

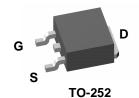
FDD6670S

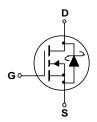
30V N-Channel PowerTrench^Ò SyncFET[™]

General Description

The FDD6670S is designed to replace a single MOSFET and Schottky diode in synchronous DC:DC power supplies. This 30V MOSFET is designed to maximize power conversion efficiency, providing a low $R_{\rm DS(ON)}$ and low gate charge. The FDD6670S includes an integrated Schottky diode using Fairchild's monolithic SyncFET technology. The performance of the FDD6670S as the low-side switch in a synchronous rectifier is indistinguishable from the performance of the FDD6670A in parallel with a Schottky diode.

Applications


- DC/DC converter
- Motor Drives


Features

• 64 A, 30 V $R_{DS(ON)} = 9 \ m\Omega \ @ \ V_{GS} = 10 \ V$ $R_{DS(ON)} = 12.5 \ m\Omega \ @ \ V_{GS} = 4.5 \ V$

- Includes SyncFET Schottky body diode
- Low gate charge (17nC typical)
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- · High power and current handling capability

•

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		30	V
V _{GSS}	Gate-Source Voltage		±20	V
I _D	Drain Current - Continuous	(Note 3)	64	А
	- Pulsed	(Note 1a)	100	
P _D	Power Dissipation	(Note 1)	70	W
		(Note 1a)	3.2	
		(Note 1b)	1.3	
T _J , T _{STG}	Operating and Storage Junction Temp	erature Range	-55 to +150	°C

Thermal Characteristics

R _{eJC}	Thermal Resistance, Junction-to-Case	(Note 1)	1.8	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	40	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1b)	96	°C/W

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
FDD6670S	FDD6670S	13"	16mm	2500 units

Symbol	Parameter Test Conditions		Min	Тур	Max	Units
Drain-Sc	ource Avalanche Ratings (Note	2)	ı		I	
W _{DSS}	Drain-Source Avalanche Energy	Single Pulse, V _{DD} = 15 V, I _D =14A			245	mJ
I _{AR}	Drain-Source Avalanche Current				14	Α
Off Char	acteristics		•	•		
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	30			V
ΔBV _{DSS} ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 10 mA, Referenced to 25°C		19		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, \qquad V_{GS} = 0 \text{ V}$			500	μΑ
I _{GSSF}	Gate-Body Leakage, Forward	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	1	2	3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I _D = 10 mA, Referenced to 25°C		-3.3		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$\begin{aligned} &V_{GS} = 10 \text{ V}, & I_D = 13.8 \text{ A} \\ &V_{GS} = 4.5 \text{ V}, & I_D = 11.7 \text{ A} \\ &V_{GS} = 10 \text{ V}, I_D = 13.8 \text{A}, T_J = 125 ^{\circ}\text{C} \end{aligned}$		6 9 10	9 12.5 15	mΩ
I _{D(on)}	On-State Drain Current	$V_{GS} = 10 \text{ V}, \qquad V_{DS} = 5 \text{ V}$	50			Α
g _{FS}	Forward Transconductance	V _{DS} = 15 V, I _D = 13.8 A		27		S
Dvnamic	Characteristics		•	•	•	
C _{iss}	Input Capacitance	$V_{DS} = 15 \text{ V}, \qquad V_{GS} = 0 \text{ V},$		2010		pF
Coss	Output Capacitance	f = 1.0 MHz		526		pF
C _{rss}	Reverse Transfer Capacitance			186		pF
Switchin	g Characteristics (Note 2)		•	•	•	
t _{d(on)}	Tum-On Delay Time	$V_{DS} = 15 \text{ V}, \qquad I_{D} = 1 \text{ A},$		10	18	ns
t _r	Turn-On Rise Time	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		10	18	ns
t _{d(off)}	Turn-Off Delay Time			34	55	ns
t _f	Tum-Off Fall Time	1		14	23	ns
Q _g	Total Gate Charge	$V_{DS} = 15 \text{ V}, \qquad I_{D} = 13.8 \text{ A},$		17	24	nC
Q_{gs}	Gate-Source Charge	V _{GS} = 10 V		6.2		nC
Q_{gd}	Gate-Drain Charge			5.5		nC
Drain-Se	ource Diode Characteristics					
V_{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 3.5 \text{ A} \text{(Note 2)} $ $V_{GS} = 0 \text{ V}, I_S = 7 \text{ A} \text{(Note 2)} $		0.49 0.56	0.7	V
t _{rr}	Diode Reverse Recovery Time	I _F = 3.5 A,		20		nS
Q _{rr}	Diode Reverse Recovery Charge	$d_{iF}/d_t = 300 \text{ A/}\mu\text{s} \qquad \text{(Note 3)}$		19.7		nC

Electrical Characteristics

T_A = 25°C unless otherwise noted

Notes

1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a) $R_{\theta,JA} = 40$ °C/W when mounted on a 1in^2 pad of 2 oz copper

b) $R_{\theta JA} = 96$ °C/W when mounted on a minimum pad.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width < $300\mu s$, Duty Cycle < 2.0%

3. Maximum current is calculated as: $\sqrt{\frac{P_D}{R_{DS(ON)}}}$

where P_D is maximum power dissipation at $T_C = 25^{\circ}C$ and $R_{DS(cn)}$ is at $T_{J(max)}$ and $V_{GS} = 10V$. Package current limitation is 21A

Typical Characteristics

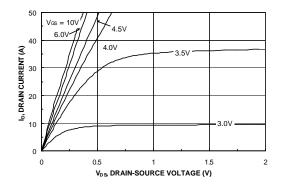


Figure 1. On-Region Characteristics.

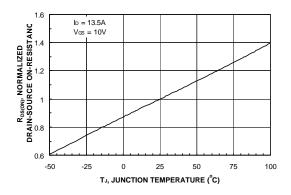


Figure 3. On-Resistance Variation with Temperature.

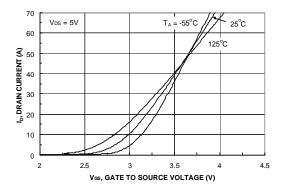


Figure 5. Transfer Characteristics.

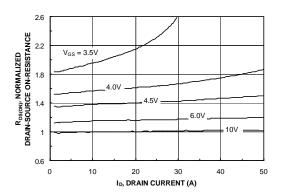


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

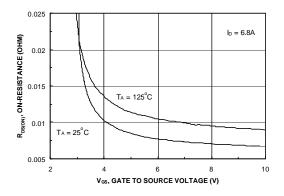


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

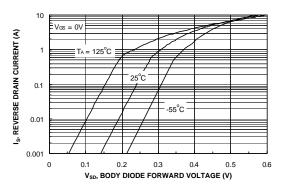



Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics (continued)

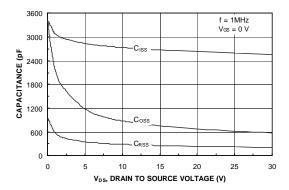
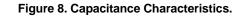



Figure 7. Gate Charge Characteristics.

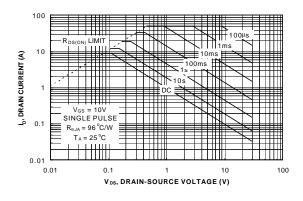


Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.

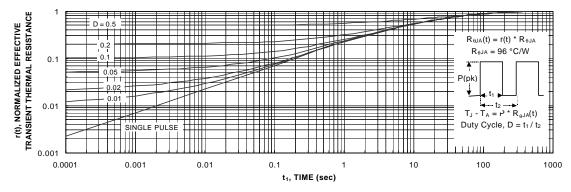


Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

Typical Characteristics (continued)

SyncFET Schottky Body Diode Characteristics

Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 12 shows the reverse recovery characteristic of the FDD6670S.

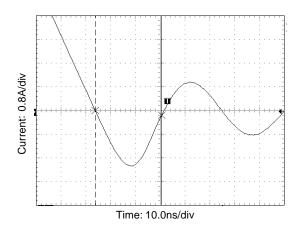


Figure 12. FDD6670S SyncFET body diode reverse recovery characteristic.

For comparison purposes, Figure 13 shows the reverse recovery characteristics of the body diode of an equivalent size MOSFET produced without SyncFET (FDD6670A).

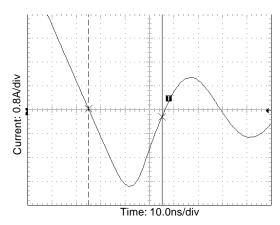


Figure 13. Non-SyncFET (FDD6670A) body diode reverse recovery characteristic.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

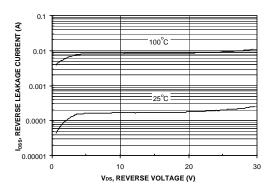
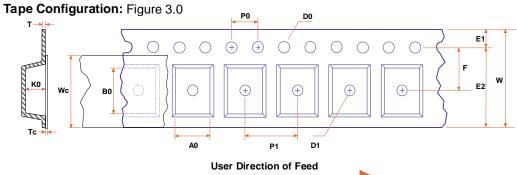


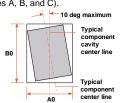
Figure 14. SyncFET body diode reverse leakage versus drain-source voltage and temperature.


TO-252 (DPAK) Tape and Reel Data FAIRCHILD SEMICONDUCTOR® TO-252 (DPAK) Packaging Configuration: Figure 1.0 ATTENTION Packaging Description: Packaging Description: TO-252 parts are shipped in tape. The carrier tape is made from a dissipative (carbon filled) polycarbonate resin. The cover tape is a multilayer film which comes either in HAA (Heat Activated Adhesive) - PSA (Pressure Sensitive Adhesive). HAA is primarily composed of polyester film, adhesive layer, sealant, and anti-static sprayed agent. PSA is composed of transparent polyester backing film, pressure sensitive synthetic polymer (adhesive), and metallized transparent conductive polyester film on the inner face. Embossed ESD Marking Antistatic Cover Tape These reeled parts in standard option are shipped with 2500 units per 13" or 330cm diameter reel. The reels are dark blue in color and is made of polystyrene plastic (artistatic cated.). This and some other options are further described in the Packaging Information table. These full reels are individually barcode labeled and placed inside a standard intermediate box (illustrated in figure 1.0) made of recyclable corrugated brown paper. One box contains two reels maximum. And these boxes are placed inside a barcode labeled shipping box which comes in different sizes depending on the number of parts shipped. Static Dissipative **Embossed Carrier Tape** F63TNR Label DPAK (TO-252) Packaging Information Standard Packaging Option (no flow code) TO-252 (DPAK) Unit Orientation Packaging type Qty per Ree I/Tube/Bag 2,500 Barcode Label Reel Size 13" Dia Box Dimension(mm) 355x333x40 Maxqty per Box 5,000 Weightper unit(gm) 0.300 Weightper Reel(kg) 1.200 Note/Comments Barcode Label 355mm x 333mm x 40mm Barcode Label sample Intermediate container for 13" reel option CBVK741B019 3000 3000 FDD6680 D/C1: Z9942ab QTY1: SPEC REV: D/C2: QTY2: CPN: FAIRCHILD SEMICONDUCTOR CORPORATION TO-252 (DPAK) TapeLeader and Trailer Configuation: Figure 2.0 0 0 0 V111-11-N 0 8----71)---(| | | | Carrier Tape Components Trailer Tape Leader Tape

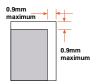
1520mm minimum or 190 empty pockets

360mm minimum or 45 empty pockets

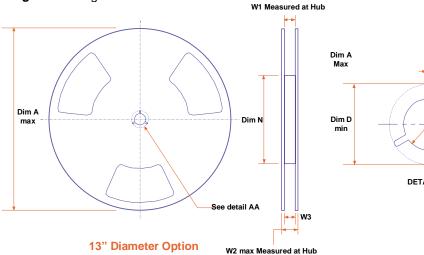
TO-252 (DPAK) Embossed Carrier



	Dimensions are in millimeter													
Pkg type	Α0	В0	w	D0	D1	E1	E2	F	P1	P0	K0	Т	Wc	Тс
TO-252 (16mm)	6.90 +/-0.10	10.50 +/-0.10	16.0 +/-0.3	1.55 +/-0.05	1.5 +/-0.10	1.75 +/-0.10	14.25 min	7.50 +/-0.10	8.0 +/-0.1	4.0 +/-0.1	2.65 +/-0.10	0.30 +/-0.05	13.0 +/-0.3	0.06 +/-0.02


Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

Sketch A (Side or Front Sectional View)
Component Rotation

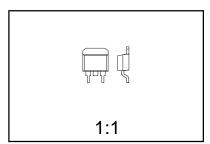

Sketch B (Top View)
Component Rotation

Sketch C (Top View)

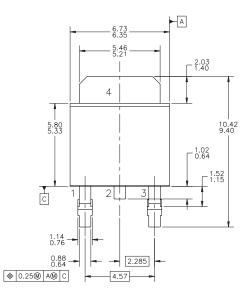
Component lateral movement

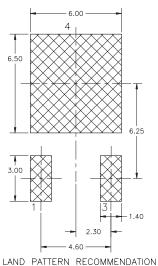
TO-252 (DPAK) Reel Configuration: Figure 4.0

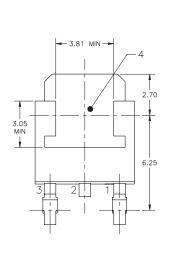
Dim A Max	→ e B Min
Dim D min	Dim C
	DETAIL AA

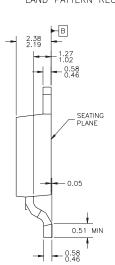

	Dimensions are in inches and millimeters								
Tape Size	Reel Option	Dim A	Dim B	Dim C	Dim D	Dim N	Dim W1	Dim W2	Dim W3 (LSL-USL)
164mm	13" Dia	13.00 330	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	4.00 100	0.646 +0.078/-0.000 16.4 +2/0	0.882 22.4	0.626 - 0.764 15.9 - 19.4

TO-252 Package Dimensions


TO-252 (FS PKG Code 36)






Scale 1:1 on letter size paper
Dimensions shown below are in:
inches [millimeters]

Part Weight per unit (gram): 0.300

NOTES: UNLESS OTHERWISE SPECIFIED

- A) ALL DIMENSIONS ARE IN MILLIMETERS.
- B) THIS PACKAGE CONFORMS TO JEDEC, TO-252, ISSUE B, VARIATION AB, ITEM 10.268, DATED SEPTEMBER 1988.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

SMART START™ VCX^{TM} FAST ® OPTOLOGIC™ STAR*POWER™ FASTr™ Bottomless™ OPTOPLANAR™ Stealth™ CoolFET™ FRFET™ PACMAN™ SuperSOT™-3 CROSSVOLT™ GlobalOptoisolator™ POP™ SuperSOT™-6 DenseTrench™ GTO™ Power247™ $HiSeC^{TM}$ SuperSOT™-8 $Power Trench^{\, @}$ DOME™ SyncFET™ EcoSPARK™ ISOPLANAR™ QFET™ TinyLogic™ E²CMOSTM LittleFET™ OS^{TM} EnSigna™ MicroFET™ TruTranslation™ QT Optoelectronics™

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. H4