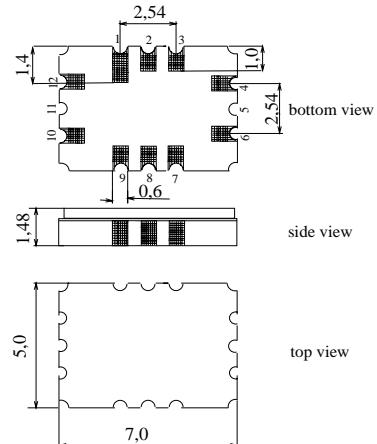


SAW Components

Data Sheet B3802

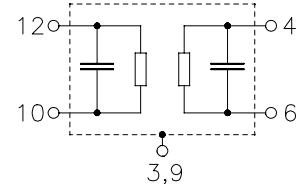
Data Sheet


A large, stylized, italicized white text "EPCOS" is overlaid on a dark, textured background. The background features a faint, glowing globe and a series of concentric, light-colored bands that suggest motion or signal propagation. The overall aesthetic is high-tech and dynamic.

SAW Components
B3802
Low-Loss Filter
110,0 MHz
Data Sheet
Ceramic package QCC12C
Features

- Low-loss IF filter
- Balanced or unbalanced operation
- Ceramic package for Surface Mounted Technology (**SMT**)

Terminals


- Ni, Gold-plated

Dimensions in mm, approx. weight 0,25

Pin configuration

12	Input
10	Balance input or input ground
4	Output
6	Balance output or output ground
1, 2, 7, 8	Ground
3, 9	Case ground

Type	Ordering code	Marking and Package according to	Packing according to
B3802	B39111-B3802-H310	C61157-A7-A95	F61074-V8170-Z000

Electrostatic Sensitive Device (ESD)
Maximum ratings

Operable temperature range	T	-40/+85	°C	
Storage temperature range	T_{stg}	-40/+85	°C	
DC voltage	V_{DC}	0	V	
Source power	P_s	10	dBm	

SAW Components	B3802
Low-Loss Filter	110,0 MHz

Data Sheet
Characteristics

Operating temperature:

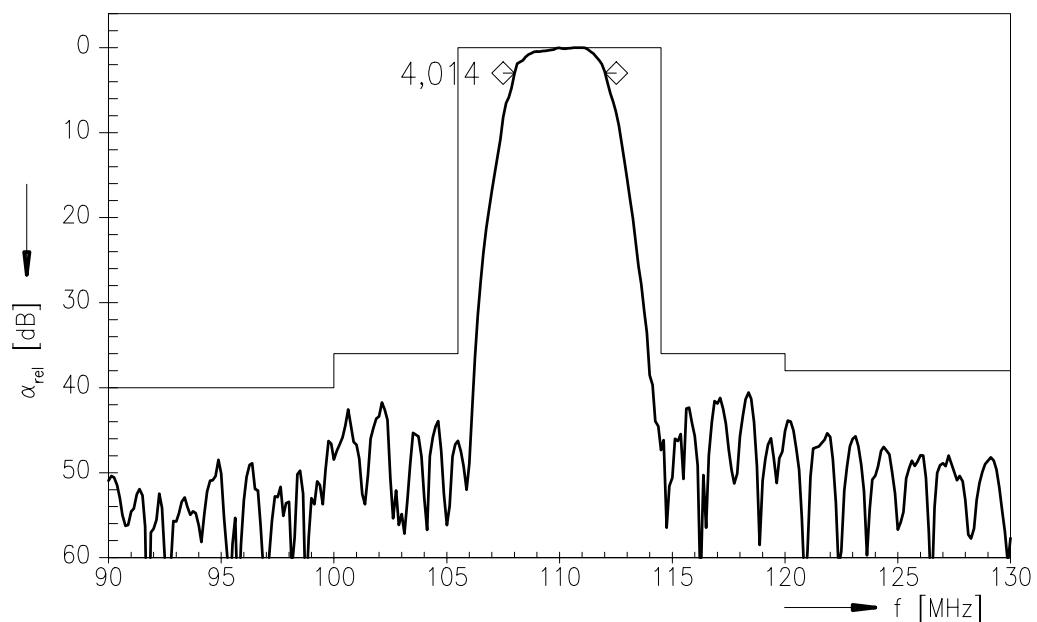
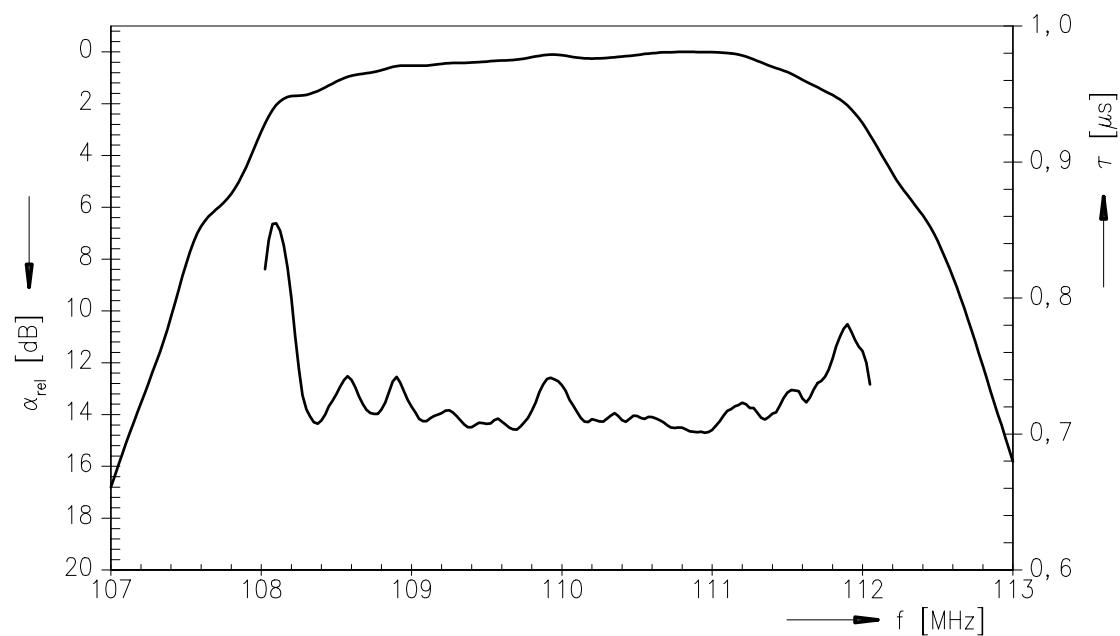
$T = 25^{\circ}\text{C}$

Terminating source impedance:

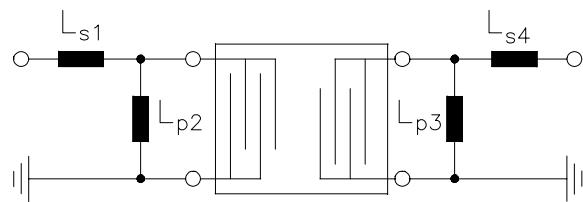
$Z_S = 50 \Omega$ and matching network

Terminating load impedance:

$Z_L = 50 \Omega$ and matching network



			min.	typ.	max.	
Center frequency	f_C		109,9	110,0	110,1	MHz
Minimum insertion attenuation	α_{\min}		—	6,8	10,0	dB
Pass bandwidth	$\alpha_{\text{rel}} \leq 3,0 \text{ dB}$	$B_{3\text{dB}}$	3,75	4,0	—	MHz
	$\alpha_{\text{rel}} \leq 1,0 \text{ dB}$	$B_{1\text{dB}}$	—	3,1	—	MHz
Amplitude ripple (max peak to adjacent valley)	$\Delta\alpha$		—	0,5	—	dB
	$f_C \pm 1,6 \text{ MHz}$		—	0,5	—	dB
Group delay ripple		$\Delta\tau$	—	45	80	ns
	$f_C \pm 1,6 \text{ MHz}$		—	45	80	ns
Relative attenuation (relative to α_{\min})	α_{rel}					
60,0 MHz ... 100,0 MHz			40	42	—	dB
100,0 MHz ... 105,5 MHz			36	41	—	dB
114,5 MHz ... 120,0 MHz			36	41	—	dB
120,0 MHz ... 160,0 MHz			38	43	—	dB
Temperature coefficient of frequency	TC_f		—	-18	—	ppm/K

SAW Components	B3802
Low-Loss Filter	110,0 MHz


Data Sheet
Characteristics

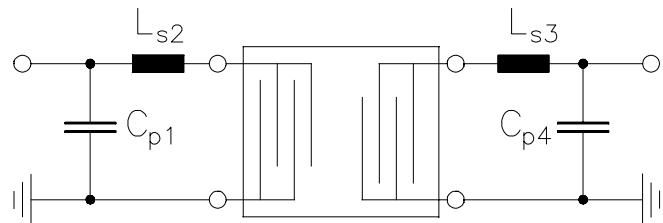
Operating temperature: $T = -10 \dots 70^\circ\text{C}$
 Terminating source impedance: $Z_S = 50 \Omega$ and matching network
 Terminating load impedance: $Z_L = 50 \Omega$ and matching network

			min.	typ.	max.	
Center frequency	f_C		109,8	110,0	110,18	MHz
Minimum insertion attenuation	α_{\min}		—	6,8	10,0	dB
Pass bandwidth	$\alpha_{\text{rel}} \leq 3,0 \text{ dB}$	$B_{3\text{dB}}$	3,75	4,0	—	MHz
	$\alpha_{\text{rel}} \leq 1,0 \text{ dB}$	$B_{1\text{dB}}$	—	3,1	—	MHz
Amplitude ripple (max peak to adjacent valley)	$\Delta\alpha$		—	0,5	—	dB
	$f_C \pm 1,6 \text{ MHz}$		—	0,5	—	dB
Group delay ripple		$\Delta\tau$	—	45	80	ns
	$f_C \pm 1,6 \text{ MHz}$		—	45	80	ns
Relative attenuation (relative to α_{\min})	α_{rel}					
60,0 MHz ... 100,0 MHz			40	42	—	dB
100,0 MHz ... 105,5 MHz			36	41	—	dB
114,5 MHz ... 120,0 MHz			36	41	—	dB
120,0 MHz ... 160,0 MHz			38	43	—	dB
Temperature coefficient of frequency	TC_f		—	-18	—	ppm/K

SAW Components
B3802
Low-Loss Filter
110,0 MHz
Data Sheet
Normalized frequency response

Normalized frequency response (pass band)

SAW Components
B3802
Low-Loss Filter
110,0 MHz
Data Sheet
Matching network (element values may depend on pcb layout)


50 Ω unbalanced:

$$L_{s1} = 82 \text{ nH}$$

$$L_{p2} = 47 \text{ nH}$$

$$L_{p3} = 33 \text{ nH}$$

$$L_{s4} = 12 \text{ nH}$$

50 Ω unbalanced : (higher IL, but more attenuation in the upper stopband)

$$C_{p1} = 100 \text{ nF}$$

$$L_{s2} = 56 \text{ nH}$$

$$L_{s3} = 56 \text{ nH}$$

$$C_{p4} = 68 \text{ nF}$$

SAW Components

B3802

Low-Loss Filter

110,0 MHz

Data Sheet

Published by EPCOS AG

Surface Acoustic Wave Components Division, SAW MC WT

P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2002. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.