Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note: Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.

Renesas Technology Corp. Customer Support Dept. April 1, 2003

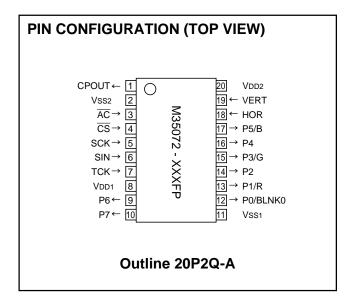
MITSUBISHI MICROCOMPUTERS M35072-XXXFP

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

DESCRIPTION

The M35072-XXXFP is a character pattern display control IC can display on the display monitor. It can display 2 pages (24 characters \times 12 lines per 1 page) at the same time. It uses a silicon gate CMOS process and it housed in a 20-pin shrink SOP package .

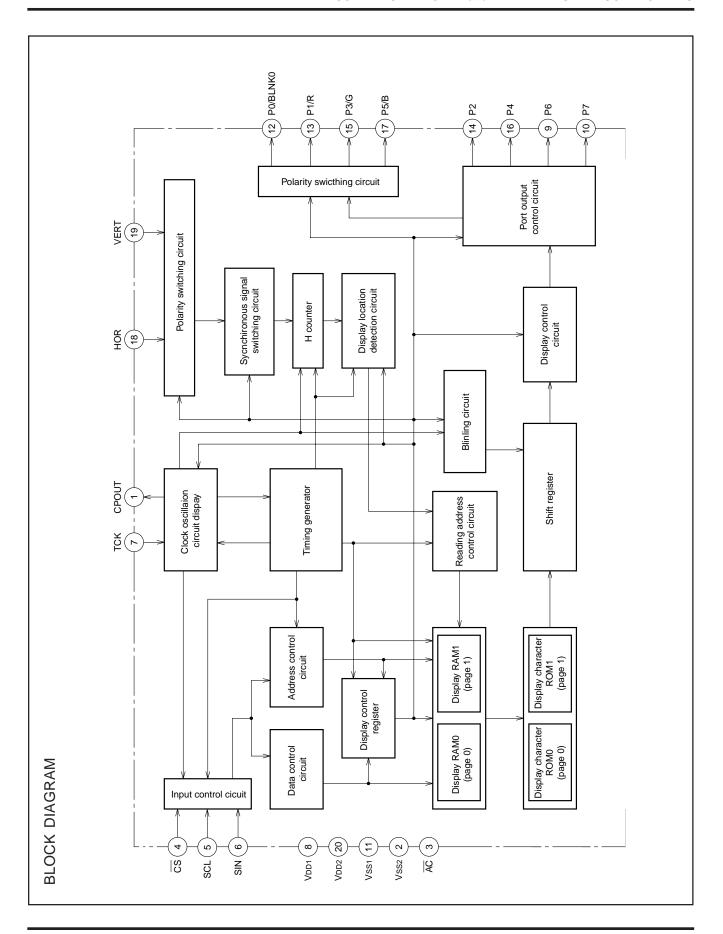
For M35072-002FP that is a standard ROM version of M35072-XXXFP respectively, the character pattern is also mentioned.


FEATURES

• Screen composition 24 characters 12 lines X 2 pages
● Number of characters displayed 288 (Max.) X 2 pages
Character composition
• Characters available page 0 : 256 characters
page 1 : 256 characters
● Character sizes available 4 (vertical) X 2 (horizontal)
Display locations available
Horizontal direction
Vertical direction 1023 locations
Blinking Character units
Cycle : division of vertical synchronization signal into 32 or 64
Duty : 25%, 50%, or 75%
• Data input By the 16-bit serial input function
Coloring
Character color Character unit
Background coloring Character unit
Border (shadow) coloring 8 colors (RGB output)
Specified by register
Raster coloring 8 colors (RGB output)
Specified by register
• Blanking Character size blanking
Border size blanking
Matrix-outline blanking
All blanking (all raster area)

- Output ports
 - 4 shared output ports (toggled between RGB output)
 - 4 dedicated output ports
- Display RAM erase function
- Display input frequency range Fosc = 20MHz to 80MHz
- Horizontal synchronous input frequency
 -H.sync = 15 kHz to 130 kHz
- Display oscillation stop function

APPLICATION


Liquid crystal display, Plasma display

PIN DESCRIPTION

Pin Number	Symbol	Pin name	Input/ Output	Function
1	CPOUT	Filter output	Output	Filter output. Connect loop filter to this pin.
2	VSS2	Earthing pin	-	Connect to GND.
3	ĀC	Auto-clear input	Input	When "L", this pin resets the internal IC circuit. Hysteresis input. Built-in pull-up resistor.
4	CS	Chip select input	Input	This is the chip select input pin, and when serial data transmission is being carried out, it goes to "L." Hysteresis input. Built-in pull-up resistor.
5	SCK	Serial clock input	Input	When $\overline{\text{CS}}$ pin is "L," SIN serial data is taken in when SCK rises. Hysteresis input. Built-in pull-up resistor.
6	SIN	Serial data input	Input	This is the pin for serial input of data and addresses for the display control register and the display data memory. Hysteresis input. Built-in pull-up resistor.
7	TCK	External clock	Input	This is the pin for external clock input.
8	VDD1	Power pin	_	Please connect to +5V with the power pin.
9	P6	Port P6 output	Output	This is the output port.
10	P7	Port P7 output	Output	This is the output port.
11	Vss1	Earthing pin	_	Please connect to GND using circuit earthing pin.
12	P0/BLNK0	Port P0 output	Output	This pin can be toggled between port pin output and BLNK0 signal output.
13	P1/R	Port P1 output	Output	This pin can be toggled between port pin output and R signal output.
14	P2	Port P2 output	Output	This is the output port.
15	P3/G	Port P3 output	Output	This pin can be toggled between port pin output and G signal output.
16	P4	Port P4 output	Output	This is the output port.
17	P5/B	Port P5 output	Output	This pin can be toggled between port pin output and B signal output.
18	HOR	Horizontal synchro- nous signal input	Input	This pin inputs the horizontal synchronous signal. Hysteresis input.
19	VERT	Vertical synchro- nous signal input	Input	This pin inputs the vertical synchronous signal. Hysteresis input.
20	VDD2	Power pin	_	Please connect to +5V with the power pin.

MEMORY CONSTITUTION

Address 00016 to 11F16 are assigned to the display RAM, address 12016 to 12816 are assigned to the display control registers. The internal circuit is reset and all display control registers (address 12016 to 12816) are set to "0" when the \overline{AC} pin level is "L". And then, RAM is not erased and be undefinited. This memory is consisted of 2

pages: page 0 memory and page 1 memory (their addresses are common), page controlled by DAF bit of each address when writing data. For detail, see "Data input". Memory constitution is shown in Figure 1 and 2.

Addresses	DAF	DAE	DAD	DAC	DAB	DAA	DA9	DA8	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0
00016	0	BB	BG	BR	BLINK	В	G	R	C7	C6	C5	C4	С3	C2	C1	C0
00116	0	BB	BG	BR	BLINK	В	G	R	C7	C6	C5	C4	С3	C2	C1	C0
	:		ackgroui coloring		Blink- ing	Char	racter co	olor			C	Characte	r code			
11E ₁₆	0	BB	BG	BR	BLINK	В	G	R	C7	C6	C5	C4	С3	C2	C1	C0
11F16	0	BB	BG	BR	BLINK	В	G	R	C7	C6	C5	C4	С3	C2	C1	C0
12016	0	EXCK0	VJT	DIVS1	DIVS0	DIV10	DIV9	DIV8	DIV7	DIV6	DIV5	DIV4	DIV3	DIV2	DIV1	DIV0
12116	0	RSEL0	PTD7	PTD6	PTD5	PTD4	PTD3	PTD2	PTD1	PTD0	PTC5	PTC4	PTC3	PTC2	PTC1	PTC0
12216	0	RSEL1	SPACE2	SPACE1	SPACE0	HP10	HP9	HP8	HP7	HP6	HP5	HP4	HP3	HP2	HP1	HP0
12316	0	EXCK1	TEST3	TEST2	TEST1	TEST0	VP9	VP8	VP7	VP6	VP5	VP4	VP3	VP2	VP1	VP0
12416	0	TEST9	TEST5	TEST4	DSP11	DSP10	DSP9	DSP8	DSP7	DSP6	DSP5	DSP4	DSP3	DSP2	DSP1	DSP0
12516	0	TEST10	VSZ1H1	VSZ1H0	VSZ1L1	VSZ1L0	V1SZ1	V1SZ0	LIN9	LIN8	LIN7	LIN6	LIN5	LIN4	LIN3	LIN2
12616	0	TEST13	VSZ2H1	VSZ2H0	VSZ2L1	VSZ2L0	V18SZ1	V18SZ0	LIN17	LIN16	LIN15	LIN14	LIN13	LIN12	LIN11	LIN10
12716	0	MODE0	TEST12	HSZ20	TEST11	HSZ10	BETA14	TEST8	TEST7	TEST6	FB	FG	FR	RB	RG	RR
12816	0	MODE1	BLINK2	BLINK1	BLINK0	DSPON	STOP	RAMERS	SYAD	BLK1	BLK0	POLH	POLV	VMASK	B/F	BCOL

Fig. 1 Memory constitution (page 0 memory)

M35072-XXXFP

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

Addresses	DAF	DAE	DAD	DAC	DAB	DAA	DA9	DA8	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0
00016	1	BB	BG	BR	BLINK	В	G	R	C7	C6	C5	C4	C3	C2	C1	C0
00116	1	BB	BG	BR	BLINK	В	G	R	C7	C6	C5	C4	C3	C2	C1	C0
		В	ackgrou coloring	I .	Blink- ing	Chai	racter co	olor				Charact	er code			
11E16	1	ВВ	BG	BR	BLINK	В	G	R	C7	C6	C5	C4	C3	C2	C1	C0
11F16	1	BB	BG	BR	BLINK	В	G	R	C7	C6	C5	C4	C3	C2	C1	C0
12016	1	-	_	_	_	_	-	_	-	_	_	_	_	_	_	_
12116	1	-	_	_	-	-	_	_	-	-	-	-	-	-	-	-
12216	1	-	SPACE2	SPACE1	SPACE0	HP10	HP9	HP8	HP7	HP6	HP5	HP4	HP3	HP2	HP1	HP0
12316	1	_	TEST3	TEST2	TEST1	TEST0	VP9	VP8	VP7	VP6	VP5	VP4	VP3	VP2	VP1	VP0
12416	1	-	_	TEST4	DSP11	DSP10	DSP9	DSP8	DSP7	DSP6	DSP5	DSP4	DSP3	DSP2	DSP1	DSP0
12516	1	-	VSZ1H1	VSZ1H0	VSZ1L1	VSZ1L0	V1SZ1	V1SZ0	LIN9	LIN8	LIN7	LIN6	LIN5	LIN4	LIN3	LIN2
12616	1	-	VSZ2H1	VSZ2H0	VSZ2L1	VSZ2L0	V18SZ1	V18SZ0	LIN17	LIN16	LIN15	LIN14	LIN13	LIN12	LIN11	LIN10
12716	1	-	TEST12	HSZ20	TEST11	HSZ10	BETA14	TEST8	TEST7	TEST6	FB	FG	FR	RB	RG	RR
12816	1	-	BLINK2	BLINK1	BLINK0	DSPON	TEST13	RAMERS	SYAD	BLK1	BLK0	-	-	-	-	BCOL

Fig. 2 Memory constitution (page 1 memory)

Note: Page 0 and page 1 registers are found in their respective pages. For example, HP10 to HP0 of the page 0 memory sets the horizontal display start position of page 0, whereas HP10 to HP0 (same register name) of the page 1 memory sets the horizontal display start position of page 1. Also, registers common to both page 0 and page 1 are found only in the page 0 memory. For example, PTC0 is the control register of the P0 pin and is found only in the page 0 memory.

SCREEN CONSTITUTION

The screen lines and rows are determined from each address of the display RAM (page 0 and page 1 are common). The screen constitution is shown in Figure 3.

_	_																							
Row	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	00016	00116	00216	00316	00416	00516	00616	00716	00816	00916	00A16	00B16	00C16	00D16	00E16	00F16	01016	01116	01216	01316	01416	01516	01616	01716
2	01816	01916	01A16	01B16	01C ₁₆	01D16	01E ₁₆	01F16	02016	02116	02216	02316	02416	02516	02616	02716	02816	02916	02A16	02B16	02C16	02D16	02E16	02F16
3	03016	03116	03216	03316	03416	03516	03616	03716	03816	03916	03A16	03B16	03C16	03D16	03E16	03F16	04016	04116	04216	04316	04416	04516	04616	04716
4	04816	04916	04A16	04B16	04C16	04D16	04E16	04F16	05016	05116	05216	05316	05416	05516	05616	05716	05816	05916	05A16	05B16	05C16	05D16	05E16	05F16
5	06016	06116	06216	06316	06416	06516	06616	06716	06816	06916	06A16	06B16	06C16	06D16	06E16	06F16	07016	07116	07216	07316	07416	07516	07616	07716
6	07816	07916	07A16	07B16	07C16	07D16	07E16	07F16	08016	08116	08216	08316	08416	08516	08616	08716	08816	08916	08A16	08B16	08C16	08D16	08E16	08F16
7	09016	09116	09216	09316	09416	09516	09616	09716	09816	09916	09A16	09B16	09C16	09D16	09E16	09F16	0A016	0A116	0A216	0A316	0A416	0A516	0A616	0A716
8	0A816	0A916	0AA16	0AB16	0AC16	0AD16	0AE16	0AF16	0B016	0B116	0B216	0B316	0B416	0B516	0B616	0B716	0B816	0B916	0BA16	0BB16	0BC16	0BD16	0BE16	0BF16
9	0C016	0C116	0C216	0C316	0C416	0C516	0C616	0C716	0C816	0C916	0CA16	0CB16	0CC16	0CD16	0CE16	0CF16	0D016	0D116	0D216	0D316	0D416	0D516	0D616	0D716
10	0D816	0D916	0DA16	0DB16	0DC16	0DD16	0DE16	0DF16	0E016	0E116	0E216	0E316	0E416	0E516	0E616	0E716	0E816	0E916	0EA16	0EB16	0EC16	0ED16	0EE16	0EF16
11	0F016	0F116	0F216	0F316	0F416	0F516	0F616	0F716	0F816	0F916	0FA16	0FB16	0FC16	0FD16	0FE16	0FF16	10016	10116	10216	10316	10416	10516	10616	10716
12	10816	10916	10A16	10B16	10C16	10D16	10E ₁₆	10F16	11016	11116	11216	11316	11416	11516	11616	11716	11816	11916	11A16	11B ₁₆	11C ₁₆	11D16	11E ₁₆	11F16

* The hexadecimal numbers in the boxes show the display RAM address.

Fig. 3 Screen constitution

DISPLAY RAM

Address 00016 to 11F16

DA	Register		Contents	Remarks
	rtogistor	Status	Function	Nomano
0	00	0	Set the displayed ROM character and	Set display character
0	C0	1	Set the displayed ROM character code.	Set display character
		0	To write data into page 0 (Note 2), select the data from the ROM	
1	C1	1	characters (256 types) for page 0 and set the character code. To	
		0	write data into page 1, do the same from the ROM characters (256 types) for page 1.	
2	C2	1		
		0		
3	C3	1		
		0		
4	C4	1		
5	C5	0		
6	C6	0		
		1		
7	C7	0		
		1		
8	R	0	B G R Color	Set character color (character unit)
		1	0 0 0 Black 0 0 1 Red	
		0	0 1 0 Green	
9	G	1	0 1 1 Yellow 1 0 0 Blue	
		0	1 0 1 Magenta	
Α	В	1	1 1 0 Cyan 1 1 1 White	
		0	Do not blink.	Set blinking
В	BLINK	1		See register BLINK2 to BLINK0 (ad-
			Blinking	dress128 ₁₆)
С	BR	0	BB BG BR Color 0 0 0 Black	Set character background (character unit)
		1	0 0 1 Red	(Grianaciei uriii)
D	BG	0	0 1 0 Green 0 1 1 Yellow	
	100	1	1 0 0 Blue	
		0	1 0 1 Magenta	
E	BB	1	1 1 0 Cyan 1 1 1 White	

Notes 1. The display RAM is undefined state at the \overline{AC} pin.

2. The display RAM consists of 2 pages, page 0 and page 1 (common address). The page in which data is written is controlled by the DAF bit. When set to "0", data is written into page 0, whereas when set to "1", data is written into page 1.

REGISTERS DESCRIPTION

(1) Address 120₁₆

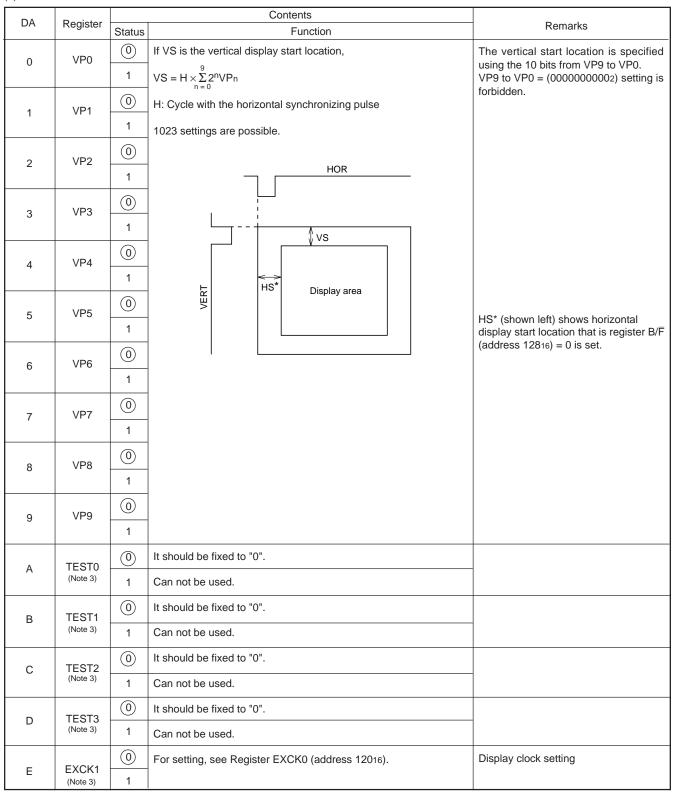
	5		Contents	
DA	Register	Status	Function	Remarks
0	DIV0 (Note 3)	1	Set external clock frequency division value of horizontal oscillation frequency.	Set display frequency by division value setting. For details, see REGISTER
1	DIV1 (Note 3)	1	$N1 = \sum_{n=0}^{10} (DIVn \times 2^n)$	SUPPLYMENTARY DESCRIPTION (1).
2	DIV2 (Note 3)	1	N1 : division value	Also, set the display frequency range by registers DIVS0, DIVS1(address 12016), RSEL0(address 12116) and RSEL1(address 12216) in accordance
3	DIV3 (Note 3)	1		with the display frequency. Any of this settings above is required
4	DIV4 (Note 3)	1		only when EXCK1 = 1, EXCK0 = 1.
5	DIV5 (Note 3)	1		
6	DIV6 (Note 3)	1		
7	DIV7 (Note 3)	1		
8	DIV8 (Note 3)	1		
9	DIV9 (Note 3)	1		
А	DIV10 (Note 3)	1		
В	DIVS0 (Note 3)	1	For setting, see REGISTER SUPPLYMENTARY DESCRIPTION (2).	Set display frequency range.
С	DIVS1 (Note 3)	1		
D	VJT (Note 3)	1	It is used to "0", normally. Alleviates continuous vertical jitters.	
E	EXCK0 (Note 3)	1	EXCK1 EXCK0 Display clock input 0 0 External synchronous (external clock) 0 1 Do not set 1 0 Do not set 1 1 External synchronous (internal clock)	Display clock setting See REGISTER SUPPLYMENTARY DESCRIPTION (1) EXCK1 : address12316

- 2. The page in which data is written is controlled by the DAF bit. When set to "0", data is written into page 0, whereas when set to "1", data is written into page 1.
- 3. Registers marked with (Note 3) are found only in page 0, therefore the register value does not change when the DAF bit is set to "1".

(2) Address 121₁₆

DA	Register		Contents	Remarks			
DA	Register	Status	Function	Remarks			
0	PTC0	0	P0 output (port P0).	P0 pin output control.			
	(Note 3)	1	BLNK0 output.				
1	PTC1	0	P1 output (port P1).	P1 pin output control.			
	(Note 3)	1	R signal output.				
2	PTC2	0	P2 output (port P2).	P2 pin output control.			
	(Note 3)	1	Can not be used.				
3	PTC3	0	P3 output (port P3).	P3 pin output control.			
	(Note 3)	1	G signal output.				
4	PTC4	0	P4 output (port P4).	P4 pin output control.			
	(Note 3)	1	Can not be used.				
5	PTC5	0	P5 output (port P5).	P5 pin output control.			
	(Note 3)	1	B signal output.				
6	PTD0	0	"L" output or negative polarity output (BLNK0 output).	P0 pin data control.			
Ü	(Note 3)	1	"H" output or positive polarity output (BLNK0 output).				
7	PTD1	0	"L" output or negative polarity output (R signal output).	P1 pin data control.			
	(Note 3)	1	"H" output or positive polarity output (R signal output).				
8	PTD2	0	"L" output.	P2 pin data control.			
	(Note 3)	1	"H" output.				
9	PTD3	0	"L" output or negative polarity output (G signal output).	P3 pin data control.			
	(Note 3)	1	"H" output or positive polarity output (G signal output).				
Α	PTD4	0	"L" output.	P4 pin data control.			
^	(Note 3)	1	"H" output.				
В	PTD5	0	"L" output or negative polarity output (B signal output).	P5 pin data control.			
В	(Note 3)	1	"H" output or positive polarity output (B signal output).				
	PTD6	0	"L" output.	P6 pin data control.			
С	(Note 3)	1	"H" output.				
	PTD7	0	"L" output.	P7 pin data control.			
D	D PID/	1	"H" output.				
_	RSEL0	0	For setting, see REGISTER SUPPLYMENTARY DESCRIPTION	Set display frequency range.			
Е	(Note 3)	1	(2).				

- 2. The page in which data is written is controlled by the DAF bit. When set to "0", data is written into page 0, whereas when set to "1", data is written into page 1.
- 3. Registers marked with (Note 3) are found only in page 0, therefore the register value does not change when the DAF bit is set to "1".



(3) Addres			Contents	
DA	Register	Status	Function	Remarks
0	HP0	0	If HS is the horizontal display start location,	Horizontal display start location is
0	пРО	1	$HS = T \times (\sum_{n=0}^{10} 2^n HP_n + 6)$	specified using the 11 bits from HP10 to HP0.
1	HP1	0	T : Period of display frequency	HP10 to HP0 = (000000000002) and (000001001112) setting is forbidden.
		1	2007 settings are possible.	
2	HP2	1	HOR	
3	HP3	1		
4	LIDA	0	vs ↓ vs	
4	HP4	1	<->-	
5	HP5	0	HS [*] Display area	
	1110	1		HS* (shown left) shows horizontal display start location that is register B/F
6	HP6	0		(address 128 ₁₆) = 0 is set.
		1		
7	HP7	0		
		1		
8	HP8	0		
		1		
9	HP9	1		
		(0)		
Α	HP10	1		
В	SPACE0	0	SPACE Number of Lines and Space <(S) represents space>	Leave one line worth of space in the vertical direction.
	0171020	1	0 0 0 12 0 0 1 1 (S) 10 (S) 1	For example, 6 (S) 6 indicates two sets of 6 lines with a line of spaces between
С	SPACE1	0	0 1 0 2 (S) 8 (S) 2 0 1 1 3 (S) 6 (S) 3	lines 6 and 7. A line is 18 × N horizontal scan lines.
		1	1 0 0 4 (S) 4 (S) 4 1 0 1 5 (S) 2 (S) 5	N is determined by the character size in the vertical direction
D	SPACE2	0	1 1 0 6 (S) 6 1 1 1 6 (S)(S) 6	
		1	(S) represents one line worth of spac	
E	RSEL1	0	For setting, see REGISTER SUPPLYMENTARY DESCRIPTION (2).	Set display frequency range.
	(Note 3)	1	(4).	

- 2. The page in which data is written is controlled by the DAF bit. When set to "0", data is written into page 0, whereas when set to "1", data is written into page 1.
- 3. Registers marked with (Note 3) are found only in page 0, therefore the register value does not change when the DAF bit is set to "1".

(4) Address 123₁₆

- 2. The page in which data is written is controlled by the DAF bit. When set to "0", data is written into page 0, whereas when set to "1", data is written into page 1.
- 3. Registers marked with (Note 3) are found only in page 0, therefore the register value does not change when the DAF bit is set to "1"

(5) Address 124₁₆

DA	Register				Contents			Daniele
	Register	Status			Function			Remarks
0	DSP0	0	The display r	node (blar	nking mode) for lin	e n on the display		Sets the display mode of line 1.
		1			e, using DŚPn (n			
1	DSP1	0	The display r BLK1 and BL	node is de .K0 (addre	etermined by the coess 12816). Setting	ombination of regis s are given below.	sters	Sets the display mode of line 2.
'	DOI 1	1						
	DODO	0	BLK1	BLK0	DSPn= "0"	DSPn= "1"		Coto the diapley made of line 2
2	DSP2	1	0	0 1	Matrix-outline border Character	Matrix-outline Border		Sets the display mode of line 3.
		0	1 1	1	Border Matrix-outline	Matrix-outline Character		
3	DSP3	1			(At r	egister BCOL = "0")		Sets the display mode of line 4.
		0						
4	DSP4		For detail, se	e DISPLA	Y FORM1(1).			Sets the display mode of line 5.
		1						
5	DSP5	0						Sets the display mode of line 6.
		1						
6	DSP6	0						Sets the display mode of line 7.
		1						
7	DSP7	0						Sets the display mode of line 8.
		1						
8	DSP8	0						Sets the display mode of line 9.
O	D31 0	1						Solo the diopidy mode of line of
	2020	0						Cata the display was do of line 40
9	DSP9	1						Sets the display mode of line 10.
		0						
Α	DSP10	1						Sets the display mode of line 11.
		0						
В	DSP11	1						Sets the display mode of line 12.
			It should be f	ived to "O"				
С	TEST4	0			•			_
		1	Can not be us					
D	TEST5	0	It should be f					_
	(Note 3)	1	Can not be u					
Е	TEST9	0	Can not be u	sed.				
	(Note 3)	1	It should be f	ixed to "1"				

- 2. The page in which data is written is controlled by the DAF bit. When set to "0", data is written into page 0, whereas when set to "1", data is written into page 1.
- 3. Registers marked with (Note 3) are found only in page 0, therefore the register value does not change when the DAF bit is set to "1".

(6) Address 125₁₆

DA	Register		Contents	Domesto
	Register	Status	Function	Remarks
0	LIN2	0	The vertical dot size for line n in the character dot lines (18 vertical	Character size setting in the vertical
		1	lines) is set using LINn (n = 2 to 17).	direction for the 2nd line.
1	LIN3	0	Dot size can be selected between 2 types for each dot line.	Character size setting in the vertical
	Liivo	1	For det size, see the helpy registers. Line 1 and lines 2 to 12 can	direction for the 3rd line.
2	LIN4	0	For dot size, see the below registers. Line 1 and lines 2 to 12 can be set independent of one another.	Character size setting in the vertical
	LINA	1	LINn = "0" LINn = "1"	direction for the 4th line.
3	LIN5	0	1st line Refer to VSZ1L0 Refer to VSZ1H0	Character size setting in the vertical
3	LINO	1	and VSZ1L1 and VSZ1H1	direction for the 5th line.
4		0	line and VSZ2L1 and VSZ2H1	Character size setting in the vertical
4	LIN6	1		direction for the 6th line.
_		0		Character size setting in the vertical
5	LIN7	1		direction for the 7th line.
	LINIO	0		Character size setting in the vertical
6	LIN8	1		direction for the 8th line.
7	LIN9	0		Character size setting in the vertical
,	Liivo	1		direction for the 9th line.
8	V1SZ0	0	H: Cycle with the horizontal synchronizing pulse	Character size setting in the vertical
	V 1320	1	V1SZ1 V1SZ0 Vertical direction size 0 0 1H/dot	direction for the 1st line. (display monitor 1 to 12 line)
9	V4.074	0	0 1 2H/dot 1 0 3H/dot	
9	V1SZ1	1	1 1 4H/dot	
A	VSZ1L0	0	H: Cycle with the horizontal synchronizing pulse	Character size setting in the vertical
_ ^	VSZTLU	1	VSZ1L1 VSZ1L0 Vertical direction size 0 0 1H/dot	direction (display monitor 1 line) at "0" state in register LIN2 to LIN17
_		0	0 1 2H/dot	(address 12516, 12616).
В	VSZ1L1	1	1 0 3H/dot 1 1 4H/dot	
	\/C=:::	0	H: Cycle with the horizontal synchronizing pulse	Character size setting in the vertical
С	VSZ1H0	1	VSZ1H1 VSZ1H0 Vertical direction size 0 0 1H/dot	direction (display monitor 1 line) at "1" state in register LIN2 to LIN17
		0	0 1 2H/dot	(address 12516, 12616).
D	VSZ1H1	1	1 0 3H/dot 1 1 4H/dot	
_	TECT	0	It should be fixed to "0".	
E	TEST10 (Note 3)	1	Can not be used.	

- 2. The page in which data is written is controlled by the DAF bit. When set to "0", data is written into page 0, whereas when set to "1", data is written into page 1.
- 3. Registers marked with (Note 3) are found only in page 0, therefore the register value does not change when the DAF bit is set to "1".

(7) Address 126₁₆

DA	Pogistor		Contents	Barrada
DA	Register	Status	Function	Remarks
0	LIN10	0	The vertical dot size for line n in the character dot lines (18 vertical	Character size setting in the vertical direction for the 10th line.
1	LIN11	0	lines) is set using LINn (n = 2 to 17). Dot size can be selected between 2 types for each dot line.	Character size setting in the vertical direction for the 11th line.
2	LIN12	0 1	For dot size, see the below registers. Line 1 and lines 2 to 12 can be set independent of one another.	Character size setting in the vertical direction for the 12th line.
3	LIN13	0 1	LINn = "0" LINn = "1"	Character size setting in the vertical direction for the 13th line.
4	LIN14	1	line and VSZ2L1 and VSZ2H1	Character size setting in the vertical direction for the 14th line.
5	LIN15	1		Character size setting in the vertical direction for the 15th line.
6	LIN16	1		Character size setting in the vertical direction for the 16th line.
7	LIN17	1		Character size setting in the vertical direction for the 17th line.
8	V18SZ0	1	H: Cycle with the horizontal synchronizing pulse V18SZ1 V18SZ0 Vertical direction size 0	Character size setting in the vertical direction for the 18th line. (display monitor 1 to 12 line)
9	V18SZ1	1	0 1 2H/dot 1 0 3H/dot 1 1 4H/dot	
Α	VSZ2L0	0 1	H: Cycle with the horizontal synchronizing pulse VSZ2L1 VSZ2L0 Vertical direction size 0 0 1H/dot	Character size setting in the vertical direction (display monitor for 2 to 12 line) at "0" state in register LIN2 to
В	VSZ2L1	1	0 1 2H/dot 1 0 3H/dot 1 1 4H/dot	LIN17 (address 12516, 12616).
С	VSZ2H0	1	H: Cycle with the horizontal synchronizing pulse VSZ2H1 VSZ2H0 Vertical direction size 0 0 1H/dot	Character size setting in the vertical direction (display monitor for 2 to 12
D	VSZ2H1	1	0 1 2H/dot 1 0 3H/dot 1 1 4H/dot	line) at "0" state in register LIN2 to LIN17 (address 12516, 12616).
E	TEST13	1	It should be fixed to "0". Can not be used.	

- 2. The page in which data is written is controlled by the DAF bit. When set to "0", data is written into page 0, whereas when set to "1", data is written into page 1.
- 3. Registers marked with (Note 3) are found only in page 0, therefore the register value does not change when the DAF bit is set to "1".

M35072-XXXFP

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

(8) Address 127₁₆

(8) Addres	55 12716			Conter	nts	
DA	Register	Status			nction	Remarks
		0				
0	RR		RB RG 0	RR 0	Color Black	Sets the raster color of all blankings.
		1	0 0	1	Red	
1	DC	0	0 1 0	0	Green Yellow	
'	RG	1	1 0	0	Blue	
		0	1 0	0	Magenta Cyan	
2	RB		1 1	1	White	
		1				
		0	FB FG	FR	Color	Sets the blanking color of the Border
3	FR	1	0 0	0	Black	size, or the shadow size.
		-	0 0 0	0	Red Green	
4	FG	0	0 1	1	Yellow	
		1	1 0	0	Blue Magenta	
		0	1 1	0	Cyan	
5	FB		1 1	1	White	
		1				
6	TEST6	0	It should be fixed to "C	O".		
	15510	1	Can not be used.			
7	TEST7	0	It should be fixed to "(0".		
		1	Can not be used.			
8	TEST8	0	It should be fixed to "C	0".		
		1	Can not be used.			
9	BETA14	0	Matrix-outline display	(12×18	dot)	
	DETAIT	1	Matrix-outline display	(14 × 18	dot)	
_		0		l direction s	size	Character size setting in the horizontal direction for the first line.
A	HSZ10	1		T/dot ?T/dot		T : Display frequency cycle
_		0	It should be fixed to			
В	TEST11	1	Can not be used.			
		0	HSZ20 Horizonta	l direction s	size	
С	HSZ20	1		T/dot T/dot		
	TECTAO	0	It should be fixed to	"0".		Character size setting in the horizontal
D	TEST12	1	Can not be used.			direction for the 2nd line to 12th line. T: Display frequency cycle
		0	MODE1 MODE0	Display mo		Sets the display mode for when 2 pages
E	MODE0 (Note 3)	1	0 0 0 1 1 0	Standard AND EXOR OR		are displayed at the same time. See "DISPLAY FORM 2". MODE1(address12816).
				011		

Notes 1. The mark or around the status value means the reset status by the "L" level is input to AC pin.

2. The page in which data is written is controlled by the DAF bit. When set to "0", data is written into page 0, whereas when set to "1", data is written into page 1.

3. Registers marked with (Note 3) are found only in page 0, therefore the register value does not change when the DAF bit is set to "1".

(9) Address 128₁₆

(9) Addres			Contents	
DA	Register	Status	Function	Remarks
0	BCOL	0	Blanking of BLK0, BLK1	Sets all raster blanking
		1	All raster blanking	
1	B/F	0	Synchronize with the leading edge of horizontal synchronization.	Synchronize with the front porch or back porch of the horizontal
	(Note 3)	1	Synchronize with the trailing edge of horizontal synchronization.	synchronazation signal.
2	VMASK	0	Do not mask by VERT input signal	Set mask at phase comparison operating.
	(Note 3)	1	Mask by VERT input signal	operating.
3	POLV	0	VERT pin is negative polarity	Set VERT pin polarity.
	(Note 3)	1	VERT pin is positive polarity	
4	POLH	0	HOR pin is negative polarity	Set HOR pin polarity.
-	(Note 3)	1	HOR pin is positive polarity	
5	BLK0	0	BLINK1 BLINK0 Blanking mode	Set blanking mode.
ŭ	BLIKO	1	0 0 Matrix-outline size	See "DISPLAY SHAPE 2".
6	BLK1	0	0 1 Character size 1 0 Border size	
Ü	BLITT	1	1 1 Matrix-outline size (When DSPn (address 12416) = "0")	
7	SYAD	0	Border display of character	See "DISPLAY FORM1 (2)".
•	STAD	1	Shadow display of character	
8	RAMERS	0	RAM not erased	There is no need to reset because
Ü	TOTAL	1	RAM erased	there is no register for this bit.
9	STOP	0	Oscillation of clock for display	
Ü	(Note 3)	1	Stop the oscillation of clock for display	
Α	DSPON	0	Display OFF	
	201011	1	Display ON	
В	BLINK0	0	BLINK Duty	Set blinking duty ratio.
5	BEINKO	1	1 0 Blinking OFF	
С	BLINK1	0	0 1 25% 1 0 50%	
Ü	BLINKI	1	1 1 75%	
D	BLINK2	0	Divided into 64 of vertical synchronous signal	Set blinking frequency.
	DLINKZ	1	Divided into 32 of vertical synchronous signal	
E	MODE4	0	For setting, see MODE0 (address 12716).	Sets the display mode for when 2
E	MODE1 (Note 3)	1		pages are displayed at the same time.

- 2. The page in which data is written is controlled by the DAF bit. When set to "0", data is written into page 0, whereas when set to "1", data is written into page 1.
- 3. Registers marked with (Note 3) are found only in page 0, therefore the register value does not change when the DAF bit is set to "1".

REGISTER SUPPLEMENTARY DESCRIPTION

- (1) Setting external clock input and display frequency mode Setting external clock input and display frequency mode (by use of EXCK0 (12016), EXCK1 (12316) and DIV10 to DIV0 (12016), as explained here following.
 - (a) When (EXCK1, EXCK0) = (0, 0)External synchronous 1 (External clock display) ... Fosc = 20 to 70 MHz
 Input from the TCK pin a constant-period continuous external clock that synchronizes with the horizontal synchronous signal. And input from HOR pin a constant period continuous horizontal synchronous signal.
 Never stop inputting the clock while displaying.
 Do not have to set a display frequency because the clock just as it is entered from outside is used as the display clock.
 - (b) When (EXCK1, EXCK0) = Setting disabled
 - (c) When (EXCK1, EXCK0) = (1, 0) Setting disabled

(d) When (EXCK1, EXCK0) = (1, 1)External synchronous 2 (Internal oscillation clock display) ... Fosc = 20 to 80 MHz Input from the TCK pin a constant-period continuous external clock that synchronizes with the horizontal synchronous signal. And input from HOR pin a constant-period continuous horizontal synchronous signal.

Never stop inputting the clock while displaying.

An internal clock which is in sync with the external input clock is used as the display clock.

Because the display frequency equals the external clock frequency, set N1 (division value) that satisfies the below expressions to DIV10 to DIV0 (address 12016) for make the display frequency is equal to the external clock frequency.

N1 = external clock frequency / horizontal synchronous frequency

$$N1 = \sum_{n=0}^{10} 2^n DIV_n$$

Also, set the display frequency range. (See the next page.)

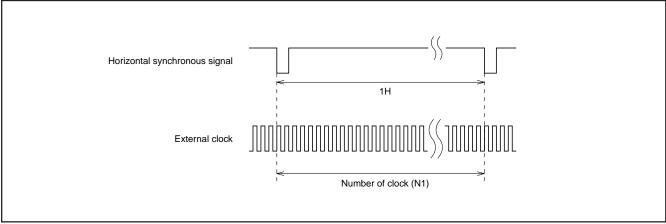


Fig. 4 Example of external clock input

(2) To set display frequency range

Whenever setting display frequency (when EXCK1 = "1", EXCK0 = "1"), always set the display frequency range in accordance with the display frequency. This range is set from DIVS0, DIVS1 (address 12016), RSEL0 address 12116) and RSEL1 (address 12216). Frequency ranges are given here below.

RSEL1	RSEL0	DIVS1	DIVS0	Display frequency range (MHz)
1	0	0	0	67.0 to 80.0
0	1	0	0	54.0 to 67.0
1	0	0	1	47.0 to 54.0
0	0	0	0	40.0 to 47.0
1	0	1	0	34.0 to 40.0
0	0	0	1	30.0 to 34.0
0	1	1	0	26.0 to 30.0
1	0	1	1	23.0 to 26.0
0	0	1	0	20.0 to 23.0

(3) Notes on setting display frequency

To change external clock (display) frequency or horizontal synchronization frequency, always use the following procedures.

- (a) Turn the display OFF. ... DSPON (address 12816) = "0"
- (b) Set the display frequency. ... Set from DIV10 to DIV0, DIVS0, DIVS1 (address 12016), RSEL0 (address 12116) and RSEL1 (address 12216).
- (c) Wait 20 ms while the horizontal synchronization signal and external clock are being input.
- (d) Turn the display ON. ... DSPON (address 12816) = "1"

DISPLAY FORM 1

M35072-XXXFP has the following four display forms.

(1) Blanking mode

Character size

: Blanking same as the character size.

Border size

: Blanking the background as a size from character.

Matrix-outline size

: Blanking the background 12×18 dot.

All blanking size

: When set register BCOL to "1", all raster area is blanking.

The display mode and blanking mode can be set line-by-line, as follows, from registers BCOL, BLK1, BLK0 (address 12816), DSP0 to DSP11 (address 12416).

	Dille	DLIKO	Line of D	SPn = "0"	Line of DS	SPn = "1"
BCOL	BLK1 BLK0		Display mode	Blanking mode	Display mode	Blanking mode
	0	0	All matrix-outline border display	All matrix-outline size	All matrix-outline display	All matrix-outline size
0	0	1	Character display	Character size	Border display	Border size
	1 0 1 1		Border display	Border size	All matrix-outline display	All matrix-outlinesize
			All matrix-outline display	All matrix-outline size	Character display	Character size
	0	0	All matrix-outline border display		All matrix-outline display	
_	0	1	Character display		Border display	
'	1	0	Border display	All blanking size	All matrix-outline display	All blanking size
	1	1	All matrix-outline display		Character display	

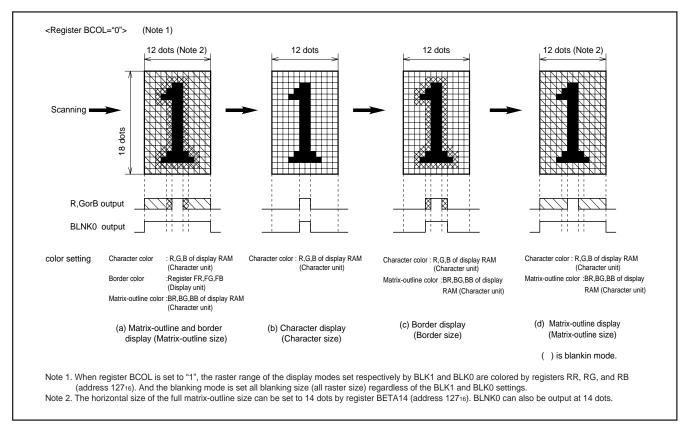


Fig. 5 Display form

(2) Shadow display

When border display mode, if set SYAD (address 12816) = "0" to

"1", it change to shadow display mode.

Border and shadow display are shown below.

Set shadow display color by BR, BG or BB of display RAM or by

register FR, FG and FB (address 12716).

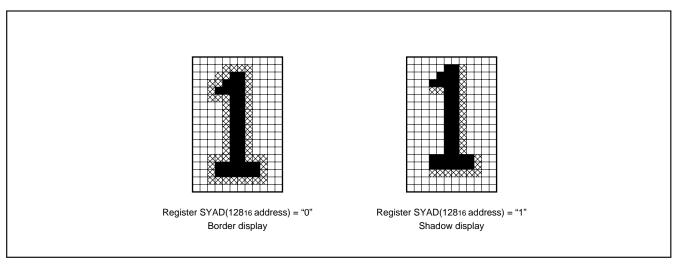


Fig. 6 Border and shadow display

DISPLAY FORM 2

This IC can display both page 0 and page 1 at the same time.

Page 0: Set the DAF bit in each addresses to "0".

Page 1: Set the DAF bit in each addresses to "1".

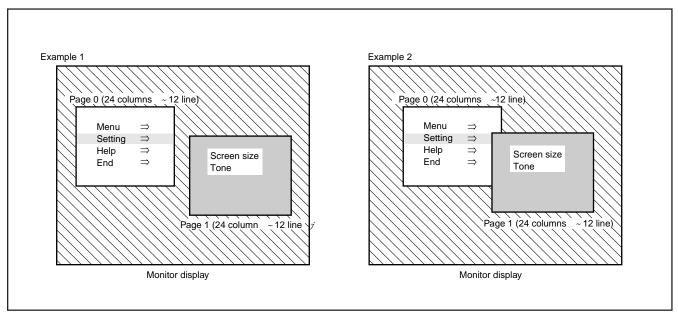


Fig. 7 Example of 2 pages display

Example 1: Display position, display size, color, etc., can be freely set for each page, and the 2 pages can be displayed on top of each other or side-by-side.

Example 2: When the display range of the 2 pages overlap on the monitor screen, they can be displayed in the 4 below ways using registers MODE0 (address 12716) and MODE1 (address 12816).

MODE1	MODE0	Display mode
0	0	Standard (Page 1 priority)
0	1	AND
1	0	EXOR
1	1	OR

- $(1) Standard \ (page \ 1 \ priority) \ \dots \ Page \ 1 \ has \ priority \ in \ overlapping \ areas. \ Page \ 0 \ is \ not \ displayed \ in \ those \ areas.$
- (2) AND In overlapping areas, the RGB output of the 2 pages is AND processed and output.
- (4) OR In overlapping areas, the RGB output of the 2 pages is OR processed and output.

CHARACTER FONT

Images are composed on a 12 \times 18 dot matrix, and characters can be linked vertically and horizontally with other characters to allow the display the continuous symbols.

Character code FF₁₆ is fixed as a blank without background. Therefore, cannot register a character font in this code.

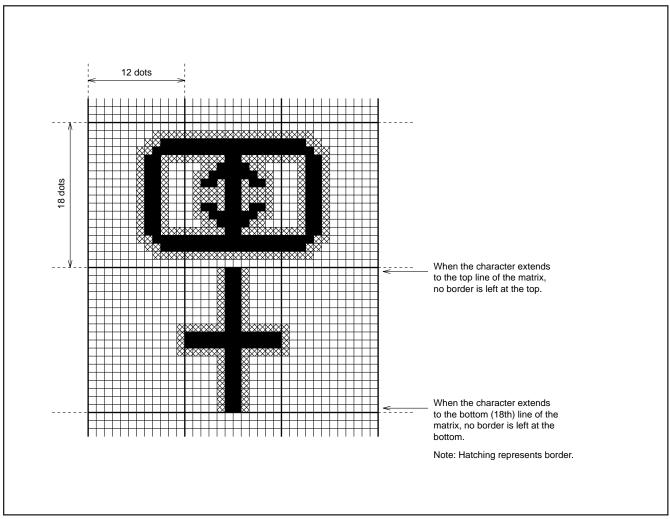


Fig. 8 Example of border display

DATA INPUT EXAMPLE

Data of display RAM and display control registers can be set by the I²C-BUS serial input function. Example of data setting is shown in Figure 9 (at EXCK0 = "1", EXCK1 = "1" setting).

Address	s/data	DAF (Note1)	DAE	DAD	DAC	DAB	DAA	DA9	DA8	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0		Remarks
address	12816	0	0	0	0	0	0	0	1	0	0	1	0	1	0	0	0	Ad	dress setting
data	12816	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Pa	ge 0 display OFF
address	12816	0	0	0	0	0	0	0	1	0	0	1	0	1	0	0	0	Ad	dress setting
data	12816	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Pa	ge 1 display OFF
data	00016	0	BB	BG	BR	BLINK	В	G	R	C7	C6	C5	C4	С3	C2	C1	C0		
	>			racter ound c		Blink- ing	Chai	racter	color			CI	harac	ter co	de				Character setting
data	11F16	0	BB	BG	BR	BLINK	В	G	R	C7	C6	C5	C4	СЗ	C2	C1	C0		
data	12016	0	1	0	DIVS1	DIVS0	DIV10	DIV9	DIV8	DIV7	DIV6	DIV5	DIV4	DIV3	DIV2	DIV1	DIV0	ي	Frequency value setting (Note2)
data	12116	0	RSEL0	PTD7	PTD6	1	PTD4	1	PTD2	1	1	1	0	1	0	1	1	Page	Output setting
data	12216	0	RSEL1	0	0	0	HP10	HP9	HP8	HP7	HP6	HP5	HP4	HP3	HP2	HP1	HP0		Horizontal display location se
data	12316	0	1	0	0	0	0	VP9	VP8	VP7	VP6	VP5	VP4	VP3	VP2	VP1	VP0		Vertical display location setti
data	12416	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		Display form setting
data	12516	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		Character size setting
data	12616	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		Character size setting
data	12716	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		Color, character size set
address	00016	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ad	dress setting
data	00016	1	BB	BG	BR	BLINK	В	G	R	C7	C6	C5	C4	C3	C2	C1	C0		
	>			racter ound c		Blink- ing	Cha	racter	color			Cł	naract	er cod	de			Page 1	Character setting
data	11F16	1	BB	BG	BR	BLINK	В	G	R	C7	C6	C5	C4	C3	C2	C1	C0		
address	12216	0	0	0	0	0	0	0	1	0	0	1	0	0	0	1	0	Ad	dress setting
data	12216	1	0	0	0	0	HP10	HP9	HP8	HP7	HP6	HP5	HP4	HP3	HP2	HP1	HP0		Horizontal display location se
data	12316	1	0	0	0	0	0	VP9	VP8	VP7	VP6	VP5	VP4	VP3	VP2	VP1	VP0		Vertical display location setti
data	12416	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Page	Display form setting
data	12516	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	e 1	Character size setting
data	12616	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		Character size setting
data	12716	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		Color, character size set
data	12816	1	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0		ge 1 display ON splay form setting (Note 3
address	12816	0	0	0	0	0	0	0	1	0	0	1	0	1	0	0	0	Ad	dress setting
data	12816	0	0	0	0	0	1	0	0	0	1	1	POLH	POLV	0	0	0		ge 0 display ON splay form setting (Note 3

Notes 1: The page in which data is written is controlled by the address. To write data into page 0, set "0". To write data into page 1, set "1".

Fig. 9 Example of data setting

^{2:} Input a continuous clock of constant period from the TCK pin. Also, input a horizontal synchronous signal into the HOR pin and a vertical synchronous signal into the VERT pin.

^{3:} Matrix-outline display in this data.

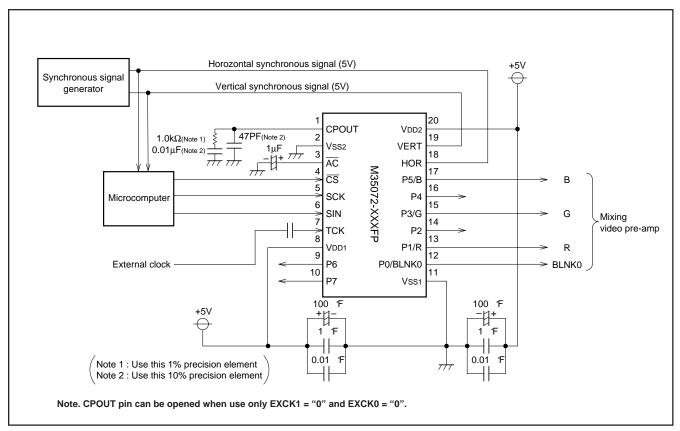


Fig. 10 Example of the M35072-XXXFP peripheral circuit (At EXCK1 = "1", EXCK0 = "1")

SERIAL DATA INPUT TIMING

- (1) Serial data should be input with the LSB first.
- (2) The address consists of 16 bits.
- (3) The data consists of 16 bits.
- (4) The 16 bits in the SCK after the \(\overline{\text{CS}}\) signal has fallen are the address, and for succeeding input data, the address is incremented every 16 bits. Therefore, it is not necessary to input the address from the second data.

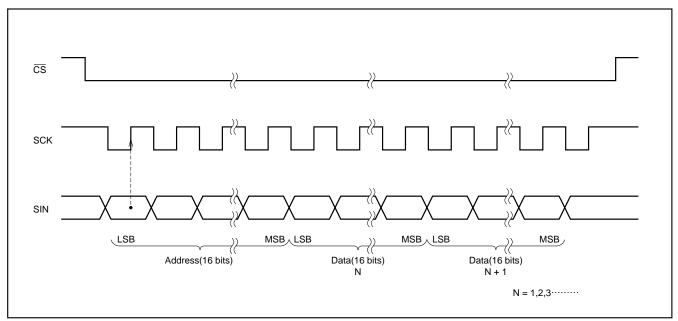


Fig. 11 Serial input timing

TIMING REQUIREMENTS (Ta = -20°C to + 85°C, VDD = 5±0.25V, unless otherwise noted)

Data input

Symbol	Parameter		Limits		Unit	Remarks	
Symbol	i didiffetei	Min.	Тур.	Max.	Offic		
tw(SCK)	SCK width	200	_	_	ns		
tsu(CS)	CS setup time	200	_	_	ns		
th(CS)	CS hold time	2	_	_	μs	Soo Figure 12	
tsu(SIN)	SIN setup time	200	_	_	ns	See Figure 12	
th(SIN)	SIN hold time	200	_	_	ns		
tword	1 word writing time	10	_	_	μs		

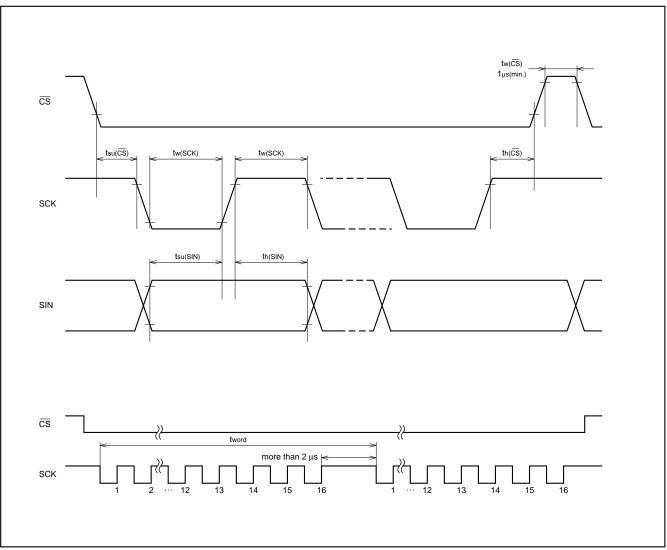


Fig. 12 Serial input timing requirements

ABSOLUTE MAXIMUM RATINGS (VDD = 5.00V, Ta = -20 to +85°C, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
VDD	Supply voltage	With respect to Vss.	-0.3 to +6.0	V
Vı	Input voltage		Vss -0.3 ≤ Vı ≤ VDD +0.3	V
Vo	Output voltage		Vss ≤ Vo ≤ Vdd	V
Pd	Power dissipation	Ta = +25°C	+300	mW
Topr	Operating temperature		-20 to +85	°C
Tstg	Storage temperature		-40 to +125	°C

RECOMMENDED OPERATING CONDITIONS (VDD = 5.00V, Ta = -20 to +85°C, unless otherwise noted)

Symbol		Parameter			Limits					
Symbol		Farameter	Min.	Тур.	Max.	Unit				
VDD	Supply voltage		4.75	5.0	5.25	V				
VIH	"H" level input voltage	SIN, SCK, CS, AC, HOR, VERT	0.85 X VDD	Vdd	VDD	V				
VIL	"L" level input voltage	SIN, SCK, CS, AC, HOR, VERT	0	0	0.2 X VDD	V				
Fosc	Oscillating frequency fo	Oscillating frequency for display			80.0	MHz				
H.sync	Horizontal synchronous	signal input frequeney	15.0	ı	130.0	kHz				

ELECTRICAL CHARACTERISTICS (VDD = 5.00V, Ta = 25°C, unless otherwise noted)

Symbol	Doro	matar	Test conditions			Unit	
Syllibol	Para	meter	Test conditions	Min.	Тур.	Max.	Offic
VDD	Supply voltage		Ta = -20 to +85°C	4.75	5.0	5.25	V
IDD	Supply current		VDD = 5.00V	_	40	60	mA
Mari	(I I) I I I I I	P0 to P7 (Note1)	VDD = 4.75V, IOH = -0.4mA	0.5	_	_	V
Voн	"H" level output voltage	CPOUT	VDD = 4.75V, IOH = -0.05mA	3.5			v
Vol	61 % I I I I I	P0 to P7 (Note2)	VDD = 4.75V, IOL = 0.4mA			0.4	
VOL	"L" level output voltage	CPOUT	VDD = 4.75V, IOL = 0.05mA	_	_	0.4	V
Rı	Pull-up resistance AC,	CS, SCK, SIN	VDD = 5.00V	10	30	100	kΩ
VTCK	External clock input widt	h	4.75V ≤ VDD ≤ 5.25V	0.6 ~VDD	_	0.9 ~VDD	V

Notes 1. The current from the IC must not exceed – 0.4 mA/port at any of the port pins (P0 to P7).

^{2.} The current flowing into the IC must not exceed 0.4 mA/port at any of port pins (P0 to P7).

NOTE FOR SUPPLYING POWER

(1) Timing of power supplying to \overline{AC} pin

The internal circuit of M35072-XXXFP is reset when the level of the auto clear input pin \overline{AC} is "L". This pin in hysteresis input with the pull-up resistor.

The timing about power supplying of \overline{AC} pin is shown in Figure 16.

After supplying the power (VDD and Vss) to M35072-XXXFP and the supply voltage becomes more than 0.8 \times VDD, it needs to keep VIL time; two f the \overline{AC} pin for more than 1ms.

Start inputting from microcomputer after \overline{AC} pin supply voltage becomes more than 0.8 × VDD and keeping 200ms wait time.

(2)Timing of power supplying to VDD1 and VDD2.

Supply power to VDD1 and VDD2 at the same time.

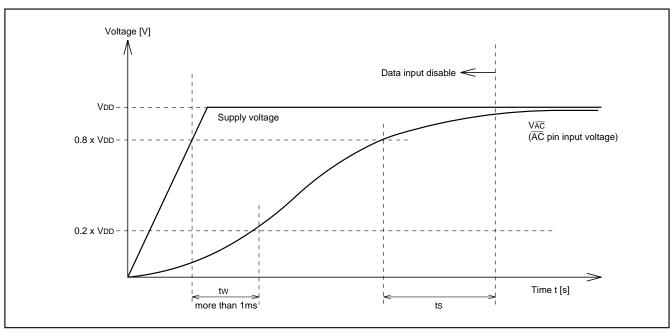
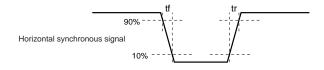


Fig. 13 Timing of power supplying to \overline{AC} pin

PRECAUTION FOR USE


Notes on noise and latch-up

In order to avoid noise and latch-up, connect a bypass capacitor (≈0.1µF) directly between the VDD1 pin and Vss1 pin, and the VDD2 pin and Vss2 pin using a heavy wire.

Note for waveform timing of the horizontal signals to the HOR pin Set horizontal synchronous signal edge* waveform timing to under 5ns and input to HOR pin.

Set only the side which set by B/\overline{F} register waveform timing under 5ns and input to HOR pin.

*: Set front porch edge or back porch edge by B/F register.

DATA REQUIRED FOR MASK ROM ORDERING

Please send the following data for mask orders.

- (1) M35072-XXXFP mask ROM order confirmation form
- (2) 20P2Q-A mask specification from
- (3) ROM data (EPROM 3 sets)
- (4) Floppy disks containing the character font generating program + character data

M35072-XXXFP

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

STANDARD ROM TYPE: M35072-002FP

M35072-002FP is a standard ROM type of M35072-XXXFP. The character patterns for 0 page are fixed to the contents of Figure 14 to 17, the character patterns for page 1 are fixed to the contents of Figure 18 to 21.

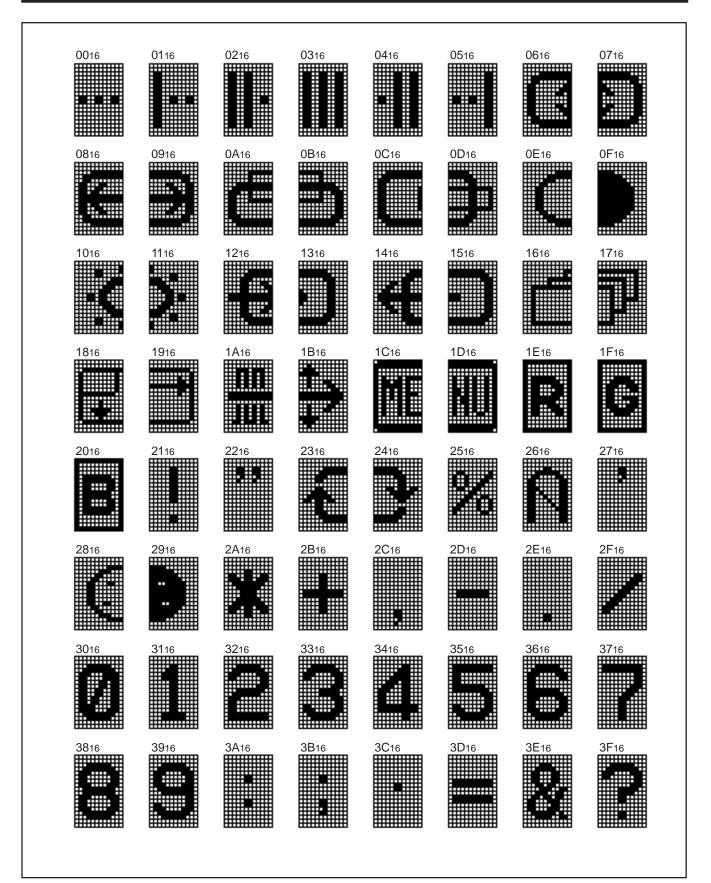


Fig. 14 M35072-002FP character pattern for page 0 (1)

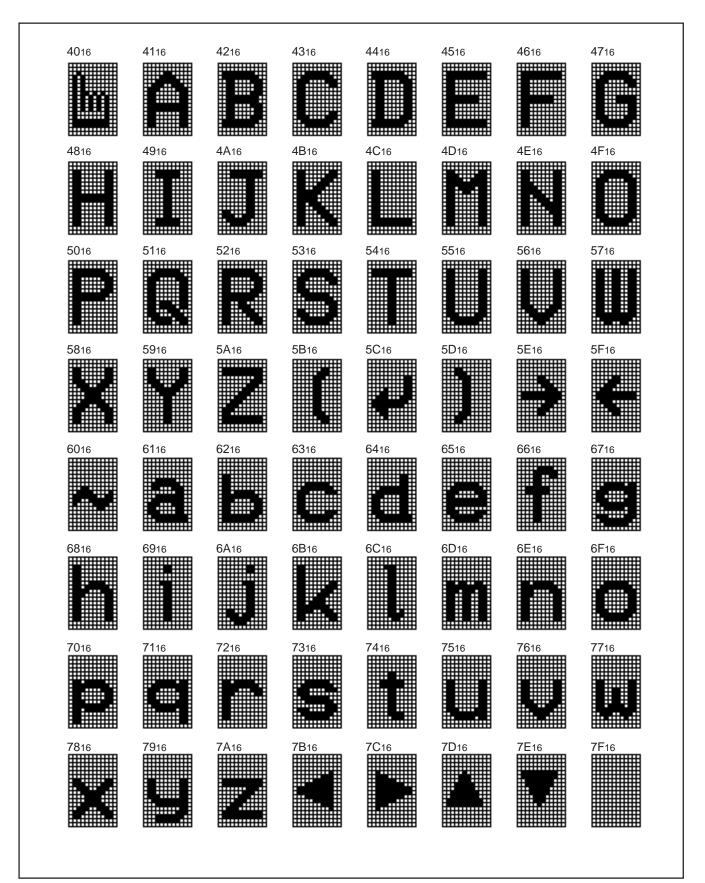


Fig. 15 M35072-002FP character pattern for page 0 (2)

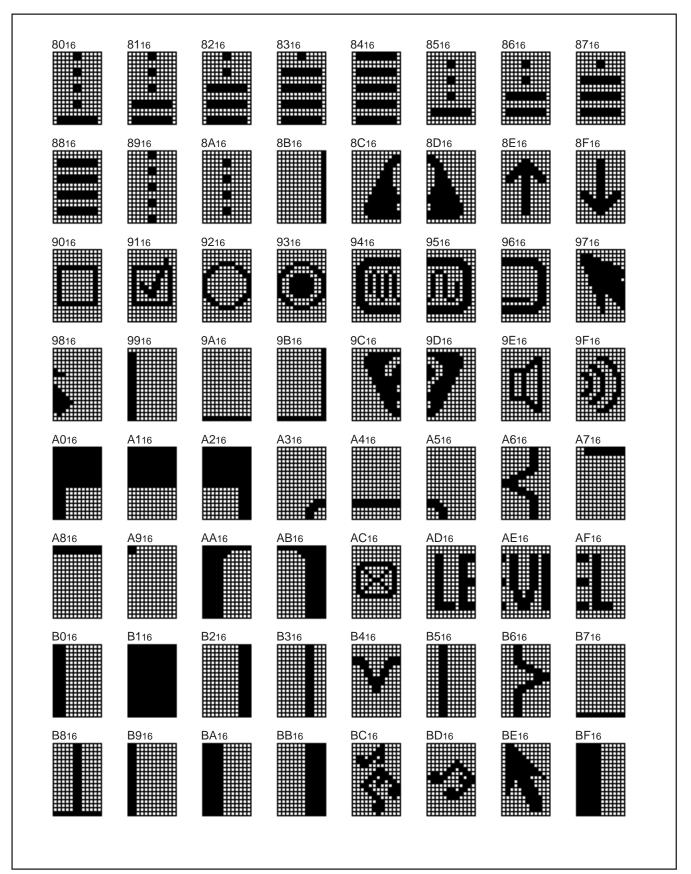


Fig. 16 M35072-002FP character pattern for page 0 (3)

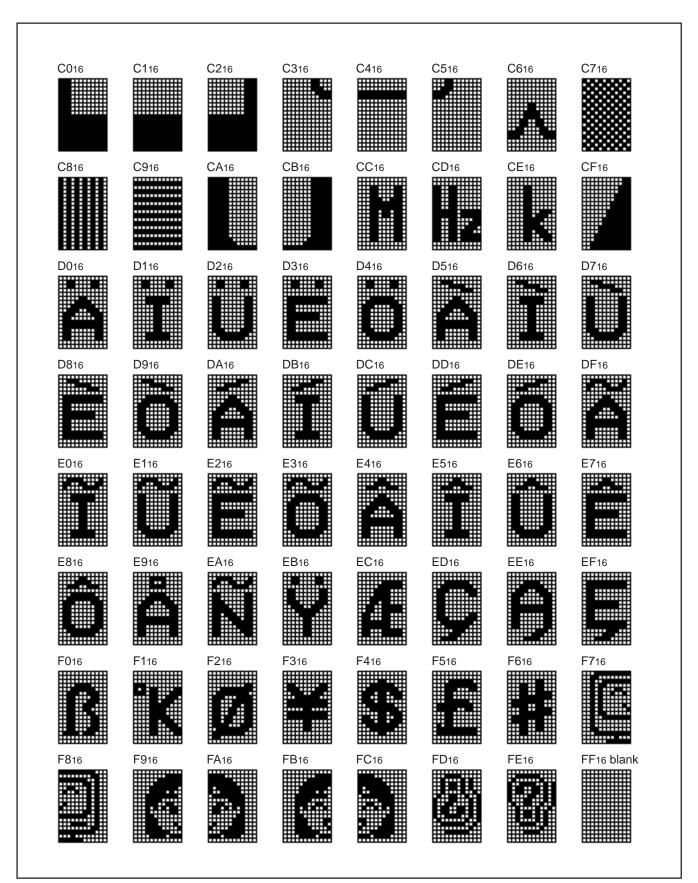


Fig. 17 M35072-002FP character pattern for page 0 (4)

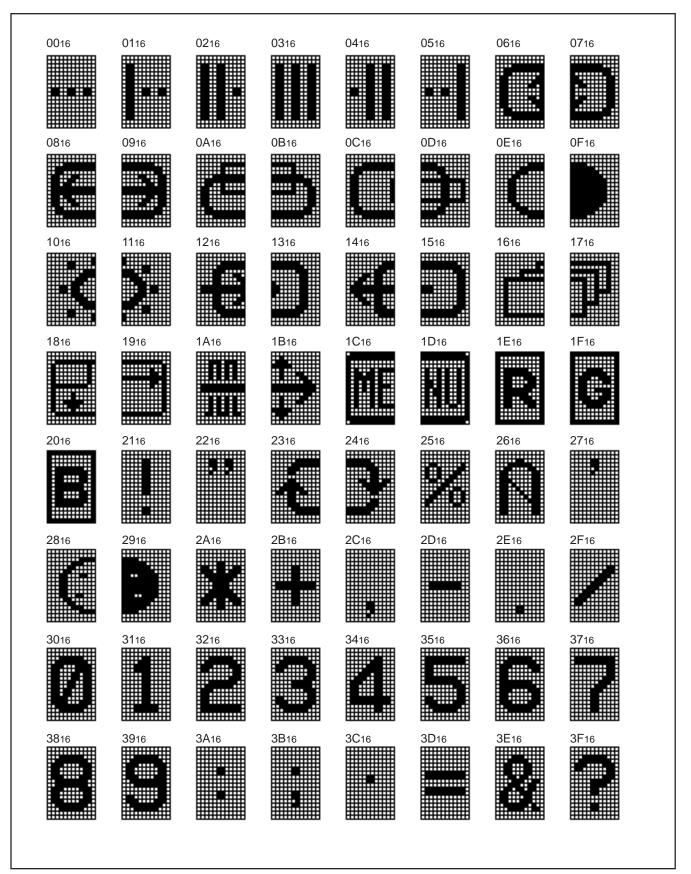


Fig. 18 M35072-002FP character pattern for page 1 (1)

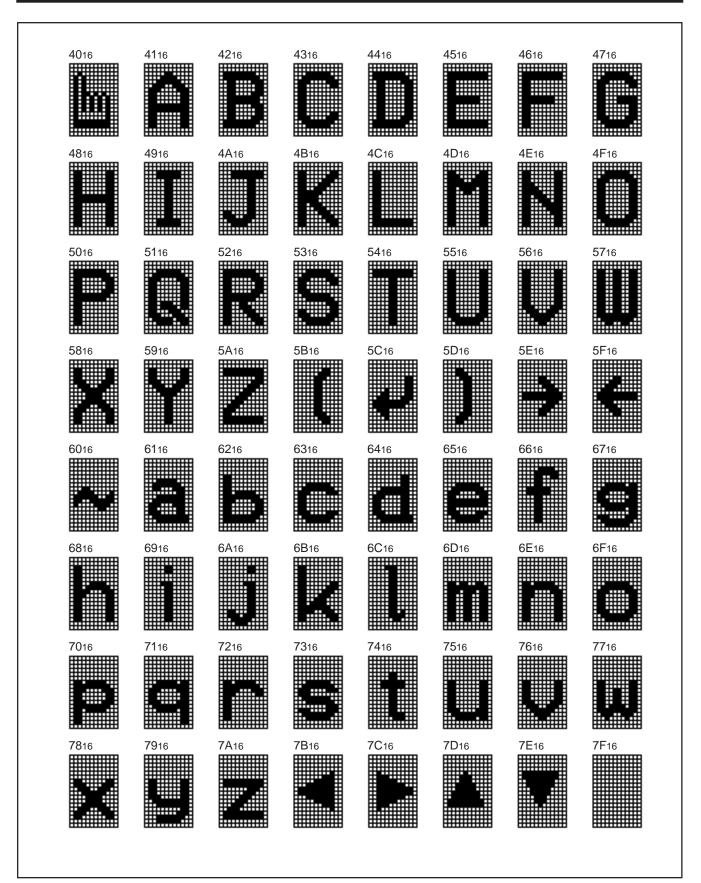


Fig. 18 M35072-002FP character pattern for page 1 (2)

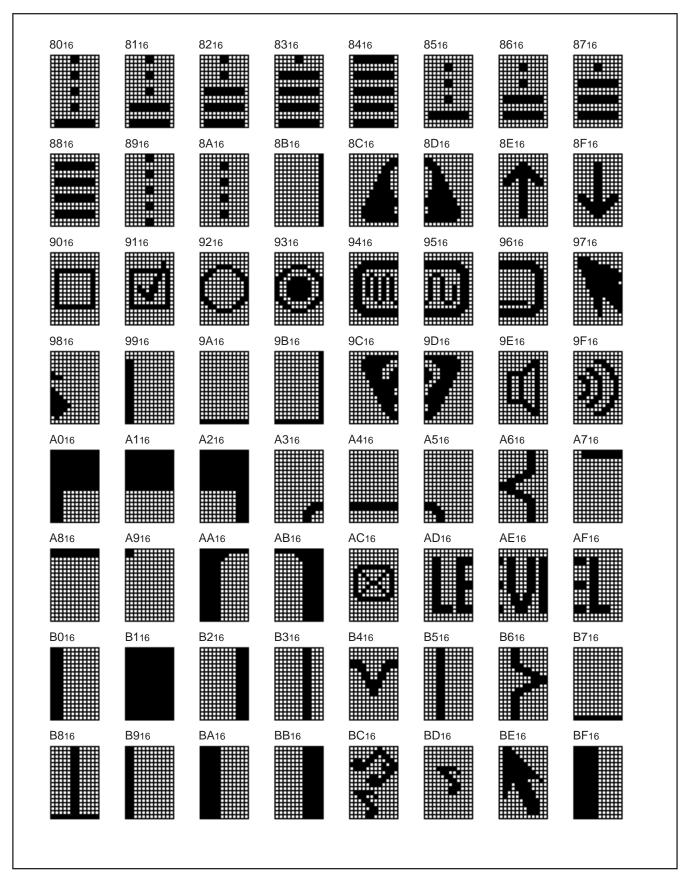


Fig. 19 M35072-002FP character pattern for page 1 (3)

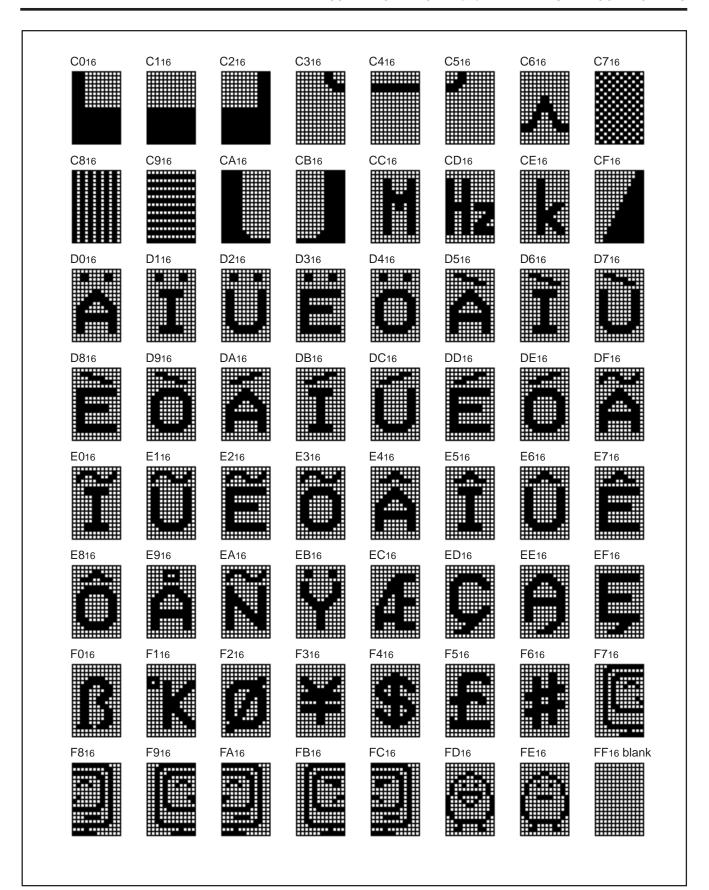
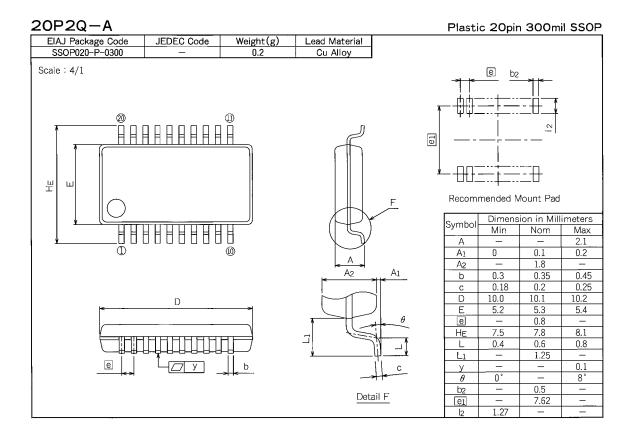



Fig. 21 M35072-002FP character pattern for page 1 (4)

PACKAGE OUTLINE

M35072-XXXFP

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

Renesas Technology Corp.

Nippon Bldg.,6-2,Otemachi 2-chome,Chiyoda-ku,Tokyo,100-0004 Japan

Keep safety first in your circuit designs!

Mitsubish Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.

 Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples
- Misubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

 All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Misubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Misubishi Electric Corporation or an authorized Misubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Misubishi Electric Corporation assumes no responsibility or any damage, liability, or other loss resisting from these inaccuracies or errors. Please also pay attention to information published by Misubishi Electric Corporation assumes, including the Misubishi Electric Corporation assumes no responsibility of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information and products. Misubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

 Misubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Misubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

 Misubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially

- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 Any diversion or reexport contrary to the export control control pass and regulations of Japan and/or the country of destination is prohibited.
 Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

REVISION DESCRIPTION LIST

M35072-XXXFP DATA SHEET

Rev. No.	Revision Description	Rev. date
1.0	First Edition	980402
1.1	P49 20P2Q-A (20-PIN SSOP) MARK SPECIFICATION FORM B: Note 4 added	000707
	P49 20P2Q-A (20-PIN SSOP) MARK SPECIFICATION FORM	