

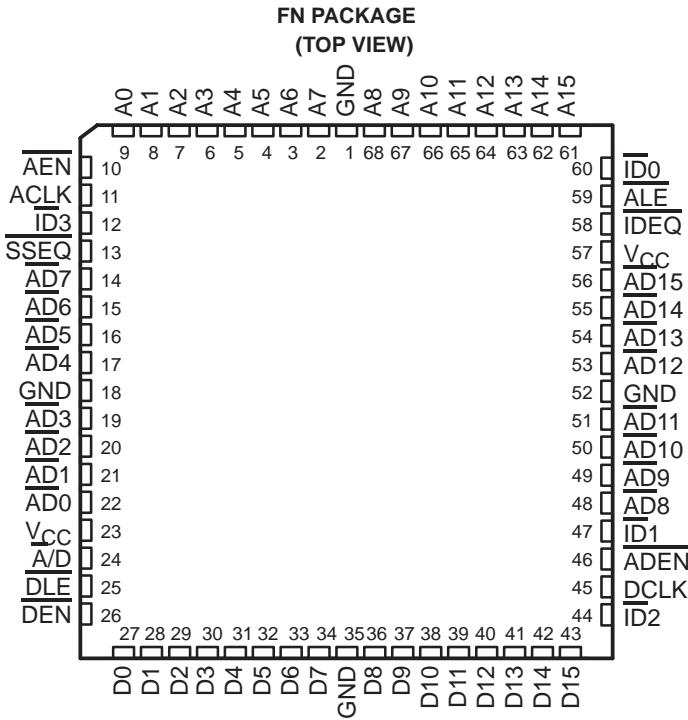
- Designed for NuBus™ Interface Applications
- Conforms to ANSI/IEEE Std 1196-1987
- On-Chip Comparator Provides I/D Slot Identification
- Multiplexed Real-Time and Latched Address/Data
- Designed to Operate With SN74ACT2440 NuBus™ Controller
- BiCMOS Design Substantially Reduces Standby Current
- Dependable Texas Instruments Quality and Reliability

description

The 'BCT2420 consists of bus transceiver circuits, D-type flip-flops, latches, and control circuitry arranged for multiplexed transmission of address and data information in NuBus™ applications. An on-chip comparator has been included to detect when a NuBus™ transfer cycle is requesting the local board. The device conforms to ANSI/IEEE Std 1196-1987 and operates with Texas instruments SN74ACT2440 NuBus™ Controller. In addition, the device is easily configured around ASIC or other PAL® -based controllers.

The 'BCT2420 was designed using Texas Instruments BiCMOS process, which features bipolar drive characteristics and greatly reduces the standby power of the device when disabled. This feature is especially valuable when the device is not performing a NuBus™ transaction.

The AEN, DEN and ADEN inputs control the transceiver functions. Three 16-bit I/O ports, A15–A0, D15–D0, and AD15–AD0, provide for address and data transfer. When the NuBus™ performs a write cycle to the local board, address information is saved on the rising edge of ACLK. During the last portion of the NuBus™ write cycle, data information is saved on the rising edge of DCLK.


When the local board is performing a write to the NuBus™, address and data is multiplexed onto the NuBus™ via the A/D line. Address and data can be latched by using the ALE and DLE input lines respectively.

The IDEQ output is used to signal that the local board is being requested by the NuBus™. This output is typically fed to the NuBus™ controller. IDEQ goes active (low) when AD15–AD12 are low and AD11–AD8 match ID3–ID0. IDEQ stays valid until the next address clock (ACLK) occurs. Internal 10-kΩ pullup resistors are included on the ID3–ID0 inputs.

The SSEQ output is used to signal the local board that super-slot addresses are being requested. This output is active (low) whenever AD15–AD12 are equal to ID3–ID0, except when ID3–ID0 are all low.

In typical NuBus™ applications, two devices are required to provide the full 32-bit address/data path. Refer to the typical NuBus™ interface diagram on page 9 for additional information.

The SN74BCT2420 is characterized for operation from 0°C to 70°C.

NuBus is a trademark of Texas Instruments Incorporated.
PAL is a registered trademark of Monolithic Memories Inc.

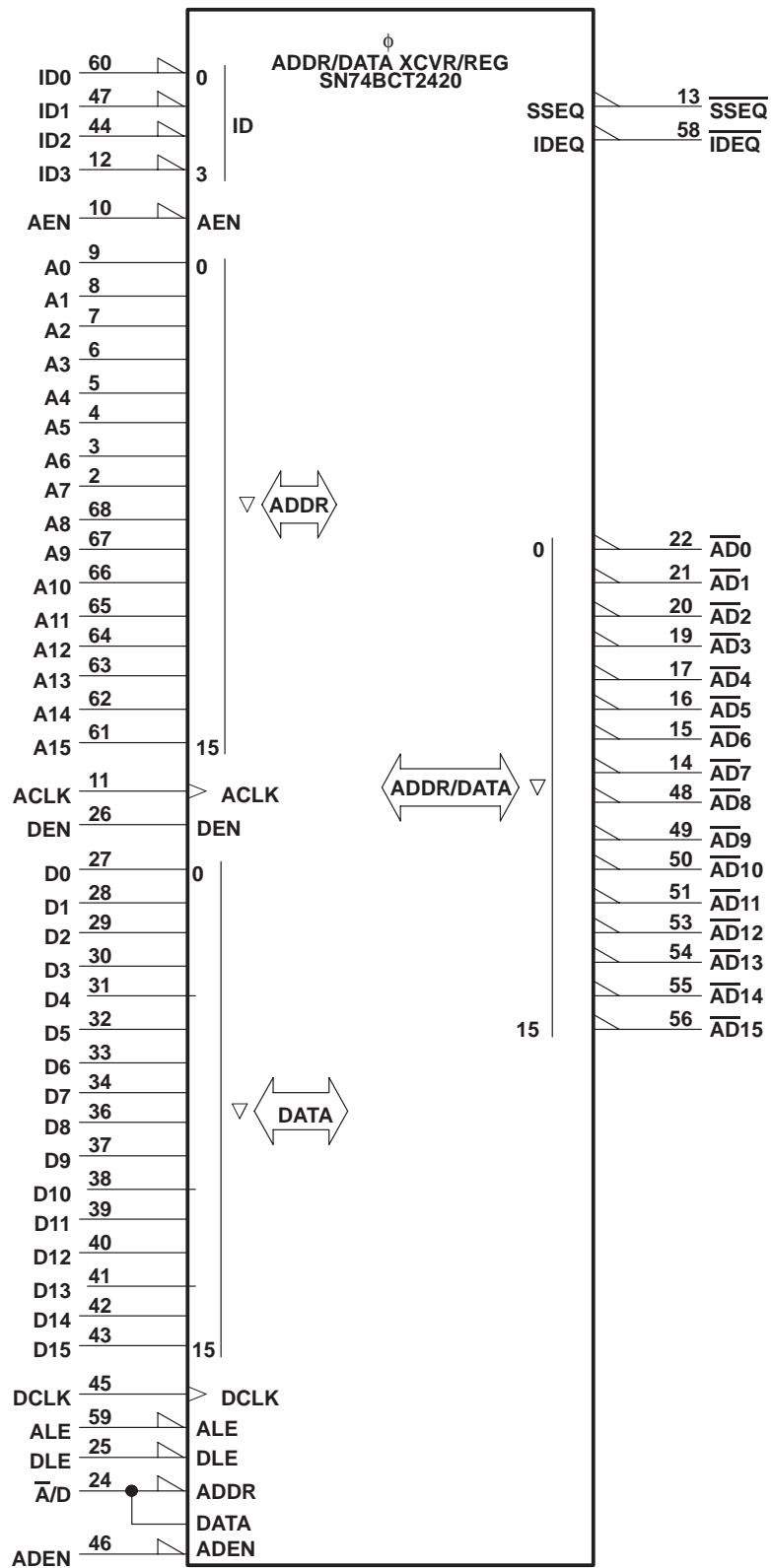
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1989, Texas Instruments Incorporated

TEXAS
INSTRUMENTS

Function Tables

INPUTS						OUTPUTS
A15–A0	D15–D0	ALE	DLE	A/D	ADEN	AD15–AD0
H	X	L	X	L	L	L
L	X	L	X	L	L	H
X	X	H	X	L	L	Q _O
X	H	X	L	H	L	L
X	L	X	L	H	L	H
X	X	X	H	H	L	Q _O
X	X	X	X	X	H	Z

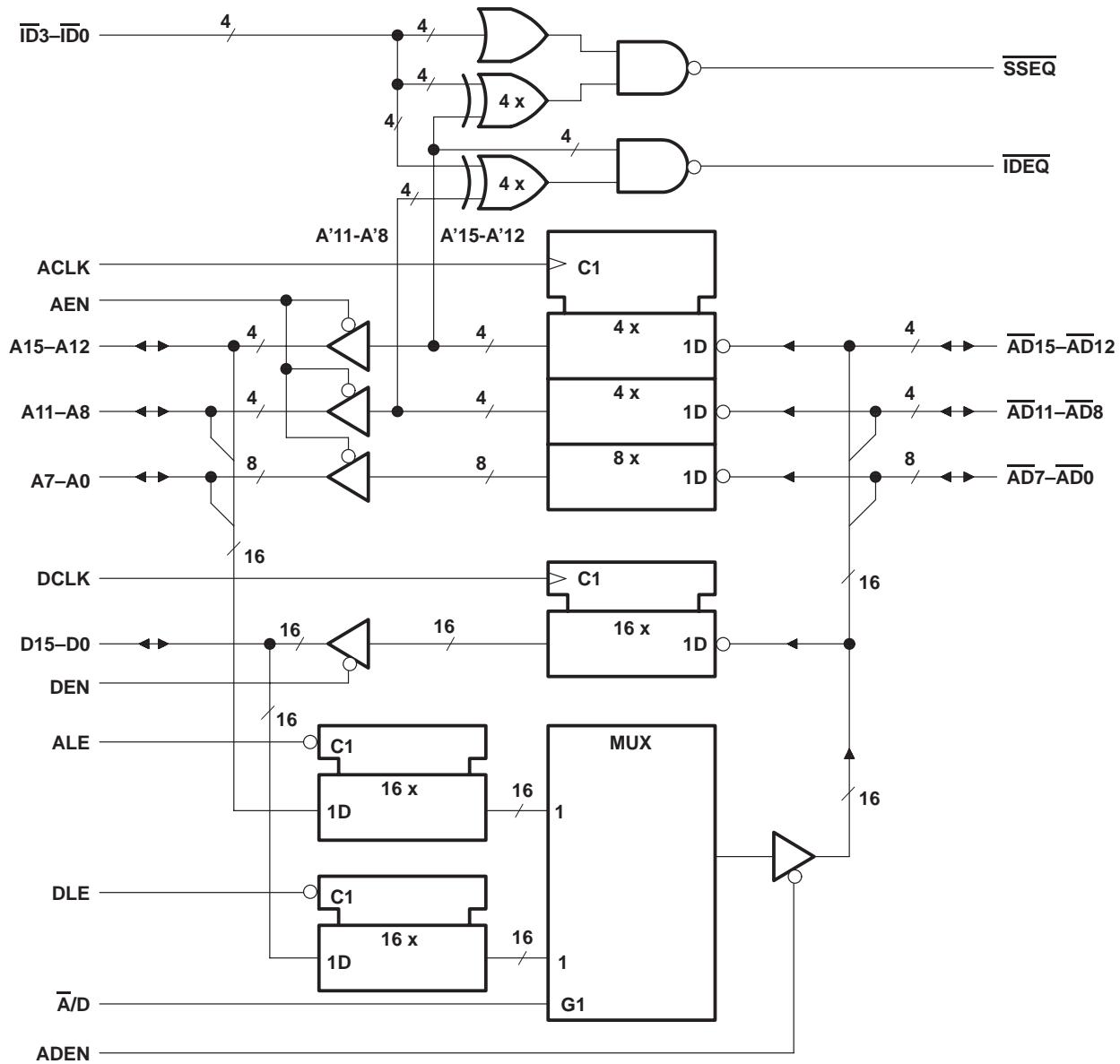

INPUTS			OUTPUTS
AD15–AD0	ACLK, DCLK	AEN, DEN	A15–A0, D15–DO
H	↑	L	L
L	↑	L	H
X	L	L	Q _O
X	X	H	L

AD15–AD12	ID3–ID0	SSEQ
EQ $\overline{ID3-ID0}$	NE 0	L
NE $\overline{ID3-ID0}$	X	H
X	EQ 0	H

AD15–AD12	AD11–AD8	IDEQ
EQ 0	EQ $\overline{ID3-ID0}$	L
X	NE $\overline{ID3-ID0}$	H
NE 0	X	H

NOTE: Symbol 'Q_O' denotes previous logic state preserved. Symbol 'Z' denotes high-impedance state.

logic symbol†


† This symbol is in accordance with ANSI/IEEE Std. 91-1984.

SN74BCT2420

NuBus™ ADDRESS/DATA TRANSCEIVERS AND REGISTERS

SDIS007A – D3159, NOVEMBER 1988 – REVISED JANUARY 1989

logic diagram

Terminal Functions

PIN NAME	DESCRIPTION
A15–A0	Address bus. This 16-bit I/O port is connected to the local board's address bus. When information is transferred between this port and the NuBus™ port ($\overline{AD15}$ – $\overline{AD0}$), the data is inverted to conform to NuBus™ specifications.
ACLK	Address clock. This input saves the address portion of NuBus™ read or write cycles. Data present at the $\overline{AD15}$ – $\overline{AD0}$ inputs is clocked into the address register on the low-to-high transition of ACLK.
$\overline{A/D}$	Address/data select. This input controls the address/data multiplexer. When $\overline{A/D}$ is driven low, the local address port, A15–A0, is selected as input to the $\overline{AD15}$ – $\overline{AD0}$ outputs. When $\overline{A/D}$ is taken high, the local data port, D15–D0, is selected as input to the $\overline{AD15}$ – $\overline{AD0}$ outputs.
$\overline{AD15}$ – $\overline{AD0}$	Address/data port. This 16-bit active-low I/O port directly interfaces to the NuBus™ address/data lines. These lines are multiplexed to carry address information at the beginning of a NuBus™ cycle and data information later in the cycle.
\overline{ADEN}	Address/data output enable. This active-low input enables the $\overline{AD15}$ – $\overline{AD0}$ outputs. When \overline{ADEN} is taken high, the $\overline{AD15}$ – $\overline{AD0}$ outputs are in the high impedance state, allowing input from the NuBus™.
\overline{AEN}	Address enable. This active-low input enables the local address outputs, A15–A0, to place data onto the local board. When \overline{AEN} is taken high, the A15–A0 outputs are in the high-impedance state, allowing input from the local address bus.
\overline{ALE}	Address latch enable. This active-low input controls the latch that holds the address received from the local address bus, A15–A0. When \overline{ALE} is low, the latch is transparent. When \overline{ALE} is taken high, the address present at the A15–A0 inputs is latched and remains latched while \overline{ALE} is held high.
D15–D0	Data bus. This 16-bit I/O port is connected to the local board's data bus. When information is transferred between this port and the NuBus™ port ($\overline{AD15}$ – $\overline{AD0}$), the data is inverted to conform to NuBus™ specifications.
DCLK	Data clock. This input saves the data portion of NuBus™ write cycles. Data present at the $\overline{AD15}$ – $\overline{AD0}$ inputs is clocked into the data register on the low-to-high transition of DCLK.
\overline{DEN}	Data enable. This active-low input enables the local data port outputs, D15–D0, to place data onto the local board. When \overline{DEN} is taken high, the D15–D0 outputs are in the high-impedance state, allowing input from the local board.
\overline{DLE}	Data latch enable. This active-low input controls the latch that holds the data received from the local data bus, D15–D0. When \overline{DLE} is low, the latch is transparent. When \overline{DLE} is taken high, the data present at the D15–D0 inputs is latched and remains latched while \overline{DLE} is held high.
$\overline{ID3}$ – $\overline{ID0}$	Card-slot identification. These four inputs accept binary-coded location information for each NuBus™ slot position on the backplane. These four lines are typically hard wired logic levels unique to each NuBus™ slot connector. For convenient implementation, the inputs have internal 10-kΩ pull up resistors that ensure the logic high level when the inputs are left open circuited. The internal comparator uses these inputs to identify when the local hardware card is being accessed.
\overline{IDEQ}	Identification equal. This active-low output is used to signal that the board is being accessed by the NuBus™. \overline{IDEQ} goes low whenever $\overline{AD15}$ – $\overline{AD12}$ are low and $\overline{AD11}$ – $\overline{AD8}$ match $\overline{ID3}$ – $\overline{ID0}$. Since the internal comparator uses data from the address register, the address register must be clocked before the local board samples \overline{IDEQ} . \overline{IDEQ} is valid for the entire NuBus™ cycle after ACLK.
\overline{SSEQ}	Super-slot equal. This active-low output is used to signal the local board that super-slot addresses are being requested in the super-slot mode. \overline{SSEQ} goes low when $\overline{AD15}$ – $\overline{AD12}$ match $\overline{ID3}$ – $\overline{ID0}$ and $\overline{ID3}$ – $\overline{ID0}$ are not all low. Since the internal comparator uses data from the address register, the address register must be clocked before the local board samples \overline{SSEQ} . \overline{SSEQ} is valid for the entire NuBus™ cycle after ACLK.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V_{CC} (see Note 1)	7 V
Input voltage (all inputs and I/O ports)	5.5 V
Operating free-air temperature range	0°C to 70°C
Storage temperature range	-65°C to 150°C

† Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the recommended operating conditions section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to GND.

recommended operating conditions

PARAMETER		MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage	4.5	5	5.5	V
V_{IH}	High-level input voltage		2		V
V_{IL}	Low-level input voltage		0.8		V
I_{OH}	Ax, Dx, \overline{ADx} outputs			-15	mA
	SSEQ, \overline{IDEQ} outputs			2.6	
I_{OL}	Ax, Dx, \overline{ADx} outputs			24	mA
	SSEQ, \overline{IDEQ} outputs			16	
f_{clock}	Clock frequency	0	40		MHz
t_w	ACLK, DCLK high	12.5			ns
	ACLK, DCLK low	12.5			
	ALE, DLE low	12.5			
t_{su}	\overline{ADx} before $\overline{ACLK} \uparrow$, $\overline{DCLK} \uparrow$	5			ns
	Ax before $\overline{ALE} \uparrow$	5			
	\overline{Dx} before $\overline{DLE} \uparrow$	5			
t_h	\overline{ADx} after $\overline{ACLK} \uparrow$, $\overline{DCLK} \uparrow$	2			ns
	Ax after $\overline{ALE} \uparrow$	2			
	\overline{Dx} after $\overline{DLE} \uparrow$	2			
T_A	Operating free-air temperature	0	70°		°C

electrical characteristics over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS	MIN	TYP†	MAX	UNIT
V_{IK}		$V_{CC} = 4.5 \text{ V}$, $I_I = -18 \text{ mA}$			-1.2	V
V_{OH}	Ax, Dx, \overline{ADx}	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$, $I_{OH} = -400 \mu\text{A}$	$V_{CC} - 1.5$			V
		$V_{CC} = 4.5 \text{ V}$, $I_{OH} = -3 \text{ mA}$	2.8	3.6		
		$V_{CC} = 4.5 \text{ V}$, $I_{OH} = -15 \text{ mA}$	2			
	SSEQ, \overline{IDEQ}	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$, $I_{OH} = -400 \mu\text{A}$	$V_{CC} - 2$			
		$V_{CC} = 4.5 \text{ V}$, $I_{OH} = -2.6 \text{ mA}$	2.4	3.2		
V_{OL}	Ax, Dx, \overline{ADx}	$V_{CC} = 4.5 \text{ V}$, $I_{OL} = 12 \text{ mA}$	0.25	0.4		V
		$V_{CC} = 4.5 \text{ V}$, $I_{OL} = 24 \text{ mA}$	0.35	0.5		
	SSEQ, \overline{IDEQ}	$V_{CC} = 4.5 \text{ V}$, $I_{OL} = 8 \text{ mA}$	0.25	0.4		
		$V_{CC} = 4.5 \text{ V}$, $I_{OL} = 16 \text{ mA}$	0.35	0.5		
I_I		$V_{CC} = 5.5 \text{ V}$, $V_I = 5.5 \text{ V}$			100	μA
I_{IH}^{\ddagger}	AEN, DEN, ADEN				20	μA
	$\overline{ID3}-\overline{ID0}$	$V_{CC} = 5.5 \text{ V}$, $V_I = 2.7 \text{ V}$			-400	
	All other inputs				-100	
I_{IL}^{\ddagger}	$\overline{ID3}-\overline{ID0}$	$V_{CC} = 5.5 \text{ V}$, $V_I = 0.4 \text{ V}$			-750	μA
	All other inputs				-200	
$I_{OS}^{\$}$		$V_{CC} = 5.5 \text{ V}$, $V_O = 0 \text{ V}$	-60	-225		mA
I_{CC}	Enabled	$V_{CC} = 5.5 \text{ V}$, $V_{IL} = 0.5 \text{ V}$, $V_{IH} = 3 \text{ V}$, Outputs open		110	160	mA
	Disabled			30	40	

† All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$.

‡ For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.

§ Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.

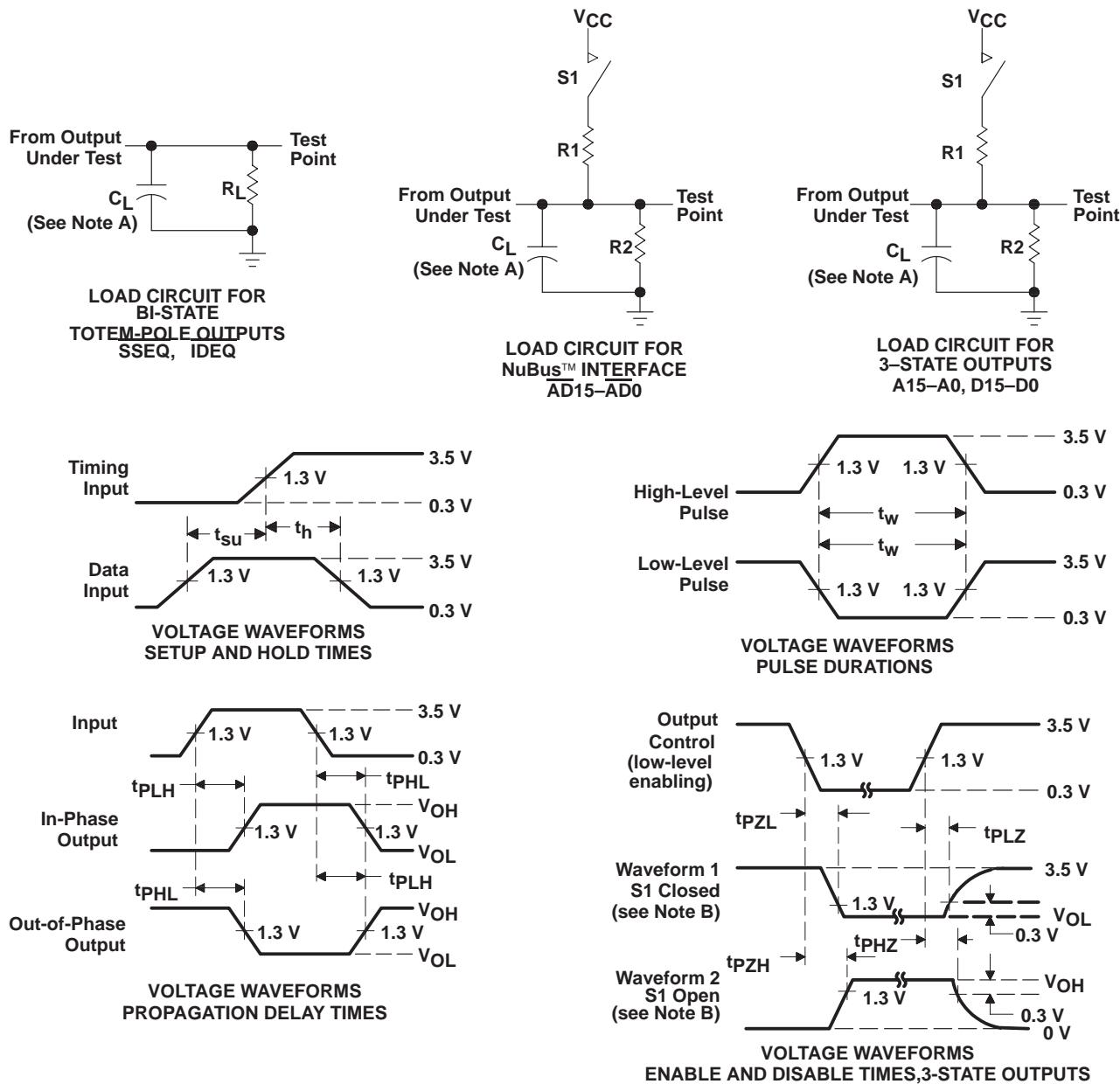
SN74BCT2420

NuBus™ ADDRESS/DATA TRANSCEIVERS AND REGISTERS

SDIS007A – D3159, NOVEMBER 1988 – REVISED JANUARY 1989

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	LOAD CONDITIONS			MIN	TYP†	MAX	UNIT
	R_1 , R_2 , and R_L	C_L	LOAD CIRCUIT				
f_{max} Maximum clock frequency				40			MHz
t_{pd} Propagation time, $ACLK \uparrow$ to Ax ($\overline{AEN} = L$)	$R_1 = 500 \Omega$, $R_2 = 500 \Omega$	50 pF	S1 Open‡		9	16	ns
t_{pd} Propagation time, $DCLK \uparrow$ to Dx ($\overline{DEN} = L$)	$R_1 = 500 \Omega$, $R_2 = 500 \Omega$	50 pF	S1 Open‡		9	16	ns
t_{pd} Propagation time, Ax to $\overline{AD}x$ ($\overline{ALE} = L$, $\overline{A/D} = L$)	$R_1 = 270 \Omega$, $R_2 = 470 \Omega$	300 pF	S1 Closed§		10	18	ns
t_{pd} Propagation time, Dx to $\overline{AD}x$ ($\overline{DLE} = L$, $\overline{A/D} = H$)	$R_1 = 270 \Omega$, $R_2 = 470 \Omega$	300 pF	S1 Closed§		11	18	ns
t_{pd} Propagation time, \overline{ALE} low to $\overline{AD}x$ ($A/D = L$)	$R_1 = 270 \Omega$, $R_2 = 470 \Omega$	300 pF	S1 Closed§		10	18	ns
t_{pd} Propagation time, \overline{DLE} low to $\overline{AD}x$ ($\overline{A/D} = H$)	$R_1 = 270 \Omega$, $R_2 = 470 \Omega$	300 pF	S1 Closed§		11	18	ns
t_{pd} Propagation time, $\overline{A/D}$ to $\overline{AD}x$	$R_1 = 270 \Omega$, $R_2 = 470 \Omega$	300 pF	S1 Closed§		10	16	ns
t_{pd} Propagation time, $ACLK$ to \overline{IDEQ}	$R_L = 500 \Omega$	50 pF	¶		12	20	ns
t_{pd} Propagation time, $ACLK$ to $SSEQ$	$R_L = 500 \Omega$	50 pF	¶		12	18	ns
t_{pd} Propagation time, $\overline{ID}x$ to \overline{IDEQ}	$R_L = 500 \Omega$	50 pF	¶		12	22	ns
t_{pd} Propagation time, $\overline{ID}x$ to $SSEQ$	$R_L = 500 \Omega$	50 pF	¶		12	22	ns
t_{en} Enable time, \overline{AEN} to Ax	$R_1 = 500 \Omega$, $R_2 = 500 \Omega$	50 pF	‡		10	16	ns
t_{en} Enable time, \overline{DEN} to Dx	$R_1 = 500 \Omega$, $R_2 = 500 \Omega$	50 pF	‡		10	16	ns
t_{en} Enable time, \overline{ADEN} to $\overline{AD}x$	$R_1 = 270 \Omega$, $R_2 = 470 \Omega$	300 pF	§		10	18	ns
t_{dis} Disable time, \overline{AEN} to Ax	$R_1 = 500 \Omega$, $R_2 = 500 \Omega$	50 pF	‡		6	10	ns
t_{dis} Disable time, \overline{DEN} to Dx	$R_1 = 500 \Omega$, $R_2 = 500 \Omega$	50 pF	‡		6	10	ns
t_{dis} Disable time, \overline{ADEN} to $\overline{AD}x$	$R_1 = 270 \Omega$, $R_2 = 470 \Omega$	50 pF	§		6	10	ns


† All typical values are at $V_{CC} = 5$ V, $T_A = 25^\circ\text{C}$.

‡ See Parameter Measurement Information for load circuit (3-state outputs, A15–A0, D15–D0) and voltage waveforms.

§ See Parameter Measurement Information for load circuit (NuBus™ Interface, $\overline{AD}15$ – $\overline{AD}0$) and voltage waveforms.

¶ See Parameter Measurement Information for load circuit (bi-state totem-pole outputs, $SSEQ$, \overline{IDEQ}) and voltage waveforms.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal condition such that the output is high except when disabled by the output control.

C. All input pulses have the following characteristics: $PRR \leq 1 \text{ MHz}$, $t_r = t_f = 2 \text{ ns}$, duty cycle = 50%

D. The outputs are measured one at a time with one transition per measurement.

Figure 1

SN74BCT2420

NuBus™ ADDRESS/DATA TRANSCEIVERS AND REGISTERS

SDIS007A – D3159, NOVEMBER 1988 – REVISED JANUARY 1989

APPLICATION INFORMATION

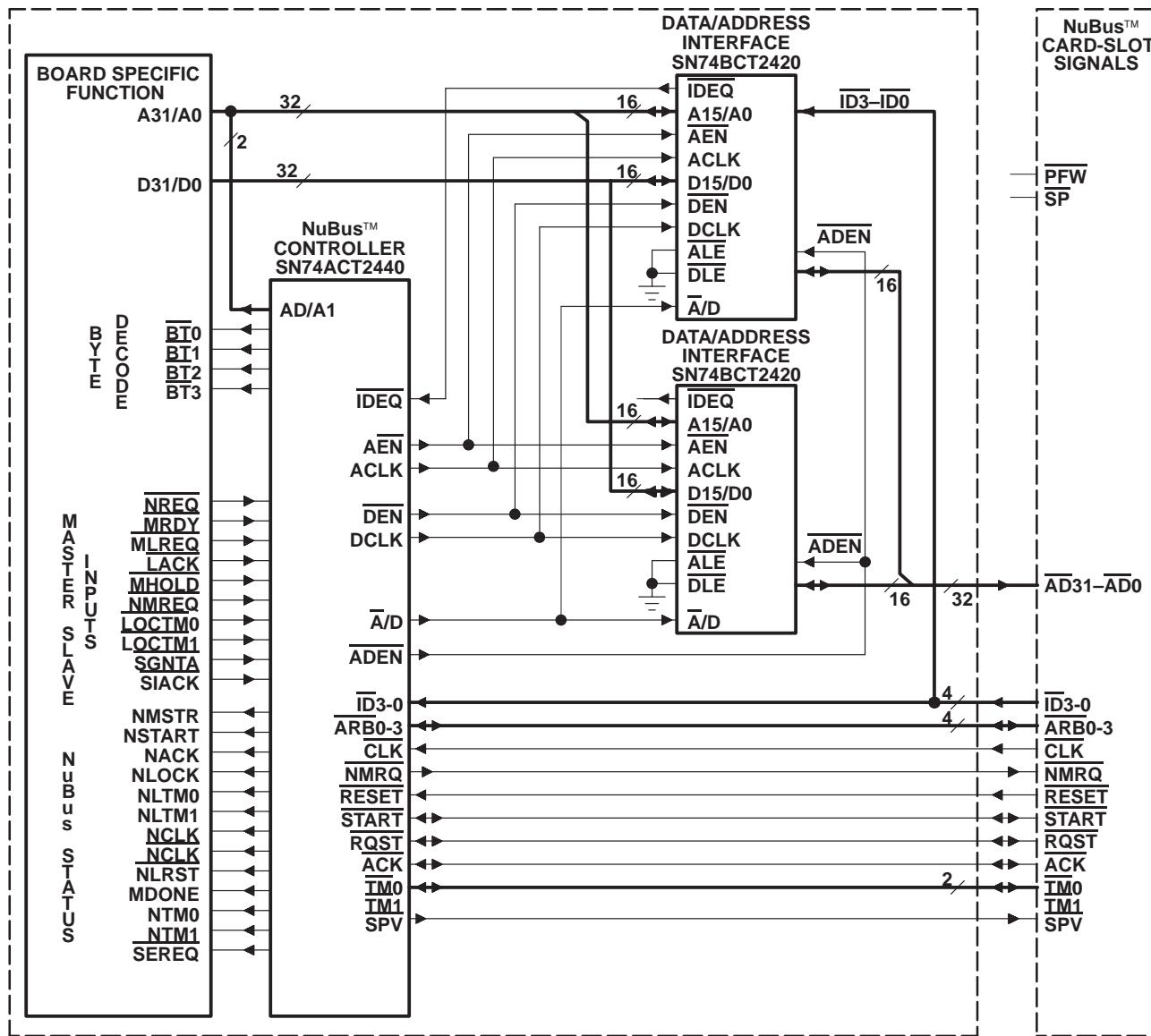


Figure 2. Typical NuBus™ Interface

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN74BCT2420FN	OBsolete	PLCC	FN	68		TBD	Call TI	Call TI
SN74BCT2420FNR	OBsolete	PLCC	FN	68		TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated