Signetics

74199 Shift Register

8-Bit Parallel-Access Shift Register Product Specification

Logic Products

FEATURES

- Buffered clock and control inputs
- Shift right and parallel load capability
- Fully synchronous data transfers
- J-K (D) inputs to first stage
- Clock enable for hold (do nothing) mode
- Asynchronous Master Reset DESCRIPTION

The functional characteristics of the '199 8-Bit Parallel-Access Shift Register are indicated in the Logic Diagram and Function Table. The device is useful in a wide variety of shifting, counting and storage applications. It performs serial, parallel, serial to parallel, or parallel to serial data transfers at very high speeds.

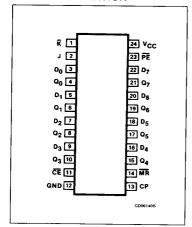
TYPE	TYPICAL fMAX	TYPICAL SUPPLY CURRENT		
74199	35MHz	90mA		

ORDERING CODE

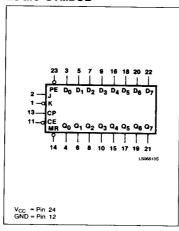
PACKAGES	COMMERCIAL RANGE V _{CC} = 5V ±5%; T _A = 0°C to +70°C
Plastic DIP	N74199N

NOTE:

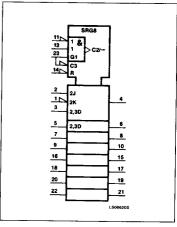
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.


INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

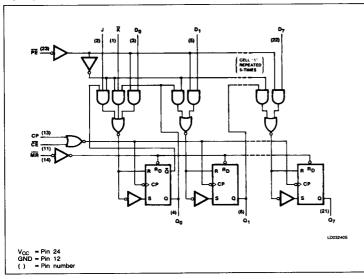
PINS	DESCRIPTION	74
All	Inputs	1ul
Q ₀ – Q ₇	Parallel outputs	10ul


NOTE:

A 74 unit load (uI) is understood to be $40\mu A~I_{IH}$ AND -1.6mA I_{IL}


PIN CONFIGURATION

LOGIC SYMBOL


LOGIC SYMBOL (IEEE/IEC)

December 4, 1985 5-395

853-0545 81500

LOGIC DIAGRAM

MODE SELECT - FUNCTION TABLE

OPERATING MODE			IN	IPUTS					OUTPUTS
	MR	СР	CE	PĒ	J	ĸ	Dn	Q ₀	Q ₁ Q ₆ Q ₇
Reset (clear)	L	х	х	×	Х	х	Х	L	L L L
Shift, set first stage	н	1	ı	h	h	h	х	Н	q ₀ q ₅ q ₆
Shift, reset first stage	н	1	1	h	ı	ı	х	L	q ₀ q ₅ q ₆
Shift, toggle first stage	н	1	1	h	h	i	х	q _o	q ₀ q ₅ q ₆
Shift, retain first stage	Н	1	,	h	ı	h	х	q ₀	q ₀ q ₅ Q ₆
Parallel load	Н	1	1	ı	х	х	d _n	d ₀	d ₁ d ₆ d ₇
Hold (do nothing)	Н	1	h ^(a)	х	×	х	х	qo	q ₁ q ₆ q ₇

H = HIGH voltage level steady state.

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition.

L = LOW voltage level steady state.

I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition.

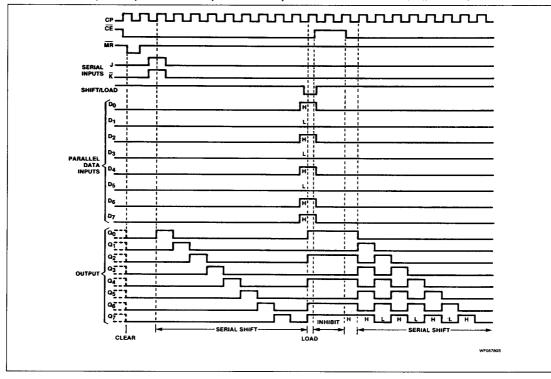
X = Don't care

 $d_n(q_n)$ = Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the LOW-to-HIGH clock transition.

1 = LOW-to-HIGH clock transition.

NOTE:

a. The LOW-to-HIGH transition of $\overline{\text{CE}}$ should only occur while CP is HIGH for conventional operation.


The '199 operates in two primary modes: shift right (Q0 -> Q1) and parallel load, which are controlled by the state of the Parallel Enable (PE) input. Serial data enters the first flip-flop (Q_0) via the J and \overline{K} inputs when the \overline{PE} input is HIGH, and is shifted one bit in the direction $Q_0 \rightarrow Q_1 \rightarrow Q_3$ following each LOW-to-HIGH clock transition. The J and $\overline{\mathsf{K}}$ inputs provide the flexibility of the J-K type input for special applications and, by tying the two pins together, the simple D-type input for general applications. The device appears as eight common clocked D flip-flops when the PE input is LOW. After the LOW-to-HIGH clock transition, data on the parallel inputs $(D_0 - D_7)$ is transferred to the respective Q0-Q7 out-

All parallel and serial data transfers are synchronous, occuring after each LOW-to-HIGH clock transition. The '199 utilizes edge-triggering, therefore, there is no restriction on the activity of the J, K, $D_{\rm n}$, and $\overline{\rm PE}$ inputs for logic operation, other than the set-up and release time requirements.

The clock input is a gated OR structure which allows one input to be used as an active-LOW Clock Enable (\overline{CE}) input. The pin assignment for the CP and \overline{CE} inputs is arbitrary and can be reversed for layout convenience. The LOW-to-HIGH transition of \overline{CE} input should only take place while the CP is HIGH for conventional operation.

A LOW on the Master Reset (MR) input overrides all other inputs and clears the register asynchronously, forcing all bit positions to a LOW state.

TYPICAL CLEAR, LOAD, RIGHT-SHIFT, LEFT-SHIFT, INHIBIT AND CLEAR SEQUENCES

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	74	UNIT
V _{CC}	Supply voltage	7.0	٧
V _{IN}	Input voltage	-0.5 to +5.5	V
I _{IN}	Input current	-30 to +5	mA
V _{OUT}	Voltage applied to output in HIGH output state	-0.5 to +V _{CC}	V
TA	Operating free-air temperature range	0 to 70	°C

RECOMMENDED OPERATING CONDITIONS

	DADAMETED				
	PARAMETER	Min	Nom	Max	UNIT
V _{CC}	Supply voltage	4.75	5.0	5.25	V
V _{IH}	HIGH-level input voltage	2.0			V
V _{IL}	LOW-level input voltage			+0.8	V
l _{IK}	Input clamp current			-12	mA
loн	HIGH-level output current			-800	v
loL	LOW-level output current			16	mA
T _A	Operating free-air temperature	0		70	°C

December 4, 1985

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

PARAMETER						
		TEST CONDITIONS ¹	Min	Typ ²	Max	UNIT
V _{OH}	HIGH-level output voltage	$V_{CC} = MIN$, $V_{IH} = MIN$, $V_{IL} = MAX$, $I_{OH} = MAX$	2.4	3.4		٧
V _{OL}	LOW-level output voltage	$V_{CC} = MIN$, $V_{IH} = MIN$, $V_{IL} = MAX$, $I_{OL} = MAX$		0.2	0.4	٧
V _{IK}	Input clamp voltage	$V_{CC} = MIN$, $I_I = I_{IK}$			-1.5	٧
կ	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5V			1.0	mA
l _{iH}	HIGH-level input current	V _{CC} = MAX, V _I = 2.4V			40	μΑ
I _{IL}	LOW-level input current	V _{CC} = MAX, V _I = 0.4V			-1.6	mA
los	Short-circuit output current ³	V _{CC} = MAX	-18		-57	mA
Icc	Supply current ⁴ (total)	V _{CC} = MAX		90	127	mA

NOTES:

AC ELECTRICAL CHARACTERISTICS TA = 25°C, VCC = 5.0V

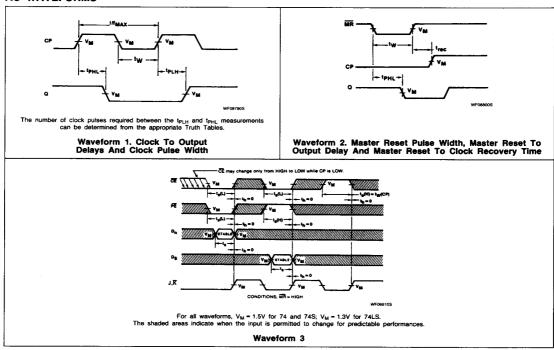
		TEST CONDITIONS	C _L = 15pF,	UNIT	
			Min	Max	
f _{MAX}	Maximum clock frequency	Waveform 1	25		MHz
t _{PLH} t _{PHL}	Propagation delay Clock to output	Waveform 1		26 30	ns
t _{PHL}	Propagation delay	Waveform 2		35	ns

Per industry convention, f_{MAX} is the worst case of the maximum device operating frequency with no constraints on t_{f} , t_{f} , pulse width or duty cycle.

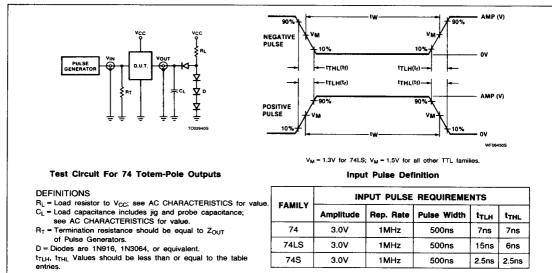
AC SET-UP REQUIREMENTS TA = 25°C, VCC = 5.0V

	PARAMETER	TEST CONDITIONS	7	UNIT	
PARAMEICH		1251 CONDITIONS	Min		Max
tw	Clock pulse width	Waveform 1	20		ns
tw	MR pulse width	Waveform 2	20		ns
ts	Set-up time, J, K and data to clock	Waveform 3	20		ns
th	Hold time, J, K and data to clock	Waveform 3	0		ns
ts	Set-up time, CE to clock	Waveform 3	30		ns
t _h	Hold time, CE to clock	Waveform 3	0		ns
t _s	Set-up time, PE to clock	Waveform 3	30		ns
t _h	Hold time, PE to clock	Waveform 3	0		ns
t _{rec}	Recovery time, MR to clock	Waveform 2	30		ns

December 4, 1985


^{1.} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.

^{2.} All typical values are at $V_{CC} = 5V$, $T_A = 25$ °C.


^{3.} I_{OS} is tested with V_{OUT} = +0.5V and V_{CC} = V_{CC} MAX + 0.5V. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

^{4.} Measure I_{CC} with \overline{K} , J and D inputs at 4.5V, momentary ground clock, then apply 4.5V, ground \overline{CE} , \overline{MR} and \overline{PE} .

AC WAVEFORMS

TEST CIRCUITS AND WAVEFORMS

December 4, 1985