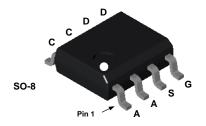
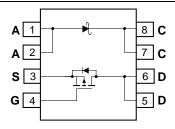


FDFS2P103

Integrated P-Channel PowerTrench® MOSFET and Schottky Diode


General Description


The FDFS2P103 combines the exceptional performance of Fairchild's PowerTrench MOSFET technology with a very low forward voltage drop Schottky barrier rectifier in an SO-8 package.

This device is designed specifically as a single package solution for DC to DC converters. It features a fast switching, low gate charge MOSFET with very low onstate resistance. The independently connected Schottky diode allows its use in a variety of DC/DC converter topologies.

Features

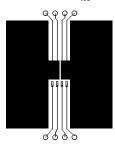
- -5.3 A, -30V $R_{DS(ON)} = 59 \text{ m}\Omega$ @ $V_{GS} = -10 \text{ V}$ $R_{DS(ON)} = 92 \text{ m}\Omega$ @ $V_{GS} = -4.5 \text{ V}$
- V_F < 0.52 V @ 1 A (T_J = 125°C)
 V_F < 0.57 V @ 1 A (T_J = 25°C)
- Schottky and MOSFET incorporated into single power surface mount SO-8 package
- Electrically independent Schottky and MOSFET pinout for design flexibility

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter	Ratings	Units	
V_{DSS}	MOSFET Drain-Source Voltage	-30	V	
V _{GSS}	MOSFET Gate-Source Voltage	±25	V	
I _D	Drain Current - Continuous	(Note 1a)	-5.3	А
	- Pulsed		-20	
P _D	Power Dissipation for Dual Operation	2	W	
	Power Dissipation for Single Operation	(Note 1a)	1.6	
		(Note 1b)	1	
		(Note 1c)	0.9	
T _J , T _{STG}	Operating and Storage Junction Tempera	-55 to +150	°C	
V_{RRM}	Schottky Repetitive Peak Reverse Voltage	30	V	
Io	Schottky Average Forward Current	1	А	

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
FDFS2P103	FDFS2P103	13"	12mm	2500 units


BVDSS ABVDSS ATJ IDSS IGSSF IGSSR	Drain–Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate–Body Leakage, Forward Gate–Body Leakage, Reverse acteristics (Note 2) Gate Threshold Voltage Gate Threshold Voltage Temperature Coefficient Static Drain–Source	$V_{DS} = -24 \text{ V}, V_{GS} = 25 \text{ V}, V_{GS} = -25 \text{ V}, V_{DS} = V_{GS}, V_{DS} = V_{DS}, V_{DS} = V_{D$	ferenced to 25°C $V_{GS} = 0 \text{ V}$ $V_{DS} = 0 \text{ V}$ $V_{DS} = 0 \text{ V}$	-30	-23	-1 100 -100	V mV/°C μA nA
$\begin{array}{c} \Delta BV_{DSS} \\ \Delta T_{J} \\ \\ I_{DSS} \\ \\ I_{GSSF} \\ \\ On \ Chara \\ \\ V_{GS(th)} \\ \Delta V_{GS(th)} \\ \Delta T_{J} \\ \end{array}$	Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate–Body Leakage, Forward Gate–Body Leakage, Reverse acteristics (Note 2) Gate Threshold Voltage Gate Threshold Voltage Temperature Coefficient	$I_{D} = -250 \ \mu\text{A}, \text{Ref}$ $V_{DS} = -24 \ \text{V}, \text{V}$ $V_{GS} = 25 \ \text{V}, \text{V}$ $V_{GS} = -25 \ \text{V}, \text{V}$ $V_{DS} = V_{GS}, \text{I}$	ferenced to 25°C $V_{GS} = 0 \text{ V}$ $V_{DS} = 0 \text{ V}$ $V_{DS} = 0 \text{ V}$	-30	-23	100	mV/°C μA
ΔTJ IDSS IGSSF IGSSR On Chara V _{GS(th)} ΔV _{GS(th)} ΔT _J	Coefficient Zero Gate Voltage Drain Current Gate-Body Leakage, Forward Gate-Body Leakage, Reverse acteristics (Note 2) Gate Threshold Voltage Gate Threshold Voltage Temperature Coefficient	$V_{DS} = -24 \text{ V}, V_{GS} = 25 \text{ V}, V_{GS} = -25 \text{ V}, V_{DS} = V_{GS}, V_{DS} = V_{DS}, V_{DS} = V_{D$	$V_{GS} = 0 \text{ V}$ $V_{DS} = 0 \text{ V}$ $V_{DS} = 0 \text{ V}$		-23	100	μА
$\begin{array}{c} I_{\text{GSSF}} \\ I_{\text{GSSR}} \\ \\ \hline \textbf{On Chara} \\ V_{\text{GS(th)}} \\ \underline{\Delta V_{\text{GS(th)}}} \\ \underline{\Delta T_{\text{J}}} \end{array}$	Gate-Body Leakage, Forward Gate-Body Leakage, Reverse acteristics (Note 2) Gate Threshold Voltage Gate Threshold Voltage Temperature Coefficient	$V_{GS} = 25 \text{ V}, V_{GS} = -25 \text{ V}, V_{GS} = -25 \text{ V}, V_{DS} = V_{GS}, V_{DS} = V_{CS}, V_{CS} = V_{CS}, V_{$	$V_{DS} = 0 \text{ V}$ $V_{DS} = 0 \text{ V}$			100	
$\begin{array}{c} I_{GSSR} \\ \hline \textbf{On Chara} \\ V_{GS(th)} \\ \hline \Delta V_{GS(th)} \\ \Delta T_{J} \\ \end{array}$	Gate-Body Leakage, Reverse acteristics (Note 2) Gate Threshold Voltage Gate Threshold Voltage Temperature Coefficient	$V_{GS} = -25 \text{ V}, V_{DS} = V_{GS},$	/ _{DS} = 0 V				nA
On Chara V _{GS(th)} $\Delta V_{GS(th)}$ ΔT_J	Gate Threshold Voltage Gate Threshold Voltage Temperature Coefficient	$V_{DS} = V_{GS}$,	-			-100	
$V_{GS(th)}$ $\Delta V_{GS(th)}$ ΔT_J	Gate Threshold Voltage Gate Threshold Voltage Temperature Coefficient						nA
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient		I 050A			•	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Temperature Coefficient	$I_D = -250 \mu A.Ref$	I _D = -250 μA	-1	-1.7	-3	V
Page 1	Static Drain-Source		ferenced to 25°C		4.5		mV/°C
INDS(on)	On–Resistance	$V_{GS} = -10 \text{ V}, I_{VGS} = -4.5 \text{ V}, I_{VGS} = -10 \text{ V}, I_{D} = -10 \text{ V}, I$	$I_D = -4 A$		46 70 63	59 92 88	mΩ
I _{D(on)}	On–State Drain Current	V _{GS} = -10 V,	$V_{DS} = -5 \text{ V}$	-20			Α
g _{FS}	Forward Transconductance		$I_D = -5.3 \text{ A}$		10		S
	Characteristics					l	
C _{iss}	Input Capacitance	$V_{DS} = -15 \text{ V},$	$V_{GS} = 0 V$,		528		pF
Coss	Output Capacitance	f = 1.0 MHz			132		pF
C _{rss}	Reverse Transfer Capacitance				70		pF
Switchin	g Characteristics (Note 2)						
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -15 \text{ V}, I$	$I_D = -1 A,$		7	14	ns
t _r	Turn-On Rise Time	$V_{GS} = -10 \text{ V}, \text{I}$		13	24	ns	
$t_{d(off)}$	Turn-Off Delay Time				14	25	ns
t _f	Turn-Off Fall Time				9	17	ns
Q_g	Total Gate Charge	$V_{DS} = -15 \text{ V}, I$	$I_D = -5.3 \text{ A},$		5.3	8	nC
Q_{gs}	Gate-Source Charge	$V_{GS} = -5 \text{ V}$			2.2		nC
Q_{gd}	Gate-Drain Charge				1.6		nC
Drain-Sc	ource Diode Characteristics	and Maximum	Ratings			•	
Is	Maximum Continuous Drain-Source					-1.3	Α
V_{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S =$	= -1.3 A (Note 2)		-0.7	-1.2	V
Schottky	Diode Characteristics						
I _R	Reverse Leakage	V _R = 30 V	T _J = 25°C		15	100	μΑ
	- 177.6	1	T _J = 125°C		6	30	mA
V_F	Forward Voltage	I _F = 1A	$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$		0.41	0.57 0.52	V

Thermal Characteristics

R _{θJA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1c)	135	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	40	°C/W

Notes

1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a) 78°C/W when mounted on a 0.5in² pad of 2 oz copper

125°C/W when mounted on a 0.02 in² pad of 2 oz copper

135°C/W when mounted on a minimum pad.

Scale 1:1 on letter size paper

2. Pulse Test: Pulse Width < $300\mu s$, Duty Cycle < 2.0%

Typical Characteristics

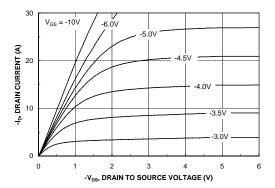


Figure 1. On-Region Characteristics.

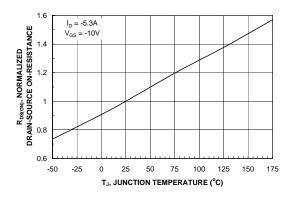


Figure 3. On-Resistance Variation with Temperature.

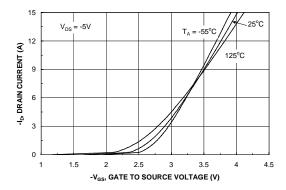


Figure 5. Transfer Characteristics.

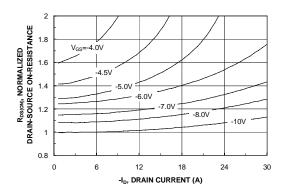


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

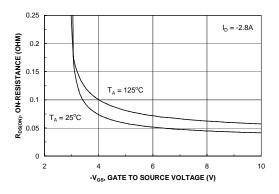


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

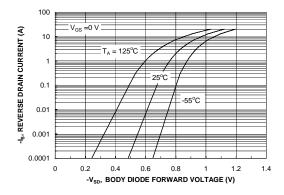
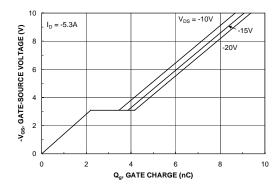



Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics

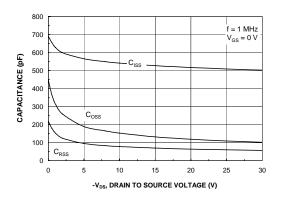


Figure 7. Gate Charge Characteristics.

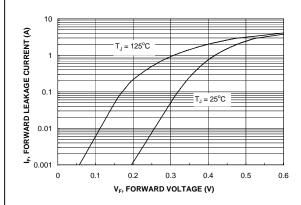


Figure 8. Capacitance Characteristics.

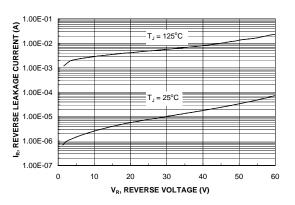
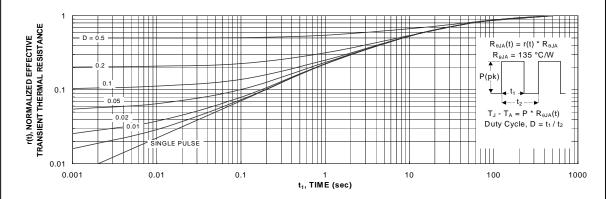
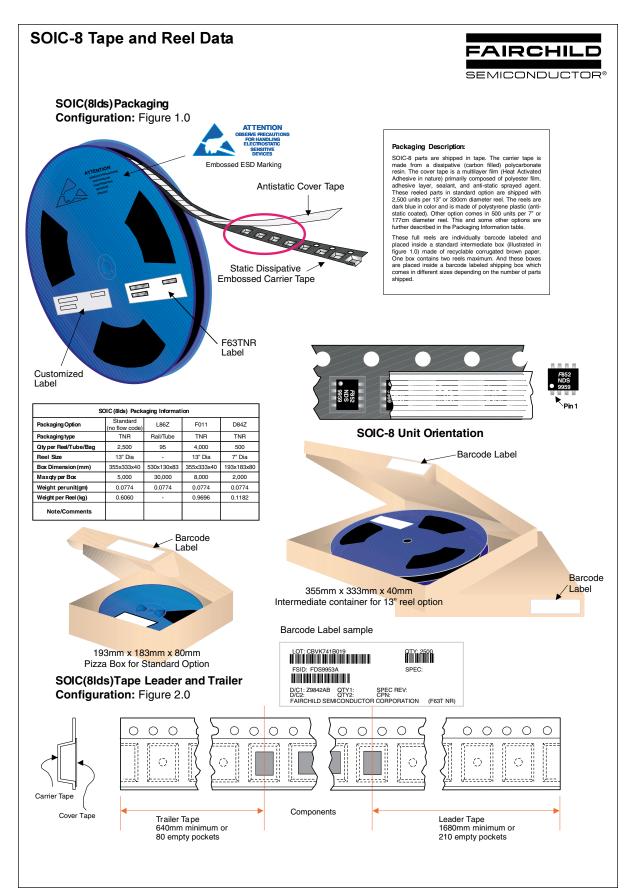
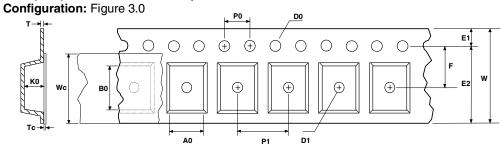


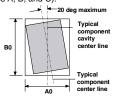
Figure 9. Schottky Diode Forward Voltage.


Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

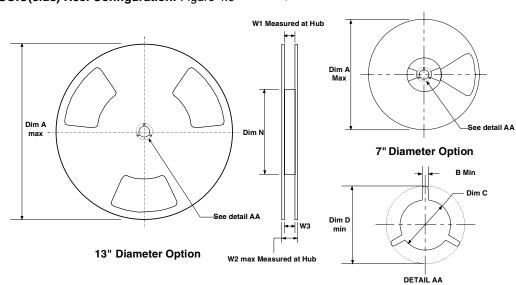
SOIC(8lds) Embossed Carrier Tape


User Direction of Feed	
	$\overline{}$

					Dim	ensions	are in mi	illimeter						
Pkg type	Α0	В0	w	D0	D1	E1	E2	F	P1	P0	КО	т	Wc	Тс
SOIC(8lds) (12mm)	5.30 +/-0.10	6.50 +/-0.10	12.0 +/-0.3	1.55 +/-0.05	1.60 +/-0.10	1.75 +/-0.10	10.25 min	5.50 +/-0.05	8.0 +/-0.1	4.0 +/-0.1	2.1 +/-0.10	0.450 +/- 0.150	9.2 +/-0.3	0.06 +/-0.02

Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

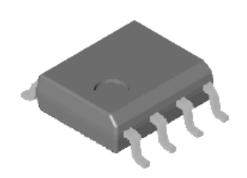
Sketch A (Side or Front Sectional View)
Component Rotation

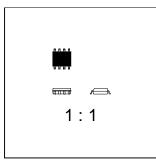

Sketch B (Top View)
Component Rotation

Sketch C (Top View)

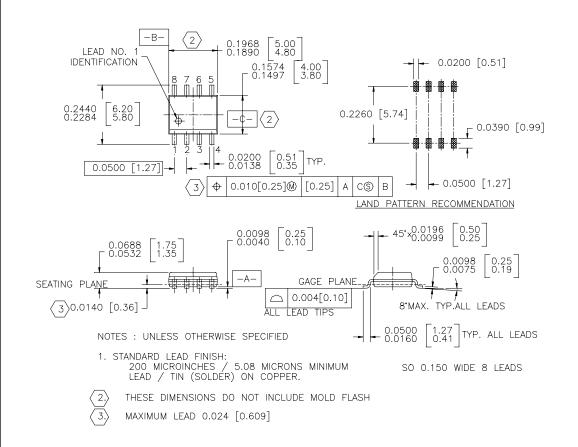
Component lateral movement

SOIC(8lds) Reel Configuration: Figure 4.0




Dimensions are in inches and millimeters									
Tape Size	Reel Option	Dim A	Dim B	Dim C	Dim D	Dim N	Dim W1	Dim W2	Dim W3 (LSL-USL)
12mm	7" Dia	7.00 177.8	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	2.165 55	0.488 +0.078/-0.000 12.4 +2/0	0.724 18.4	0.469 - 0.606 11.9 - 15.4
12mm	13" Dia	13.00 330	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	7.00 178	0.488 +0.078/-0.000 12.4 +2/0	0.724 18.4	0.469 - 0.606 11.9 - 15.4

SOIC-8 Package Dimensions


SOIC-8 (FS PKG Code S1)

Scale 1:1 on letter size paper
Dimensions shown below are in:
inches [millimeters]

Part Weight per unit (gram): 0.0774

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

SMART START™ VCX^{TM} FAST ® OPTOLOGIC™ STAR*POWER™ FASTr™ Bottomless™ OPTOPLANAR™ Stealth™ CoolFET™ FRFET™ PACMAN™ SuperSOT™-3 CROSSVOLT™ GlobalOptoisolator™ POP™ SuperSOT™-6 DenseTrench™ GTO™ Power247™ $HiSeC^{TM}$ SuperSOT™-8 $Power Trench^{\, @}$ DOME™ SyncFET™ EcoSPARK™ ISOPLANAR™ QFET™ TinyLogic™ E²CMOSTM LittleFET™ OS^{TM} EnSigna™ MicroFET™ TruTranslation™ QT Optoelectronics™

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. H4

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FDFS2P103