AN8735NSB

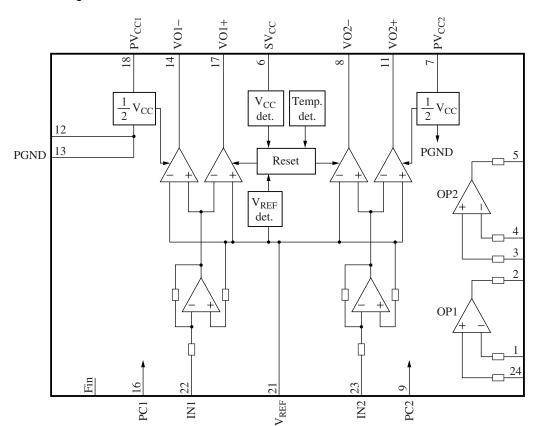
2-channel linear driver IC for CD/CD-ROM player

■ Overview

The AN8735NSB is a 2-channel BTL driver IC for CD/CD-ROM. It is a small package version of the AN8735SB.

■ Features

- 2-channel of D range widening type BTL driver built in
- Optimum to drive a motor actuator
- 2 pieces of exclusive op-amp. built in
- PC (power cut) function
- Thermal shut-down circuit built-in (with hysteresis)


■ Applications

- Car CD player
- CD/CD-ROM player

Note) The package of this product will be changed to lead-free type (HSOP030-P-0300A). See the new package dimensions section later of this datasheet.

■ Block Diagram

■ Pin Descriptions

Pin No.	Description	Pin No.	Description
1	Op-amp. 1: inverted inpuit pin	14	Driver-1 reverse rotation output pin
2	Op-amp. 1: output pin	15	N.C.
3	Op-amp. 2: non-inverted input pin	16	Power cut input pin 1
4	Op-amp. 2: inverted inpuit pin	17	Driver-1 forward rotation output pin
5	Op-amp. 2: output pin	18	Driver power supply pin 1
6	Power supply pin	19	N.C.
7	Driver power supply pin 2	20	N.C.
8	Driver-2 reverse rotation output pin	21	V _{REF} input pin
9	Power cut input pin 2	22	Driver-1 input pin
10	N.C.	23	Driver-2 input pin
11	Driver-2 forward rotation output pin	24	Op-amp. 1: non-inverted input pin
12	Driver GND pin 1	Fin	GND pin
13	Driver GND pin 2		

■ Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	V _{CC}	14.4	V
Supply current	I _{SVCC}	250	mA
	I _{PVCC1} , I _{PVCC2}	800	
Power dissipation *2	P_{D}	390	mW
Operating ambient temperature *1	T_{opr}	-30 to +85	°C
Storage temperature *1	T_{stg}	-55 to +150	°C

Note) *1: Except for the operating ambient temperature and storage temperature, all ratings are for $T_a = 25$ °C.

■ Recommended Operating Range

Parameter	Symbol	Range	Unit
Supply voltage	SV _{CC}	4.5 to 14	V
	PV _{CC1} , PV _{CC2}	3.5 to 14	

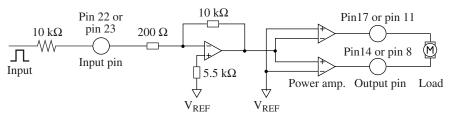
^{*2:} Referring to "■ Usage Notes", use within the range of P_D = 390 mW or less at T_a = 85°C, following the allowable power dissipation characteristic curve of "■ Application Notes".

■ Electrical Characteristics at $SV_{CC} = 12 \text{ V}$, $PV_{CC1} = PV_{CC2} = 5 \text{ V}$, $V_{REF} = 1.65 \text{ V}$, $R_L = 8 \Omega$, $V_{PC1} = 5 \text{ V}$, $V_{PC2} = 5 \text{ V}$, $V_{CC2} = 5 \text{ V}$, $V_{CC3} = 5 \text{ V}$, V_{CC3}

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Current consumption 1 with no signal	I _{SVCC}	$I_{IN1} = I_{IN2} = 0 \mu A, PC1 = PC2 = 0 V$	_	2.5	5	mA
Current consumption 2 with no signal	I _{PVCC1}	$I_{IN1} = I_{IN2} = 0 \mu A, PC1 = 0 V$	_	0.3	1	mA
Current consumption 3 with no signal	I _{PVCC2}	$I_{IN1} = I_{IN2} = 0 \mu A, PC2 = 0 V$	_	0.3	1	mA
Driver 1, 2 $R_{L1} = R_{L2} = 8$	Ω					
Output offset voltage	V _{DROF}	$I_{IN1} = I_{IN2} = 0 \ \mu A$	-65	0	65	mV
Gain (+)	G ₁₊	$R_{IN1} = R_{IN2} = 10 \text{ k}\Omega,$ $V_{IN} = V_{REF} \pm 50 \text{ mV}$	21.5	22.9	24.3	dB
Relative gain (+/–)	G_1		- 0.7	_	+0.7	dB
Maximum output amplitude (+)	V_{L1+}	$V_{IN} = 3.3 \text{ V}$	3.8	4.25		V
Maximum output amplitude (-)	V_{L1-}	$V_{IN} = 0 V$	_	-4.25	-3.8	V
Op-amp. 1, 2						
Input offset voltage	V _{OPOF}	SV _{CC} = 12 V	-10	0	10	mV
Input bias current	I_{BOP}	SV _{CC} = 12 V	-2	- 0.5	0	μΑ
High-level output voltage	V _{OH}	$SV_{CC} = 12 \text{ V}, I_{OP} = +2 \text{ mA}$	10	_	_	V
Low-level output voltage	V _{OL}	$SV_{CC} = 12 \text{ V}, I_{OP} = -2 \text{ mA}$	_	_	0.9	V
Output driving current sink	I _{SIN}	SV _{CC} = 12 V	2.0	_	_	mA
Output driving current source	I_{SOU}	$SV_{CC} = 12 \text{ V}$	2.0	_	_	mA
Power cut operation						
PC1 threshold high-level voltage	V _{PC1H}	SV _{CC} = 12 V	2.9	_	_	V
PC1 threshold low-level voltage	V _{PC1L}	SV _{CC} = 12 V	_	_	1.0	V
PC2 threshold high-level voltage	V _{PC2H}	SV _{CC} = 12 V	2.9	_		V
PC2 threshold low-level voltage	V _{PC2L}	SV _{CC} = 12 V	_	_	1.0	V
PC1 input current	I _{PC1}	$SV_{CC} = 12 \text{ V}, PC1 = 5 \text{ V}$	_	70	140	μΑ
PC2 input current	I _{PC2}	$SV_{CC} = 12 \text{ V}, PC2 = 5 \text{ V}$	_	70	140	μΑ
Reset circuit						
Reset operation release supply voltage	V _{RST}		_	_	4.5	V
V _{REF} detection voltage	V _R		1.35	_	_	V

■ Electrical Characteristics at $SV_{CC} = 12 \text{ V}$, $PV_{CC1} = PV_{CC2} = 5 \text{ V}$, $V_{REF} = 1.65 \text{ V}$, $R_L = 8 \Omega$, $V_{PC1} = 5 \text{ V}$, $V_{PC2} = 5 \text{ V}$, $V_{A} = 25 ^{\circ}\text{C}$ (continued)

• Design reference data


Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Thermal protection circuit	Thermal protection circuit						
Operating temperature equilibrium value	T _{THD}		_	160	_	°C	
Operating temperature hysteresis width	ΔT_{THD}			45		°C	
Supply voltage detection hysteresis width	ΔV_{HD}			0.2		V	

■ Usage Notes

- Be sure to use SV_{CC} in the maximum potential.
 Otherwise, it is likely to cause an operating error.
- 2. On driver gain setting,

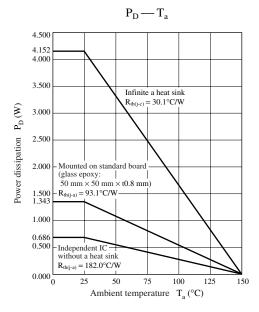
Power amp. voltage gain: 23 dB

- 3. On operating mode of mute,
 - 1) Driver

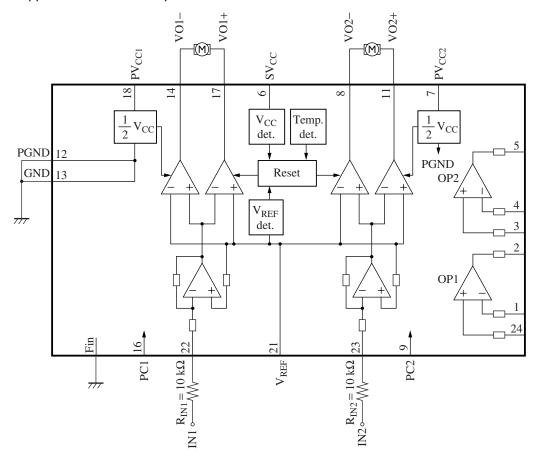
	PC1		PC2		
	High	Low (open)	High	Low (open)	
Channel 1	Active	Mute	_	_	
Channel 2	_	_	Active	Mute	

2) General-use op-amp.

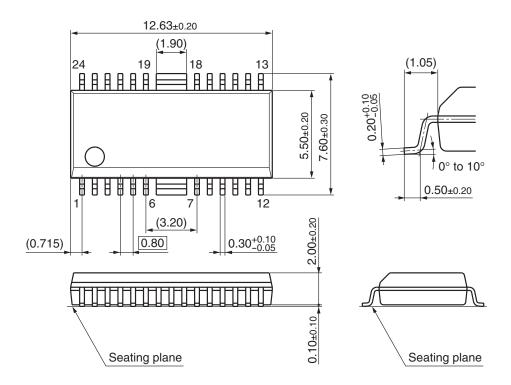
		PC1		
		High	Low (open)	
PC2	PC2 High		Active	
	Low (open)	Active	Mute	


4. Appropriate care should be taken on the characteristics.

When changing an external circuit constant on actual use, secure an appropriate margin in consideration of characteristic fluctuation of external parts and our ICs including transient characteristics as well as static ones.


- 5. Avoid the short-circuits between output pin and V_{CC} , output pin and GND (line-to-supply and line-to-ground), and between output pins (load short-circuit). Otherwise, the IC is likely to emit smoke and break down.
- 6. An appropriate prior study should be done for use of dip soldering.

■ Application Notes


 \bullet P_D — T_a curves of HSOP030-P-0300

■ Application Circuit Example

- New Package Dimensions (Unit: mm)
- HSOP030-P-0300A (Lead-free package)

Request for your special attention and precautions in using the technical information and semiconductors described in this material

- (1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
- (2) The technical information described in this material is limited to showing representative characteristics and applied circuit examples of the products. It does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license.
- (3) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (4) The products and product specifications described in this material are subject to change without notice for reasons of modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment.
 Even when the products are used within the guaranteed values, redundant design is recommended, so that such equipment may not violate relevant laws or regulations because of the function of our products.
- (6) When using products for which dry packing is required, observe the conditions (including shelf life and after-unpacking standby time) agreed upon when specification sheets are individually exchanged.
- (7) No part of this material may be reprinted or reproduced by any means without written permission from our company.

Please read the following notes before using the datasheets

- A. These materials are intended as a reference to assist customers with the selection of Panasonic semiconductor products best suited to their applications.
 - Due to modification or other reasons, any information contained in this material, such as available product types, technical data, and so on, is subject to change without notice.
 - Customers are advised to contact our semiconductor sales office and obtain the latest information before starting precise technical research and/or purchasing activities.
- B. Panasonic is endeavoring to continually improve the quality and reliability of these materials but there is always the possibility that further rectifications will be required in the future. Therefore, Panasonic will not assume any liability for any damages arising from any errors etc. that may appear in this material.
- C. These materials are solely intended for a customer's individual use.

 Therefore, without the prior written approval of Panasonic, any other use such as reproducing, selling, or distributing this material to a third party, via the Internet or in any other way, is prohibited.