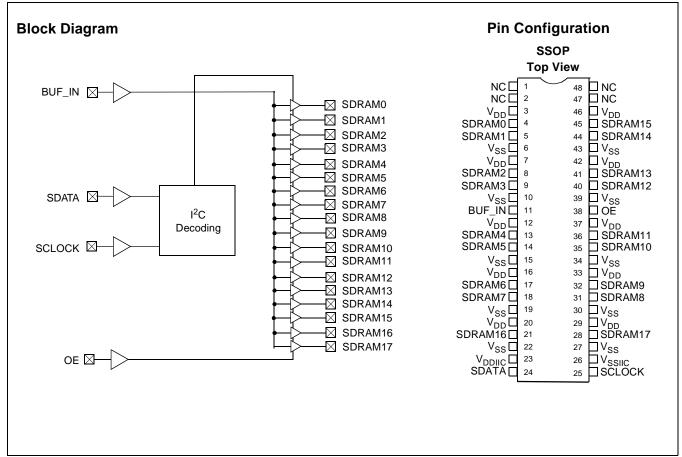


18 Output, 3.3V SDRAM Buffer for Desktop PCs with 4 DIMMs


Features

- One input to 18 output buffer/driver
- Supports up to four SDRAM DIMMs
- · Two additional outputs for feedback
- I²C™ interface for individual output control
- Low skew outputs (< 250 ps)
- Up to 100 MHz operation
- · Dedicated OE pin for testing
- Space-saving 48-pin SSOP package
- 3.3V operation

Functional Description

The CY2318ANZ is a 3.3V buffer designed to distribute high-speed clocks in PC applications. The part has 18 outputs, 16 of which can be used to drive up to four SDRAM DIMMs, and the remaining can be used for external feedback to a PLL. The device operates at 3.3V and outputs can run up to 100 MHz, thus making it compatible with Pentium II® processors. The CY2318ANZ can be used in conjunction with the CY2280, CY2281, CY2282 or similar clock synthesizer for a complete Pentium II motherboard solution.

The CY2318ANZ also includes an I²C interface which can enable or disable each output clock. On power-up, all output clocks are enabled (internal pull up). A separate Output Enable pin facilitates testing on ATE.

Pentium II is a registered trademark of Intel Corporation. I²C is a trademark of Philips Corporation.

Pin Summary

Name	Pins	Description
V _{DD}	3, 7, 12, 16, 20, 29, 33, 37, 42, 46	3.3V Digital voltage supply
V _{SS}	6, 10, 15, 19, 22, 27, 30, 34, 39, 43	Ground
V _{DDIIC}	23	I ² C Voltage supply
V _{SSIIC}	26	Ground for I ² C
BUF_IN	11	Input clock (5V Tolerant)
OE	38	Output Enable (active HIGH), Three-state outputs when low ^[1]
SDATA	24	I ² C data input ^[1]
SCLK	25	I ² C clock input ^[1]
SDRAM [0-3]	4, 5, 8, 9	SDRAM byte 0 clock outputs
SDRAM [4-7]	13, 14, 17, 18	SDRAM byte 1 clock outputs
SDRAM [8-11]	31, 32, 35, 36	SDRAM byte 2 clock outputs
SDRAM [12-15]	40, 41, 44, 45	SDRAM byte 3 clock outputs
SDRAM [16-17]	21, 28	SDRAM clock outputs usable for feedback
N/C	1, 2, 47, 48	Reserved for future modifications, do not connect in system

Notes:

Device Functionality

OE	SDRAM [0-17]
0	Hi-Z
1	1 x BUF_IN

^{1.} Internal pull-up resistor to V_{DD} (value > 100 kohms)

Serial Configuration Map

 The Serial bits will be read by the clock driver in the following order:

Byte 0 - Bits 7, 6, 5, 4, 3, 2, 1, 0 Byte 1 - Bits 7, 6, 5, 4, 3, 2, 1, 0

Byte N - Bits 7, 6, 5, 4, 3, 2, 1, 0

• Reserved and unused bits should be programmed to "0".

• I²C Address for the CY2318ANZ is:

A6	A5	A4	А3	A2	A 1	A0	R/W
1	1	0	1	0	0	1	

Byte 0:SDRAM Active/Inactive Register (1 = Active, 0 = Inactive), Default = Active

Bit	Pin #	Description
Bit 7	18	SDRAM7 (Active/Inactive)
Bit 6	17	SDRAM6 (Active/Inactive)
Bit 5	14	SDRAM5 (Active/Inactive)
Bit 4	13	SDRAM4 (Active/Inactive)
Bit 3	9	SDRAM3 (Active/Inactive)
Bit 2	8	SDRAM2 (Active/Inactive)
Bit 1	5	SDRAM1 (Active/Inactive)
Bit 0	4	SDRAM0 (Active/Inactive)

Byte 1: SDRAM Active/Inactive Register (1 = Active, 0 = Inactive), Default = Active

Bit	Pin #	Description	
Bit 7	45	SDRAM15 (Active/Inactive)	
Bit 6	44	SDRAM14 (Active/Inactive)	
Bit 5	41	SDRAM13 (Active/Inactive)	
Bit 4	40	SDRAM12 (Active/Inactive)	
Bit 3	36	SDRAM11 (Active/Inactive)	
Bit 2	35	SDRAM10 (Active/Inactive)	
Bit 1	32	SDRAM9 (Active/Inactive)	
Bit 0	31	SDRAM8 (Active/Inactive)	

Byte 2: SDRAM Active/Inactive Register (1 = Active, 0 = Inactive), Default = Active

Bit	Pin #	Description	
Bit 7	28	SDRAM17 (Active/Inactive)	
Bit 6	21	SDRAM16 (Active/Inactive)	
Bit 5		Reserved, drive to 0	
Bit 4		Reserved, drive to 0	
Bit 3		Reserved, drive to 0	
Bit 2		Reserved, drive to 0	
Bit 1		Reserved, drive to 0	
Bit 0		Reserved, drive to 0	

Maximum Ratings

Supply Voltage to Ground Potential-0.5 to +7.0V DC Input Voltage (except BUF_IN)-0.5V to V_{DD}+0.5 DC Input Voltage (BUF_IN).....-0.5V to 7.0V

Storage Temperature65°C to	+150°C
Max. Soldering Temperature (10 sec)	+260°C
Junction Temperature	+150°C
Static Discharge Voltage(per MIL-STD-883, Method 3015)	.>2000V

Operating Conditions

Parameter	Description	Min.	Max.	Unit
V _{DD} , V _{DDIIC}	Supply Voltage	3.135	3.465	V
T _A	Operating Temperature (Ambient Temperature)	0	70	°C
C _L	Load Capacitance	20	30	pF
C _{IN}	Input Capacitance		7	pF

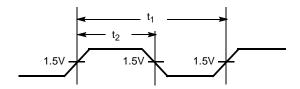
Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{IL} Input LOW Voltage ^[2]		For all pins except I ² C		0.8	V
V _{ILiic}	Input LOW Voltage	For I ² C pins only		0.7	V
V _{IH}	Input HIGH Voltage ^[2]		2.0		V
I _{IL}	Input LOW Current (BUF_IN input)	V _{IN} = 0V	-10	10	μΑ
I _{IL}	Input LOW Current (Except BUF_IN Pin)	V _{IN} = 0V		100	μΑ
I _{IH}	Input HIGH Current	$V_{IN} = V_{DD}$	-10	10	μΑ
V _{OL}	Output LOW Voltage ^[3]	I _{OL} = 25 mA		0.4	V
V _{OH}	Output HIGH Voltage ^[3]	I _{OH} = -36 mA	2.4		V
I _{DD}	Supply Current ^[3]	Unloaded outputs, 100 MHz		200	mA
I _{DD}	Supply Current	Loaded outputs, 100 MHz		360	mA
I _{DD}	Supply Current ^[3]	Unloaded outputs, 66.67 MHz		150	mA
I _{DD}	Supply Current	Loaded outputs, 66.67 MHz		230	mA
I _{DDS}	Supply Current	BUF_IN = V _{DD or} V _{SS} , all other inputs at V _{DD}		500	μА

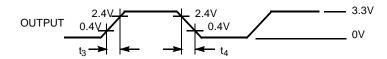
Notes:

- BUF_IN input has a threshold voltage of V_{DD}/2.
 Parameter is guaranteed by design and characterization. Not 100% tested in production.

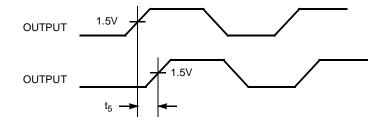
Switching Characteristics^[4]


Parameter Name		Test Conditions	Min.	Тур.	Max.	Unit
	Maximum Operating Frequency				100	MHz
	Duty Cycle ^[3,5] = $t_2 \div t_1$	Measured at 1.5V	45.0	50.0	55.0	%
t ₃	Rising Edge Rate ^[3]	Measured between 0.4V and 2.4V	0.9	1.5	4.0	V/ns
t ₄	Falling Edge Rate ^[3]	Measured between 2.4V and 0.4V	0.9	1.5	4.0	V/ns
t ₅	Output to Output Skew ^[3]	All outputs equally loaded		150	250	ps
t ₆	SDRAM Buffer LH Prop. Delay ^[3]	Input edge greater than 1V/ns	1.0	3.5	5.0	ns
t ₇	SDRAM Buffer HL Prop. Delay ^[3]	Input edge greater than 1V/ns	1.0	3.5	5.0	ns
t ₈	SDRAM Buffer Enable Delay ^[3]	Input edge greater than 1V/ns	1.0	5	12	ns
t ₉	SDRAM Buffer Disable Delay ^[3]	Input edge greater than 1V/ns	1.0	20	30	ns

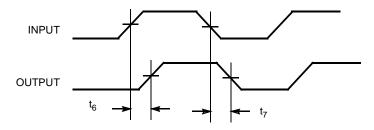
Notes:

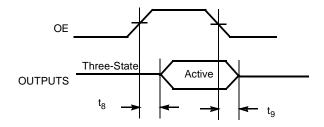

- All parameters specified with loaded outputs.
 Duty cycle of input clock is 50%. Rising and falling edge rate is greater than 1V/ns.

Switching Waveforms

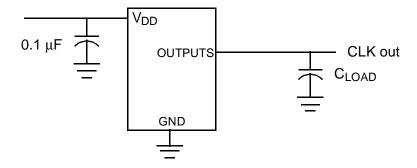

Duty Cycle Timing

All Outputs Rise/Fall Time

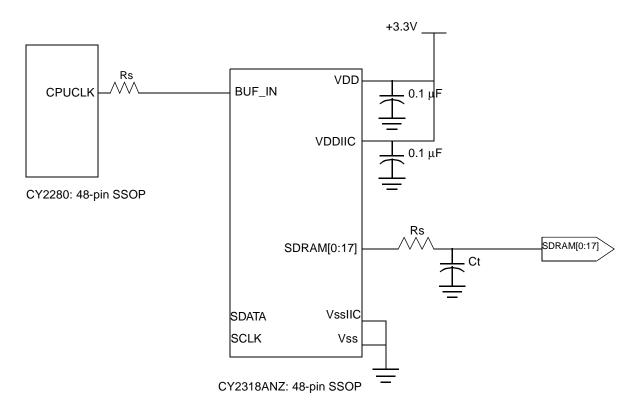

Output-Output Skew



Switching Waveforms (continued)


SDRAM Buffer LH and HL Propagation Delay

SDRAM Buffer Enable and Disable Times

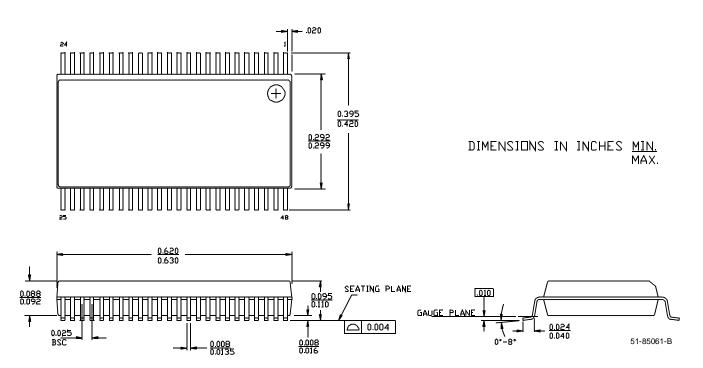


Test Circuit

Application Circuit

Rs = Series termination resistor Ct = Optional cap to reduce EMI

Ordering Information


Ordering Code	Package Name	Package Type	Operating Range
CY2318ANZPVC-11	O48	48-pin SSOP	Commercial

Document #: 38-00771 (formerly 38-00608-F)

Package Diagram

48-Lead Shrunk Small Outline Package O48

