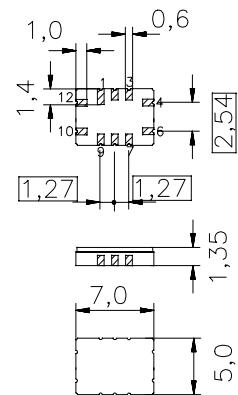


SAW Components

Data Sheet B4916

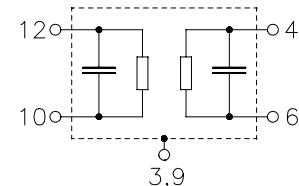
Data Sheet



Features

- Low-loss IF filter for mobile telephone
- Channel selection in GSM systems
- Hermetically sealed ceramic SMD package
- Balanced and unbalanced operation possible
- No coupling coil required

Terminals


- Gold-plated Ni

Dimensions in mm, approx. weight 0,2 g

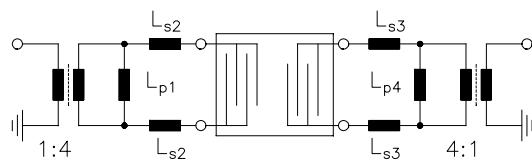
Pin configuration

10	Input
12	Input ground or balanced input
4	Output
6	Output ground or balanced output
3, 9	Case ground
1, 2, 7, 8	To be grounded

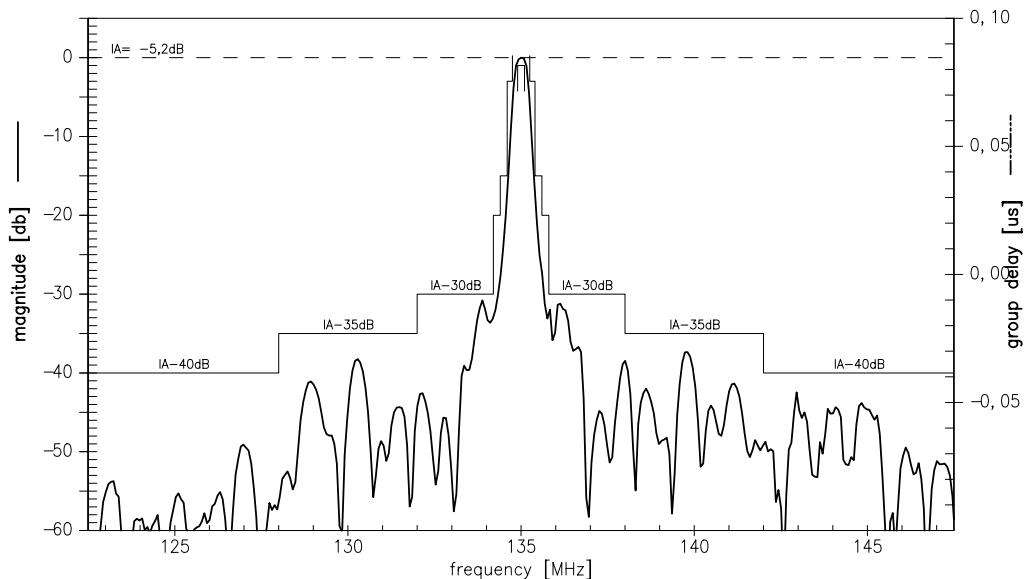
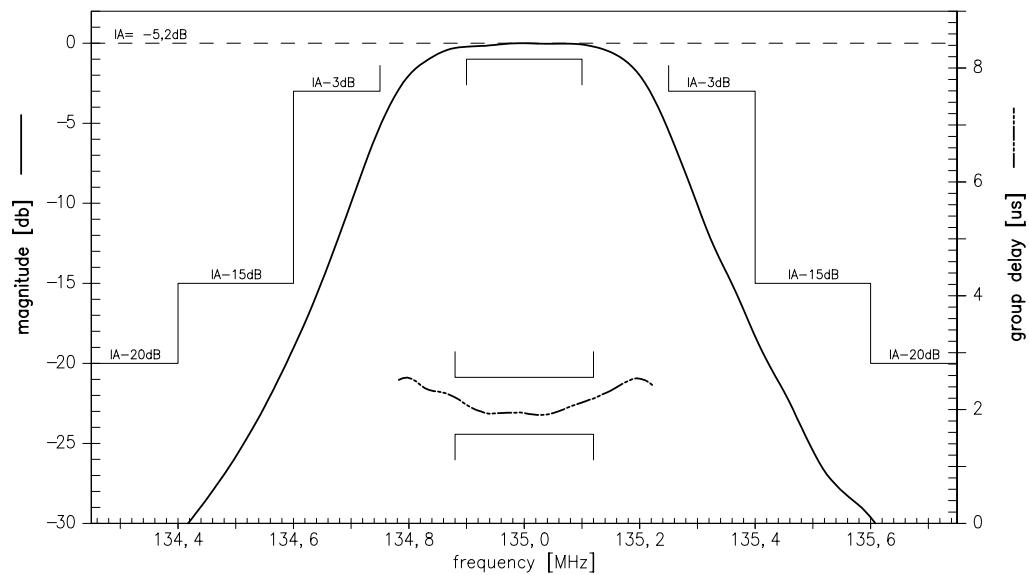
Type	Ordering code	Marking and Package according to	Packing according to
B4916	B39141-B4916-Z910	C61157-A7-A52	F61074-V8038-Z000

Electrostatic Sensitive Device (ESD)
Maximum ratings

Operable temperature range	T	-30/+ 85	°C	
Storage temperature range	T_{stg}	-40/+ 85	°C	
DC voltage	V_{DC}	0	V	
Source power	P_s	10	dBm	


Characteristics

Operating temperature range: $T = -10 \text{ }^{\circ}\text{C} \dots +70 \text{ }^{\circ}\text{C}$
 Terminating source impedance: $Z_S = 800 \Omega \parallel 135 \text{ nH}$
 Terminating load impedance: $Z_L = 1400 \Omega \parallel 170 \text{ nH}$



		min.	typ.	max.	
Nominal frequency	f_N	—	135,00	—	MHz
Minimum insertion attenuation (excluding losses in matching circuit)	α_{\min}		4,8	6,0	dB
Amplitude ripple (p-p) $f_N - 100,0 \text{ kHz} \dots f_N + 100,0 \text{ kHz}$	$\Delta\alpha$	—	0,4	1,0	dB
Group delay ripple (p-p) $f_N - 100,0 \text{ kHz} \dots f_N + 100,0 \text{ kHz}$	$\Delta\tau$	—	0,3	1,0	μs
Relative attenuation (relative to α_{\min})	α_{rel}				
$f_N - 30,00 \text{ MHz} \dots f_N - 7,00 \text{ MHz}$		40	49	—	dB
$f_N - 7,00 \text{ MHz} \dots f_N - 3,00 \text{ MHz}$		35	39	—	dB
$f_N - 3,00 \text{ MHz} \dots f_N - 0,80 \text{ MHz}$		30	32	—	dB
$f_N - 0,80 \text{ MHz} \dots f_N - 0,60 \text{ MHz}$		20	28	—	dB
$f_N - 0,60 \text{ MHz} \dots f_N - 0,40 \text{ MHz}$		15	17	—	dB
$f_N - 0,40 \text{ MHz} \dots f_N - 0,25 \text{ MHz}$		3	5	—	dB
$f_N + 0,25 \text{ MHz} \dots f_N + 0,40 \text{ MHz}$		3	5	—	dB
$f_N + 0,40 \text{ MHz} \dots f_N + 0,60 \text{ MHz}$		15	17	—	dB
$f_N + 0,60 \text{ MHz} \dots f_N + 0,80 \text{ MHz}$		20	28	—	dB
$f_N + 0,80 \text{ MHz} \dots f_N + 3,00 \text{ MHz}$		30	32	—	dB
$f_N + 3,00 \text{ MHz} \dots f_N + 7,00 \text{ MHz}$		35	38	—	dB
$f_N + 7,00 \text{ MHz} \dots f_N + 30,00 \text{ MHz}$		40	43	—	dB
Impedance at f_N					
Input: $Z_{\text{IN}} = R_{\text{IN}} \parallel C_{\text{IN}}$		—	800 \parallel 10,3	—	$\Omega \parallel \text{pF}$
Output: $Z_{\text{OUT}} = R_{\text{OUT}} \parallel C_{\text{OUT}}$		—	1400 \parallel 8,2	—	$\Omega \parallel \text{pF}$
Temperature coefficient of frequency ¹⁾	TC_f	—	-0,042	—	ppm/K ²
Frequency inversion point	T_0	—	25	—	$^{\circ}\text{C}$

¹⁾ Temperature dependence of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$

Test matching network to 50 Ω (element values depend on PCB layout):

$L_{p1} = 82 \text{ nH}$
 $L_{s2} = 27 \text{ nH}$
 $L_{s3} = 43 \text{ nH}$
 $L_{p4} = 82 \text{ nH}$

Transfer function:

Transfer function (pass band):

SAW Components

B4916

Low-Loss Filter for Mobile Communication

135,0 MHz

Data Sheet

Published by EPCOS AG

Surface Acoustic Wave Components Division, OFW E MF

P.O. Box 80 17 09, D-81617 München

© EPCOS AG 1999. All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, prices and delivery please contact the sales offices of EPCOS AG or the international representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.