www.vishay.com

Vishay Semiconductors

AAP Gen 7 (TO-240AA) Power Modules Standard Diodes, 60 A

PRIMARY CHARACTERISTICS					
I _{F(AV)}	60 A				
Туре	Modules - diode, high voltage				
Package	AAP Gen 7 (TO-240AA)				
Circuit configuration	Two diodes doubler circuit, two diodes common cathode, two diodes common anode, single diode				

MECHANICAL DESCRIPTION

The AAP Gen 7 (TO-240AA), new generation of AAP module, combines the excellent thermal performances obtained by the usage of exposed direct bonded copper substrate, with advanced compact simple package solution and simplified internal structure with minimized number of interfaces.

FEATURES

- · High voltage
- Industrial standard package
- · Low thermal resistance
- UL approved file E78996
- · Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

BENEFITS

- Excellent thermal performances obtained by the usage of exposed direct bonded copper substrate
- Up to 1600 V
- · High surge capability
- · Easy mounting on heat sink

ELECTRICAL DESCRIPTION

These modules are intended for general purpose high voltage applications such as high voltage regulated power supplies, lighting circuits, temperature and motor speed control circuits, UPS and battery charger.

MAJOR RATINGS AND CHARACTERISTICS								
SYMBOL	CHARACTERISTICS	VALUES	UNITS					
1		60	Α					
I _{F(AV)}	T _C	114	°C					
I _{F(RMS)}		94						
1	50 Hz	1300	Α					
I _{FSM}	60 Hz	1360						
l ² t	50 Hz	8.44	1.42-					
1-1	60 Hz	7.68	- kA ² s					
$I^2\sqrt{t}$		84.5	kA ² √s					
V _{RRM}	Range	400 to 1600	V					
T _{Stg}		-40 to +150	°C					
T _J		-40 to +150	°C					

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS								
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} MAXIMUM AT T _J = 150 °C mA				
	04	400	500					
	06	600	700					
	08	800	900					
VS-VSK.56	10	1000	1100	10				
	12	1200	1300					
	14	1400	1500					
	16	1600	1700					

FORWARD CONDUCTION						
PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
Maximum average forward current	I _{F(AV)}	180° conduction, half sine wave			60	A
at case temperature	. (,				114	°C
Maximum RMS forward current	I _{F(RMS)}				94	
		t = 10 ms	No voltage		1300	
Maximum peak, one-cycle forward,		t = 8.3 ms	reapplied	Sinusoidal half wave, initial $T_J = T_J$ maximum	1360	Α
non-repetitive surge current	I _{FSM}	t = 10 ms	100 % V _{RRM}		1090	
		t = 8.3 ms	reapplied		1140	
Mar. 100 pt 121 for for the	l ² t	t = 10 ms	No voltage		8.44	kA ² s
		t = 8.3 ms	reapplied		7.68	
Maximum I ² t for fusing		t = 10 ms	100 /0 VRRM		5.97	
		t = 8.3 ms			5.43	
Maximum I ² √t for fusing	I ² √t	t = 0.1 ms t	o 10 ms, no vol	tage reapplied	84.5	kA²√s
Low level value of threshold voltage	V _{F(TO)1}	(16.7 % x π	$x I_{F(AV)} < I < \pi x$	$I_{F(AV)}$, $T_J = T_J$ maximum	0.74	V
High level value of threshold voltage	V _{F(TO)2}	$(I > \pi \times I_{F(AV)})$	$_{\rm J}$), $T_{\rm J} = T_{\rm J}$ maxin	num	0.86	V
Low level value of forward slope resistance	r _{f1}	(16.7 % x π x $I_{F(AV)} < I < \pi$ x $I_{F(AV)}$), $T_J = T_J$ maximum			3.94	mΩ
High level value of forward slope resistance	r _{f2}	$(I > \pi \times I_{F(AV)}), T_J = T_J \text{ maximum}$			3.43	11152
Maximum forward voltage drop	V_{FM}	$I_{FM} = \pi \times I_{F(i)}$	_{AV)} , T _J = 25 °C,	t _p = 400 μs square wave	1.6	V

BLOCKING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum peak reverse leakage current	I _{RRM}	T _J = 150 °C	10	mA
Maximum RMS insulation voltage	V _{INS}	50 Hz	3000 (1 min) 3600 (1 s)	V

www.vishay.com

Vishay Semiconductors

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER		SYMBOL TEST CONDITIONS		VALUES	UNITS	
Junction and storage temp	erature range	T _J , T _{Stg}		-40 to +150	°C	
Maximum internal thermal resistance, junction to case per leg		R _{thJC}	DC operation	0.33	9CAM	
Typical thermal resistance, case to heat sink per module		R _{thCS}	Mounting surface flat, smooth and greased	0.1	°C/W	
	to heatsink		A mounting compound is recommended and the	4		
Mounting torque ± 10 % busbar			torque should be rechecked after a period of 3 hours to allow for the spread of the compound.	3	Nm	
Approximate weight				75	g	
Approximate weight	Approximate weight			2.7	OZ.	
Case style			JEDEC®	AAP Gen 7	(TO-240AA)	

△R CONDUCTION PER JUNCTION											
DEVICES	8	SINE HALF WAVE CONDUCTION					RECTANGULAR WAVE CONDUCTION				LINUTO
DEVICES	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	UNITS
VSK.56	0.115	0.136	0.173	0.236	0.346	0.09	0.145	0.185	0.243	0.349	°C/W

Note

Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

www.vishay.com

Vishay Semiconductors

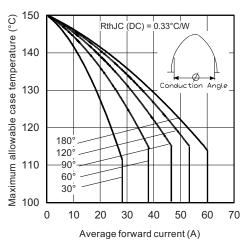


Fig. 1 - Current Ratings Characteristics

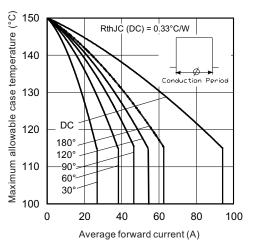


Fig. 2 - Current Ratings Characteristics

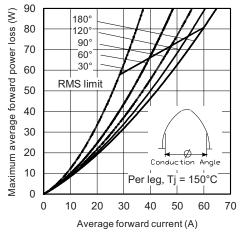


Fig. 3 - Forward Power Loss Characteristics

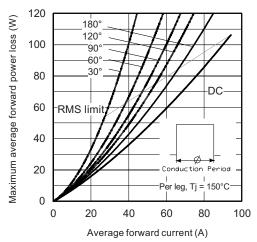
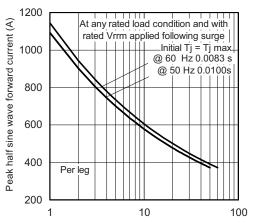



Fig. 4 - Forward Power Loss Characteristics

Number of equal amplitude half cycle current pulses (N)

Fig. 5 - Maximum Non-Repetitive Surge Current

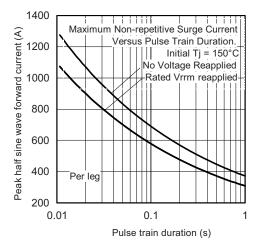


Fig. 6 - Maximum Non-Repetitive Surge Current

www.vishay.com

Vishay Semiconductors

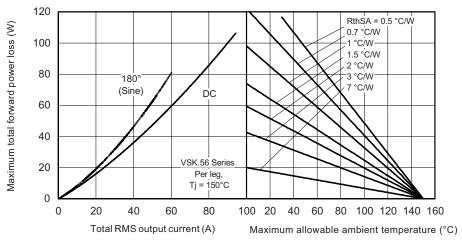


Fig. 7 - Forward Power Loss Characteristics

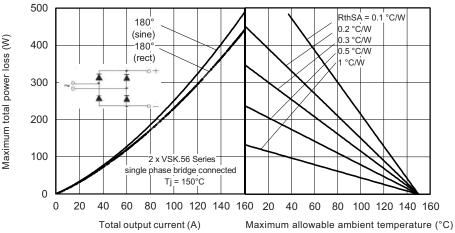


Fig. 8 - Forward Power Loss Characteristics

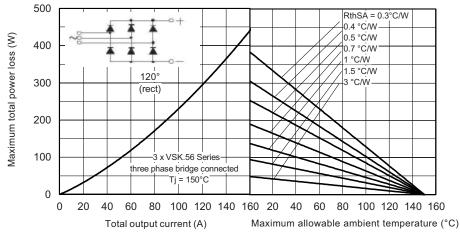


Fig. 9 - Forward Power Loss Characteristics

Vishay Semiconductors

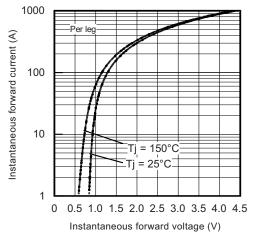


Fig. 10 - Forward Voltage Characteristics

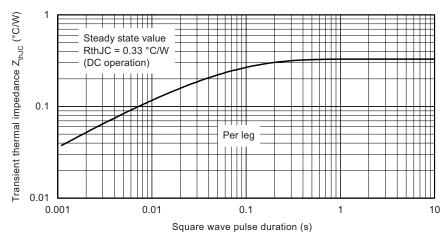
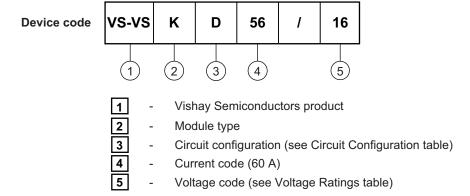



Fig. 11 - Thermal Impedance Z_{thJC} Characteristics

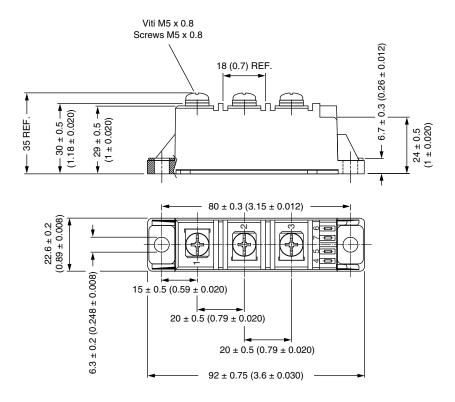
ORDERING INFORMATION TABLE

Note

• To order the optional hardware go to www.vishay.com/doc?95172

Vishay Semiconductors

CIRCUIT CONFIGURATION							
CIRCUIT DESCRIPTION	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING					
Two diodes doubler circuit	D	VSKD (1) ~ (2) ~ (3)					
Two diodes common cathode	С	VSKC (1) - (2) (3)					
Two diodes common anode	J	VSKJ (1) - + (2) - (3)					
Single diode	E	VSKE (1) 0					


LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95369			

Vishay Semiconductors

ADD-A-PAK Generation VII - Diode

DIMENSIONS in millimeters (inches)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

VSKD56/08P VSKD56/10P VSKE56/10P VSKJ56/14P VSKC56/10P VSKJ56/04P VSKE56/06P VSKD56/14P

VSKD56/06P VSKJ56/12P VSKC56/06P VSKC56/04P VSKD56/12P VSKE56/12P VSKD56/04P VSKE56/04P

VSKD56/16P VSKE56/16P VSKC56/16P VSKC56/08P VSKE56/08P VSKJ56/10P VSKC56/12P VSKJ56/08P

VSKJ56/06P VSKC56/14P VSKE56/14P VSKJ56/16P VS-VSKC56/10 VS-VSKD56/04 VS-VSKC56/04 VS
VSKD56/16 VS-VSKC56/12 VS-VSKE56/04 VS-VSKD56/08 VS-VSKE56/12 VS-VSKE56/16 VS-VSKE56/06 VS
VSKE56/10 VS-VSKJ56/16 VS-VSKJ56/04 VS-VSKJ56/14 VS-VSKC56/08 VS-VSKE56/08 VS-VSKJ56/06 VS
VSKD56/10 VS-VSKC56/16 VS-VSKD56/12 VS-VSKJ56/08 VS-VSKC56/06 VS-VSKJ56/10 VS-VSKD56/14 VS-VSKD56/14 VS-VSKD56/06