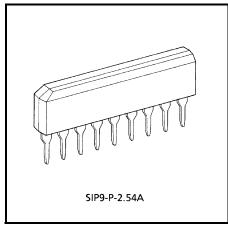
TOSHIBA BIPOLAR DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

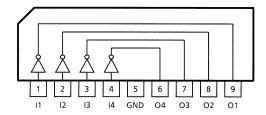
TD62551SG, TD62553SG, TD62554SG, TD62555SG

4CH SINGLE DRIVER: COMMON EMITTER

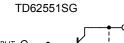

The TD62551SG series are comprised of four NPN transistor arrays.

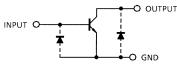
Applications include relay, hammer, lamp and display (LED) drivers.

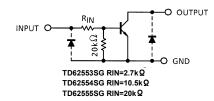
This devices are a product for the Pb free(Sn-Ag).


FEATURES

- Output current (single output) 150 mA (Max)
- High sustaining voltage output 25 V (Min)
- Low saturation voltage VCE (sat) = 0.5 V @IOUT = 50 mA
- Inputs compatible with various types of logic.
- TD62551SG : External
- TD62553SG : $R_{IN} = 2.7 \text{ k}\Omega \dots TTL$, 5 V CMOS
- : $R_{IN} = 10.5 \text{ k}\Omega \dots 6 \sim 15 \text{ V PMOS}$, CMOS • TD62554SG
- TD62555SG: $R_{IN} = 20 \text{ k}\Omega \dots 12 \sim 24 \text{ V PMOS}$
- : SIP-9 pin Package type




Weight: 0.92 g (Typ.)


PIN CONNECTION

SCHEMATICS (EACH DRIVER)

Note: The input and output parasitic diodes cannot be used as clamp diodes.

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Collector-Emitter Voltage	V _{CEO}	25	V
Collector-Base Voltage	V _{CBO}	35	٧
Collector Current	IC	150	mA / ch
Input Voltage	V _{IN} (Note 1)	20	V
Input Current	I _{IN} (Note 2)	10	mA
Power Dissipation	P _D (Note 3)	0.75	W
Operating Temperature	T _{opr}	-40~85	°C
Storage Temperature	T _{stg}	-55~150	°C

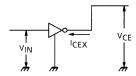
Note 1: Except TD62551SG Note 2: Only TD62551SG

Note 3: Delated above 25°C in the proportion of 6.0mW / °C.

RECOMMENDED OPERATING CONDITIONS (Ta = -40-85°C)

CHARAC	TERISTIC	SYMBOL	CONDITION	MIN	TYP.	MAX	UNIT
Collecter-Emitter \	√oltage	V_{CEO}	_	0	_	25	V
Collecter-Base Vo	ltage	V _{CBO}	_	0	_	35	V
Collector Current	TD62551SG TD62553SG	Ic	_	0	_	100	mA / ch
	TD62554SG			0	_	80	
	TD62555SG			0	_	60	
Input Voltage	TD62553SG TD62554SG TD62555SG	V _{IN}	_	0	_	20	V
Input Current	TD62551SG	I _{IN}	_	0	_	5	mA
Power Dissipation		P _D	_	_	_	0.27	W

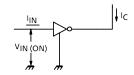
ELECTRICAL CHARACTERISTICS (Ta = 25°C)

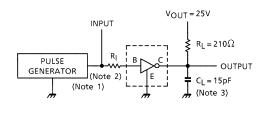

			TEST					
CHARAC	CTERISTIC	SYMBOL	CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Output Leakage C	Current	I _{CEX}	1	V _{CE} = 25 V, V _{IN} = 0 V	_	_	10	μA
Collector-Emitter Saturation Voltage		VCE (sat) 2	2	I _{IN} = 0.5 mA, I _C = 10 mA	_	0.15	0.2	V
			2	I _{IN} = 2.5 mA, I _C = 50 mA	_	0.35	0.5	
DC Current Transfer Ratio	(Note 1)	h _{FE}	2	V _{CE} = 5 V, I _C = 10 mA	60	_	400	
	(Note 2)				50	_	400	_
Input Voltage	TD62553SG	V _{IN (ON)}	3	I _{IN} = 0.5 mA, I _C = 10 mA	1.7	2.1	2.5	
	TD62554SG				4.4	6.0	7.6	V
	Td62555SG				7.7	10.7	13.8	
Turn-On Delay		t _{ON}	4	V_{OUT} = 25 V, R _L = 210 Ω C _L = 15 pF	_	100	_	ns
Turn-Off Delay		t _{OFF}			_	500	_	115

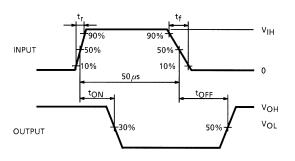
2

Note 1: Except TD62551SG Note 2: Only TD62551SG

TEST CIRCUIT


1. I_{CEX}


2. h_{FE}, V_{CE (sat)}


$$h_{FE} = \frac{I_C}{I_{IN}}$$

3. V_{IN (ON)}

4. ton, toff

Note 1: Pulse Width 50 μ s, Duty Cycle 10% Output Impedance 50 Ω , $t_f \le 5$ ns, $t_f \le 10$ ns

Note 2: See right.

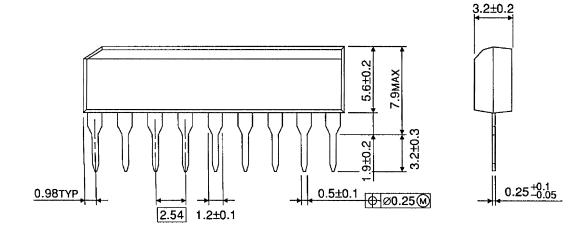
Note 3: C_L includes probe and jig capacitance.

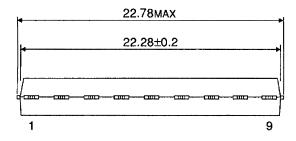
INPUT CONDITION

TYPE NUMBER	R _I	V _{IH}
TD62551SG	2.7 kΩ	3 V
TD62553SG	0 Ω	3 V
TD62554SG	0 Ω	10 V
TD62555SG	0 Ω	14 V

PRECAUTIONS for USING

This IC does not integrate protection circuits such as overcurrent and overvoltage protectors.


Thus, if excess current or voltage is applied to the IC, the IC may be damaged. Please design the IC so that excess current or voltage will not be applied to the IC.


Utmost care is necessary in the design of the output line, VCC and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.

PACKAGE DIMENSIONS

SIP9-P-300-2.54A

Unit: mm

Weight: 0.92 g (Typ.)

4

About solderability, following conditions were confirmed

- Solderability
 - (1) Use of Sn-63Pb solder Bath
 - · solder bath temperature = 230°C
 - · dipping time = 5 seconds
 - · the number of times = once
 - · use of R-type flux
 - (2) Use of Sn-3.0Ag-0.5Cu solder Bath
 - · solder bath temperature = 245°C
 - · dipping time = 5 seconds
 - · the number of times = once
 - · use of R-type flux

RESTRICTIONS ON PRODUCT USE

030619EBA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patent or patent rights of
 TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
 safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
 such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 - In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.