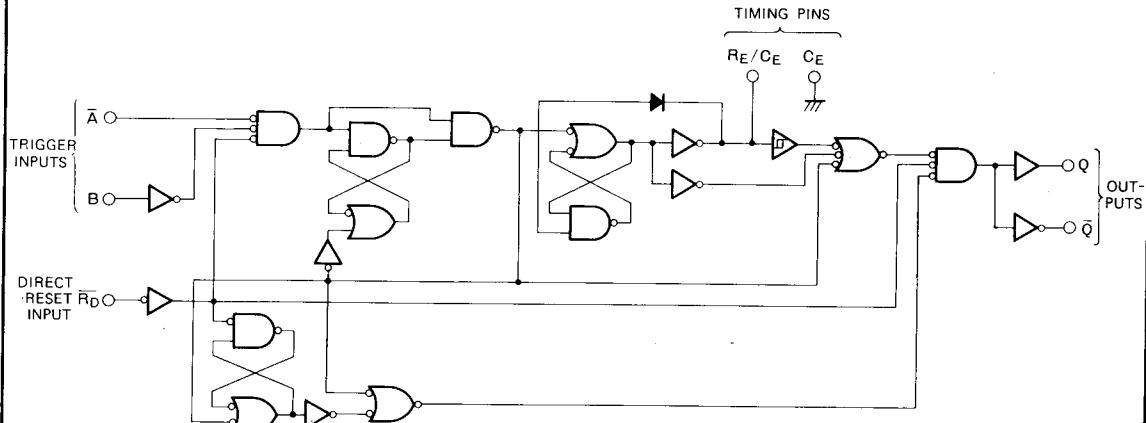

General purpose, for use in industrial and consumer equipment.

FUNCTIONAL DESCRIPTION

Positive pulses appear in output Q and negative pulses in output \bar{Q} by connecting external resistor R_T and capacitor C_T to timing pins R_E/CE and C_E , as shown in Fig. 1 on the next page, and by applying a trigger from input A or B. (Fig. 2(a)) The width t_w of the pulses appearing in the outputs is set by R_T and C_T . When A changes from high to low or when B changes from low to high, the trigger is applied.

The retriggerable function is used to obtain long output pulse widths and when the trigger is applied from A or B immediately before the output pulse is completed, the

PIN CONFIGURATION (TOP VIEW)



Outline 16P4

output pulse width can be extended. (Fig. 2(b))

Q can be reset immediately low and \bar{Q} high by setting direct reset input \bar{R}_D low irrespective of the status of the outputs. The output pulse width can therefore be made as short as preferred by the \bar{R}_D signal. (Fig. 2(c)) When \bar{R}_D changes from low to high with A at low and B at high, the trigger is applied and the status of Q and \bar{Q} changes.

BLOCK DIAGRAM (EACH MONOSTABLE MULTIVIBRATOR)

DUAL RETRIGGERABLE MONOSTABLE MULTIVIBRATOR WITH RESET

4. Precautions with use

4-1. Apply the retrigger pulse after a wait of $0.22C_T$ (ns) upon application of the trigger pulse. C_T is measured in picofarads. The retrigger pulse during this period is ineffective.

4-2. In order to minimize the floating capacitance and to safeguard against malfunction caused by noise, make the R_T and C_T wiring as short as possible and avoid signal wires which may be conducive to noise.

4-3. Connect an external capacitor of $0.01\sim0.1\mu F$ with good high-frequency characteristics between pins V_{CC} and GND.

4-4. The output pulse is generated when the power is switched on.

ABSOLUTE MAXIMUM RATINGS ($T_a = -20 \sim +75^\circ C$, unless otherwise noted)

Symbol	Parameter	Conditions			Limits	Unit
		Min	Typ	Max		
V_{CC}	Supply voltage				-0.5 ~ +7	V
V_I	Input voltage				-0.5 ~ +15	V
V_O	Output voltage	High-level state			-0.5 ~ V_{CC}	V
T_{OPR}	Operating free-air ambient temperature range				-20 ~ +75	°C
T_{STG}	Storage temperature range				-65 ~ +150	°C

RECOMMENDED OPERATING CONDITIONS ($T_a = -20 \sim +75^\circ C$, unless otherwise noted)

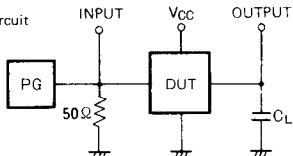
Symbol	Parameter	Limits			Unit
		Min	Typ	Max	
V_{CC}	Supply voltage	4.75	5	5.25	V
I_{OH}	High-level output current	$V_{OH} \geq 2.7V$	0	-400	μA
I_{OL}	Low-level output current	$V_{OL} \leq 0.4V$	0	4	mA
		$V_{OL} \leq 0.5V$	0	8	mA
R_T	External timing resistance	5		260	$k\Omega$
C_T	External timing capacitance		None		
C_R	R_E/C_E pin wiring capacitance			50	pF

ELECTRICAL CHARACTERISTICS ($T_a = -20 \sim +75^\circ C$, unless otherwise noted)

Symbol	Parameter	Test conditions			Limits			Unit
		Min	Typ	Max	Min	Typ	Max	
V_{IH}	High-level input voltage				2			V
V_{IL}	Low-level input voltage						0.8	V
V_{IC}	Input clamp voltage	$V_{CC} = 4.75V$, $I_{IC} = 18mA$					-1.5	V
V_{OH}	High-level output voltage	$V_{CC} = 4.75V$, $V_I = 0.8V$			2.7	3.5		V
V_{OL}	Low-level output voltage	$V_{CC} = 4.75V$	$I_{OL} = 4mA$		0.25	0.4		V
		$V_I = 0.8V$, $V_I = 2V$	$I_{OL} = 8mA$		0.35	0.5		V
I_{IH}	High-level input current	$V_{CC} = 5.25V$, $V_I = 2.7V$					20	μA
		$V_{CC} = 5.25V$, $V_I = 10V$					0.1	mA
I_{IL}	Low-level input current	$V_{CC} = 5.25V$, $V_I = 0.4V$					-0.4	mA
I_{OS}	Short-circuit output current (Note 2)	$V_{CC} = 5.25V$, $V_O = 0V$			-20		-100	mA
I_{CC}	Supply current	$V_{CC} = 5.25V$ (Note 3)				12	20	mA

* : All typical values are at $V_{CC}=5V$, $T_a=25^\circ C$.

Note 2: All measurements should be done quickly and not more than one output should be shorted at a time.

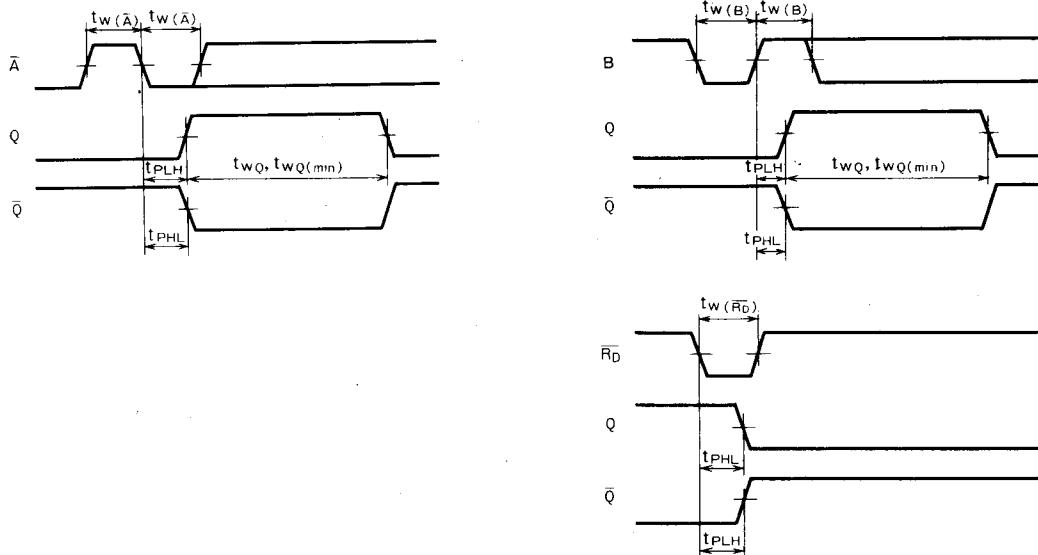

Note 3: I_{CC} is measured with R_E/C_E and C_E open, 4.5V applied to R_D , \bar{A} and B and \bar{A} set from 0V momentarily to 4.5V.

DUAL RETRIGGERABLE MONOSTABLE MULTIVIBRATOR WITH RESET

SWITCHING CHARACTERISTICS ($V_{CC} = 5\text{ V}$, $T_a = 25^\circ\text{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
t_{PLH}	Low-to-high-level output propagation time, from input \bar{A} to output Q	$C_T = 0\text{ pF}$ $R_T = 5\text{ k}\Omega$ $C_L = 15\text{ pF}$ (Note 4)	19	33	ns	
t_{PLH}	Low-to-high-level output propagation time, from input B to output Q		20	44	ns	
t_{PHL}	High-to-low-level output propagation time, from input \bar{A} to output \bar{Q}		21	45	ns	
t_{PHL}	High-to-low-level output propagation time, from input B to output \bar{Q}		23	56	ns	
t_{PHL}	High-to-low-level output propagation time, from input \bar{R}_D to output Q		18	27	ns	
t_{PLH}	Low-to-high-level output propagation time, from input \bar{R}_D to output \bar{Q}		23	45	ns	
$t_{WQ(\text{min})}$	Minimum output pulse width, from inputs \bar{A} , B to output Q		66	200	ns	
t_{WQ}	Output pulse width, from inputs \bar{A} , B to output Q	$C_T = 1000\text{ pF}$, $R_T = 10\text{ k}\Omega$, $C_L = 15\text{ pF}$ (Note 4)	4	4.55	5	μs

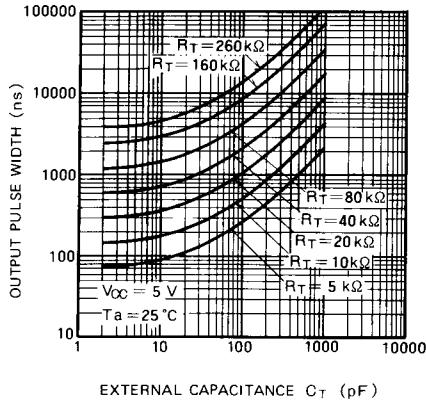
Note 4: Measurement circuit

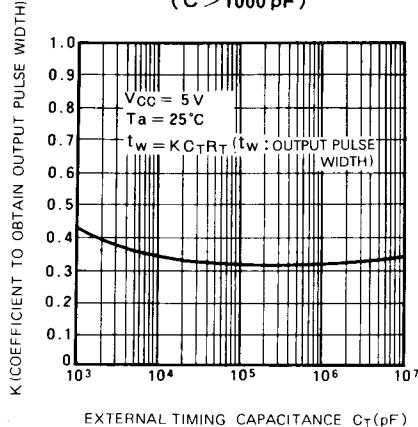


(1) The pulse generator (PG) has the following characteristics:

PRR=1MHz (100kHz with t_{WQ} measurement), $t_r=6\text{ns}$, $t_f=6\text{ns}$, $t_w \geq 40\text{ns}$, $V_P=3V_{PP}$, $Z_0=50\Omega$.(2) C_L includes probe and jig capacitanceTIMING REQUIREMENTS ($V_{CC} = 5\text{ V}$, $T_a = 25^\circ\text{C}$, unless otherwise noted)

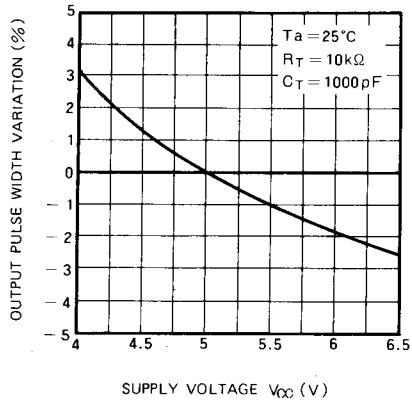
Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
$t_{W(\bar{A})}$	Trigger input \bar{A} pulse width		40	15		ns
$t_{W(B)}$	Trigger input B pulse width		40	10		ns
$t_{W(\bar{R}_D)}$	Direct reset input pulse width \bar{R}_D		40	15		ns


TIMING DIAGRAM (Reference level = 1.3V)

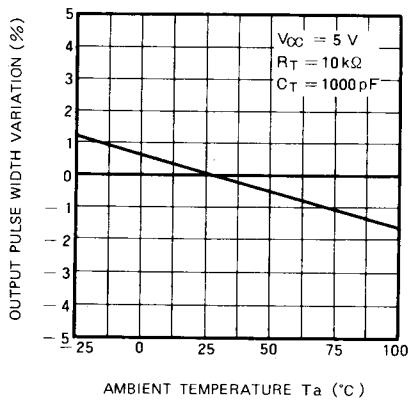

DUAL RETRIGGERABLE MONOSTABLE MULTIVIBRATOR WITH RESET

TYPICAL CHARACTERISTICS

OUTPUT PULSE WIDTH VS C_T , R_T
($C_T \leq 1000 \text{ pF}$)



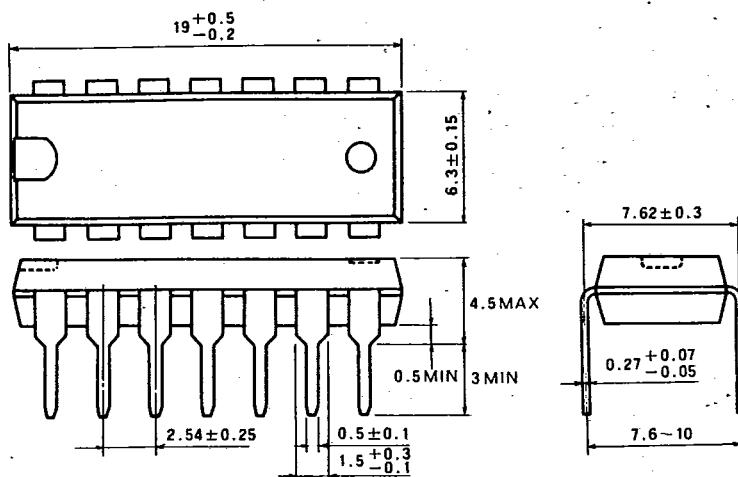
K VS C_T
($C > 1000 \text{ pF}$)



Note 5. Error within $\pm 20\%$ of output width given in the figure above.

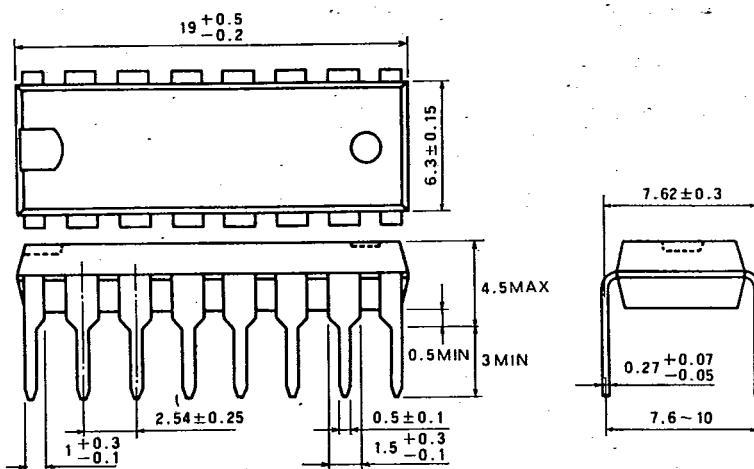
OUTPUT PULSE WIDTH VARIATION VS
SUPPLY VOLTAGE

OUTPUT PULSE WIDTH VARIATION VS
AMBIENT TEMPERATURE

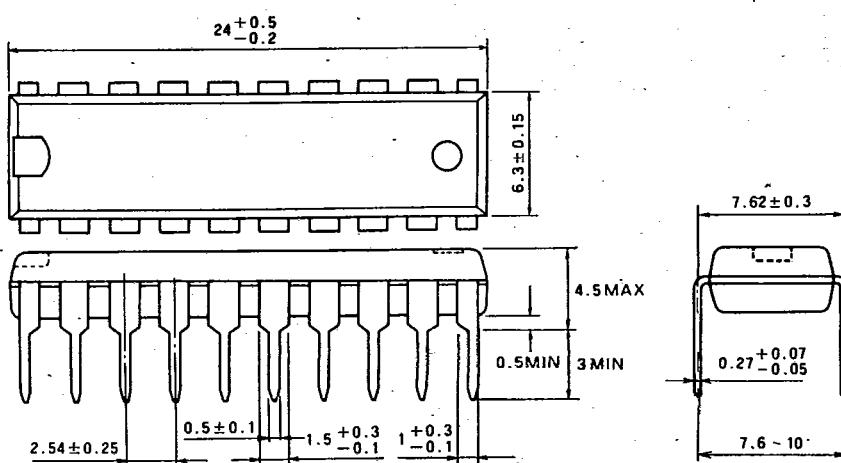

MITSUBISHI LSTTLs
PACKAGE OUTLINES

MITSUBISHI {DGTL LOGIC} 07E D 6249827 0013561 3

T-90-20


TYPE 14P4 14-PIN MOLDED PLASTIC DIL

Dimension in mm


TYPE 16P4 16-PIN MOLDED PLASTIC DIL

Dimension in mm

TYPE 20P4 20-PIN MOLDED PLASTIC DIL

Dimension in mm

