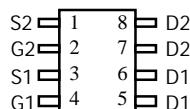
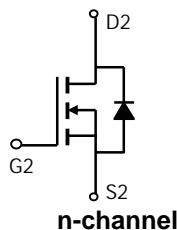


ALPHA & OMEGA SEMICONDUCTOR

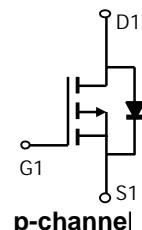
AO4616


Complementary Enhancement Mode Field Effect Transistor

General Description


The AO4616 uses advanced trench technology MOSFETs to provide excellent $R_{DS(ON)}$ and low gate charge. The complementary MOSFETs may be used in inverter and other applications. *Standard Product AO4616 is Pb-free (meets ROHS & Sony 259 specifications). AO4616L is a Green Product ordering option. AO4616 and AO4616L are electrically identical.*

Features


n-channel	p-channel
V_{DS} (V) = 30V	-30V
$I_D = 8.1A$ ($V_{GS} = 10V$)	-7.1A ($V_{GS} = -10V$)
$R_{DS(ON)}$	$R_{DS(ON)}$
< 20m Ω ($V_{GS} = 10V$)	< 25m Ω ($V_{GS} = -10V$)
< 28m Ω ($V_{GS} = 4.5V$)	< 40m Ω ($V_{GS} = -4.5V$)

SOIC-8

n-channel

p-channel

Absolute Maximum Ratings $T_A=25^\circ\text{C}$ unless otherwise noted

Parameter	Symbol	Max n-channel	Max p-channel	Units
Drain-Source Voltage	V_{DS}	30	-30	V
Gate-Source Voltage	V_{GS}	± 20	± 20	V
Continuous Drain Current ^A	$T_A=25^\circ\text{C}$	I_D	8.1	-7.1
	$T_A=70^\circ\text{C}$		6.5	-5.6
Pulsed Drain Current ^B		I_{DM}	30	-30
Power Dissipation	$T_A=25^\circ\text{C}$	P_D	2	2
	$T_A=70^\circ\text{C}$		1.28	1.28
Junction and Storage Temperature Range		T_J, T_{STG}	-55 to 150	-55 to 150
				°C

Thermal Characteristics: n-channel and p-channel

Parameter		Symbol	Device	Typ	Max	Units
Maximum Junction-to-Ambient ^A	$t \leq 10s$	$R_{\theta JA}$	n-ch	48	62.5	°C/W
Maximum Junction-to-Ambient ^A	Steady-State		n-ch	74	110	°C/W
Maximum Junction-to-Lead ^C	Steady-State	$R_{\theta JL}$	n-ch	35	60	°C/W
Maximum Junction-to-Ambient ^A	$t \leq 10s$	$R_{\theta JA}$	p-ch	48	62.5	°C/W
Maximum Junction-to-Ambient ^A	Steady-State		p-ch	74	110	°C/W
Maximum Junction-to-Lead ^C	Steady-State	$R_{\theta JL}$	p-ch	35	40	°C/W

N-Channel Electrical Characteristics ($T_J=25^\circ\text{C}$ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
STATIC PARAMETERS						
BV_{DSS}	Drain-Source Breakdown Voltage	$I_D=250\mu\text{A}, V_{\text{GS}}=0\text{V}$	30			V
I_{DSS}	Zero Gate Voltage Drain Current	$V_{\text{DS}}=24\text{V}, V_{\text{GS}}=0\text{V}$ $T_J=55^\circ\text{C}$		1	5	μA
I_{GSS}	Gate-Body leakage current	$V_{\text{DS}}=0\text{V}, V_{\text{GS}}=\pm20\text{V}$		100		nA
$V_{\text{GS}(\text{th})}$	Gate Threshold Voltage	$V_{\text{DS}}=V_{\text{GS}}, I_D=250\mu\text{A}$	1	1.8	3	V
$I_{\text{D}(\text{ON})}$	On state drain current	$V_{\text{GS}}=10\text{V}, V_{\text{DS}}=5\text{V}$	30			A
$R_{\text{DS}(\text{ON})}$	Static Drain-Source On-Resistance	$V_{\text{GS}}=10\text{V}, I_D=8.1\text{A}$ $T_J=125^\circ\text{C}$		16.4	20	$\text{m}\Omega$
		$V_{\text{GS}}=4.5\text{V}, I_D=6\text{A}$		20	25	
g_{FS}	Forward Transconductance	$V_{\text{DS}}=5\text{V}, I_D=8.1\text{A}$		23		S
V_{SD}	Body-Diode Forward Voltage	$I_S=1\text{A}$		0.75	1	V
I_S	Maximum Body-Diode Continuous Current				3	A
DYNAMIC PARAMETERS						
C_{iss}	Input Capacitance	$V_{\text{GS}}=0\text{V}, V_{\text{DS}}=15\text{V}, f=1\text{MHz}$		1040	1250	pF
C_{oss}	Output Capacitance			180		pF
C_{rss}	Reverse Transfer Capacitance			110		pF
R_g	Gate resistance	$V_{\text{GS}}=0\text{V}, V_{\text{DS}}=0\text{V}, f=1\text{MHz}$		0.7		Ω
SWITCHING PARAMETERS						
$Q_g(10\text{V})$	Total Gate Charge	$V_{\text{GS}}=10\text{V}, V_{\text{DS}}=15\text{V}, I_D=8.1\text{A}$		19.2		nC
$Q_g(4.5\text{V})$	Total Gate Charge			9.36		nC
Q_{gs}	Gate Source Charge			2.6		nC
Q_{gd}	Gate Drain Charge			4.2		nC
$t_{\text{D}(\text{on})}$	Turn-On Delay Time	$V_{\text{GS}}=10\text{V}, V_{\text{DS}}=15\text{V}, R_L=1.8\Omega, R_{\text{GEN}}=3\Omega$		5.2		ns
t_r	Turn-On Rise Time			4.4		ns
$t_{\text{D}(\text{off})}$	Turn-Off Delay Time			17.3		ns
t_f	Turn-Off Fall Time			3.3		ns
t_{rr}	Body-Diode Reverse Recovery Time	$I_F=8.1\text{A}, dI/dt=100\text{A}/\mu\text{s}$		16.7	21	ns
Q_{rr}	Body-Diode Reverse Recovery Charge	$I_F=8.1\text{A}, dI/dt=100\text{A}/\mu\text{s}$		6.7	10	nC

A: The value of R_{DJA} is measured with the device mounted on 1 in ² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^\circ\text{C}$. The value in any given application depends on the user's specific board design. The current rating is based on the $t \leq 10\text{s}$ thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R_{DJA} is the sum of the thermal impedance from junction to lead R_{JL} and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using 80 μs pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in ² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^\circ\text{C}$. The SOA curve provides a single pulse rating.

Rev 0 : July 2005

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

N-CH TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

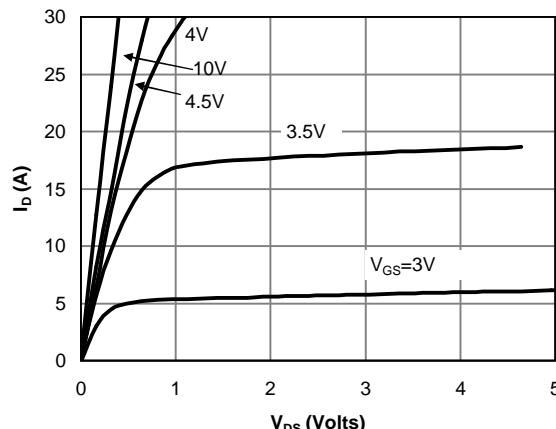


Figure 1: On-Region Characteristics

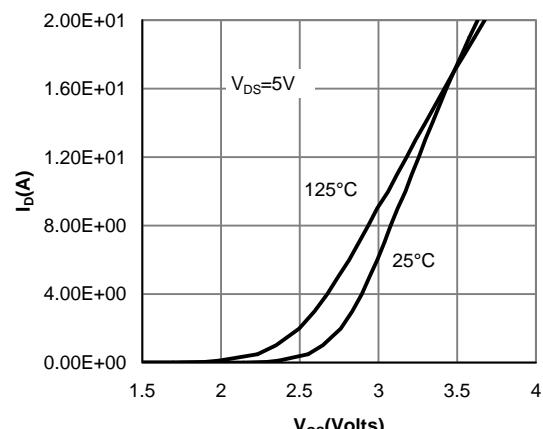


Figure 2: Transfer Characteristics

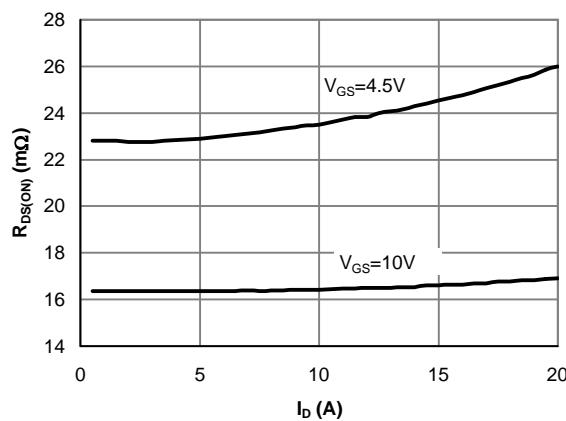


Figure 3: On-Resistance vs. Drain Current and Gate Voltage

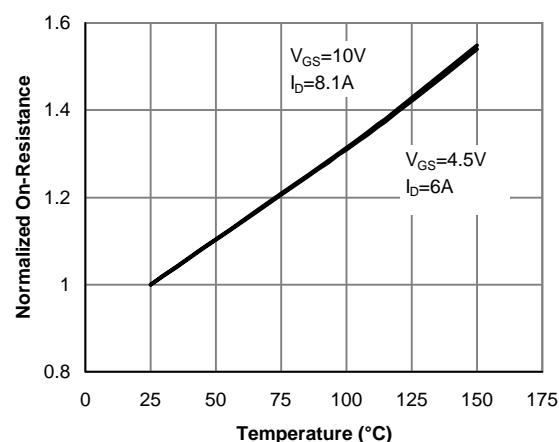


Figure 4: On-Resistance vs. Junction Temperature

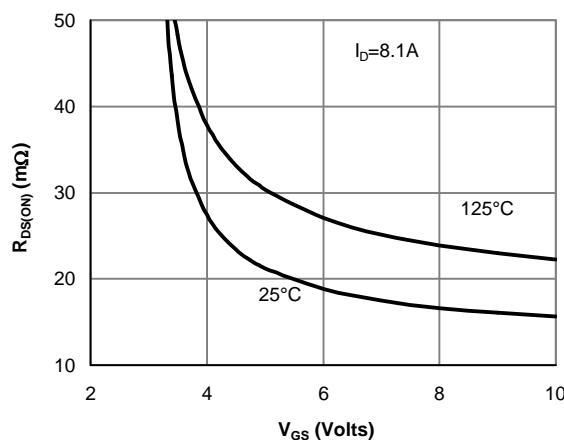


Figure 5: On-Resistance vs. Gate-Source Voltage

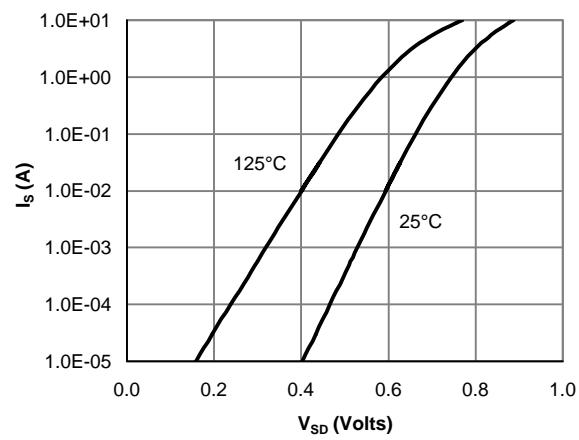
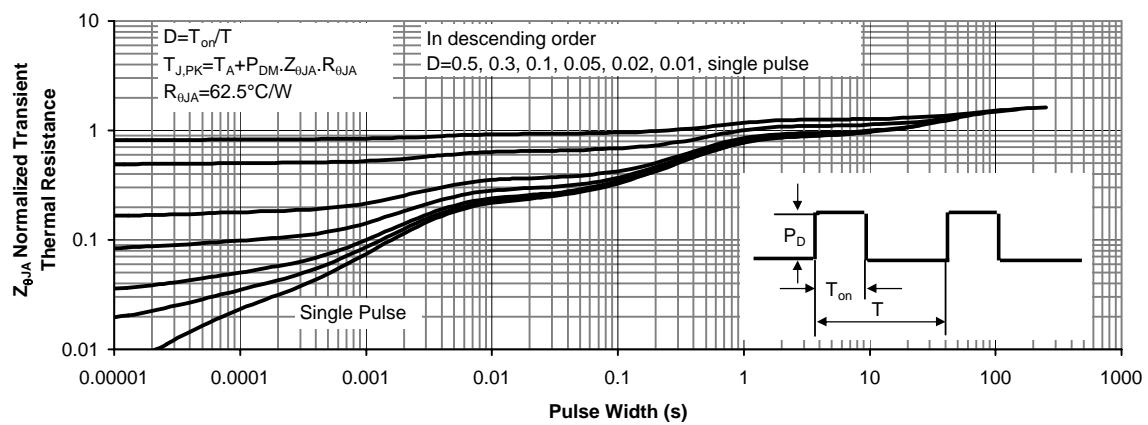
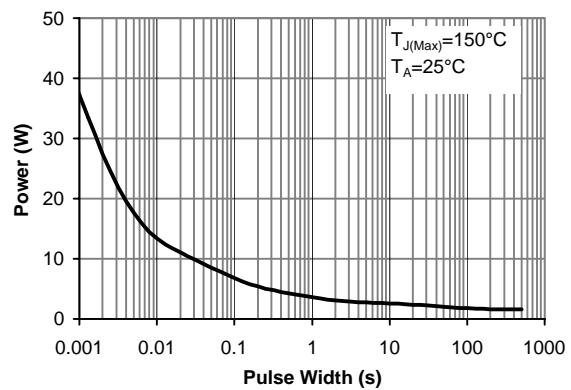
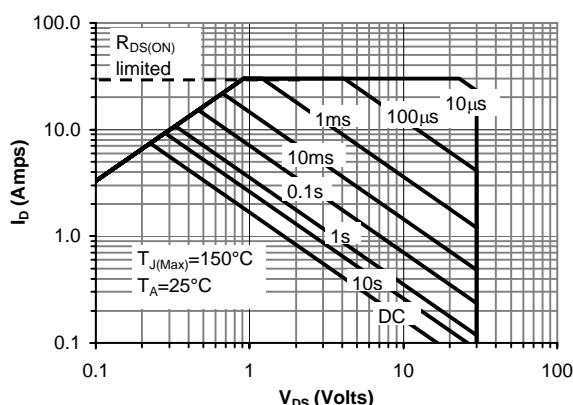
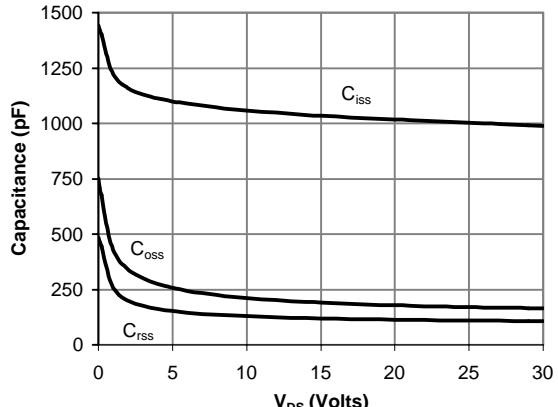
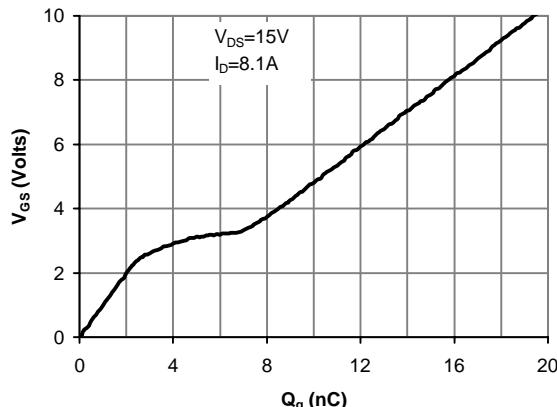







Figure 6: Body-Diode Characteristics

N-CH TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

P-Channel Electrical Characteristics ($T_J=25^\circ\text{C}$ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
STATIC PARAMETERS						
BV_{DSS}	Drain-Source Breakdown Voltage	$I_D=-250\mu\text{A}$, $V_{\text{GS}}=0\text{V}$	-30			V
I_{DSS}	Zero Gate Voltage Drain Current	$V_{\text{DS}}=-24\text{V}$, $V_{\text{GS}}=0\text{V}$ $T_J=55^\circ\text{C}$			-1	μA
I_{GSS}	Gate-Body leakage current	$V_{\text{DS}}=0\text{V}$, $V_{\text{GS}}=\pm20\text{V}$			-5	nA
$V_{\text{GS(th)}}$	Gate Threshold Voltage	$V_{\text{DS}}=V_{\text{GS}}$ $I_D=-250\mu\text{A}$	-1.4	-2	-2.7	V
$I_{\text{D(ON)}}$	On state drain current	$V_{\text{GS}}=-10\text{V}$, $V_{\text{DS}}=-5\text{V}$	30			A
$R_{\text{DS(ON)}}$	Static Drain-Source On-Resistance	$V_{\text{GS}}=-10\text{V}$, $I_D=-7.1\text{A}$ $T_J=125^\circ\text{C}$		20	25	$\text{m}\Omega$
		$V_{\text{GS}}=-4.5\text{V}$, $I_D=-5.6\text{A}$		27	33	$\text{m}\Omega$
g_{FS}	Forward Transconductance	$V_{\text{DS}}=-5\text{V}$, $I_D=-7.1\text{A}$		19.6		S
V_{SD}	Diode Forward Voltage	$I_S=-1\text{A}$, $V_{\text{GS}}=0\text{V}$		-0.7	-1	V
I_S	Maximum Body-Diode Continuous Current				-4.2	A
DYNAMIC PARAMETERS						
C_{iss}	Input Capacitance	$V_{\text{GS}}=0\text{V}$, $V_{\text{DS}}=-15\text{V}$, $f=1\text{MHz}$		1573		pF
C_{oss}	Output Capacitance			319		pF
C_{rss}	Reverse Transfer Capacitance			211		pF
R_g	Gate resistance	$V_{\text{GS}}=0\text{V}$, $V_{\text{DS}}=0\text{V}$, $f=1\text{MHz}$		6.7		Ω
SWITCHING PARAMETERS						
$Q_g(10\text{V})$	Total Gate Charge (10V)	$V_{\text{GS}}=-10\text{V}$, $V_{\text{DS}}=-15\text{V}$, $I_D=-7.1\text{A}$		30.9		nC
$Q_g(4.5\text{V})$	Total Gate Charge (4.5V)			16.1		nC
Q_{gs}	Gate Source Charge			8		nC
Q_{gd}	Gate Drain Charge			4.4		nC
$t_{\text{D(on)}}$	Turn-On DelayTime	$V_{\text{GS}}=-10\text{V}$, $V_{\text{DS}}=-15\text{V}$, $R_L=2.2\Omega$, $R_{\text{GEN}}=3\Omega$		9.5		ns
t_r	Turn-On Rise Time			8		ns
$t_{\text{D(off)}}$	Turn-Off DelayTime			44.2		ns
t_f	Turn-Off Fall Time			22.2		ns
t_{rr}	Body Diode Reverse Recovery Time	$I_F=-7.1\text{A}$, $di/dt=100\text{A}/\mu\text{s}$		25.5		ns
Q_{rr}	Body Diode Reverse Recovery Charge	$I_F=-7.1\text{A}$, $di/dt=100\text{A}/\mu\text{s}$		14.7		nC

A: The value of R_{0JA} is measured with the device mounted on 1 in ² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^\circ\text{C}$. The value in any given application depends on the user's specific board design. The current rating is based on the $t \leq 10\text{s}$ thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R_{0JA} is the sum of the thermal impedance from junction to lead R_{0JL} and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using 80 μs pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in ² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^\circ\text{C}$. The SOA curve provides a single pulse rating.

Rev 0 : July 2005

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

P-CH TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

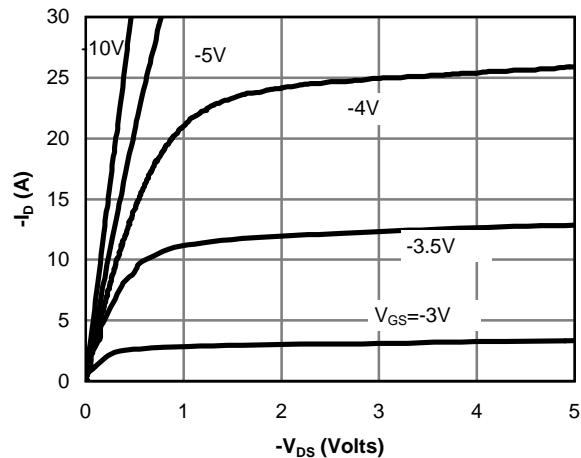


Fig 16: On-Region Characteristics

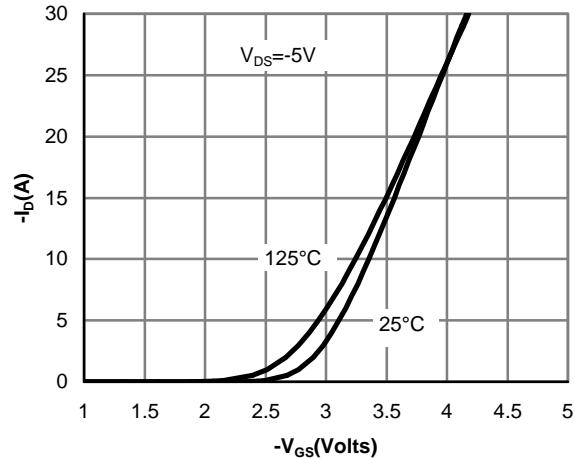


Figure 17: Transfer Characteristics

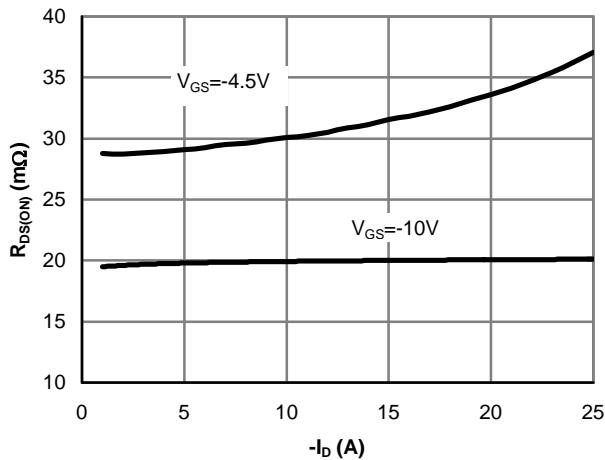


Figure 18: On-Resistance vs. Drain Current and Gate Voltage

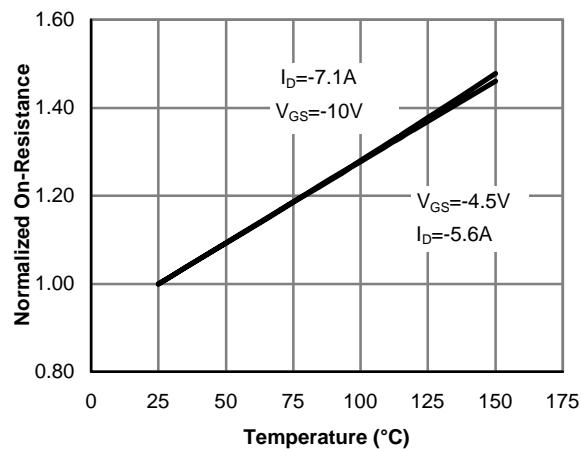


Figure 19: On-Resistance vs. Junction Temperature

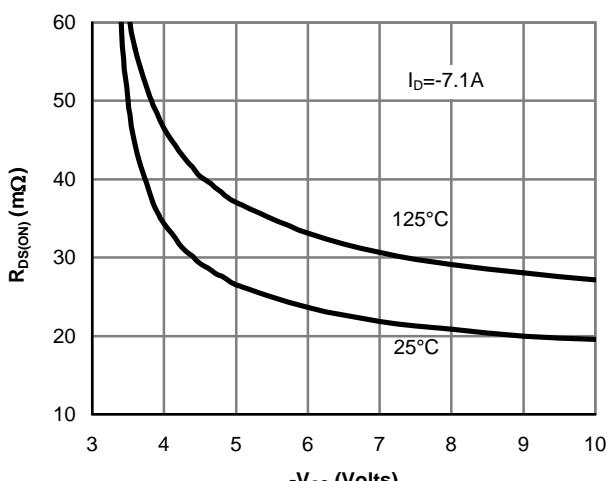


Figure 20: On-Resistance vs. Gate-Source Voltage

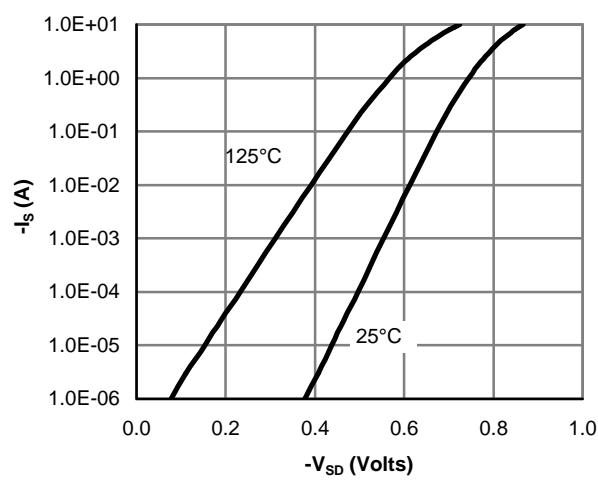
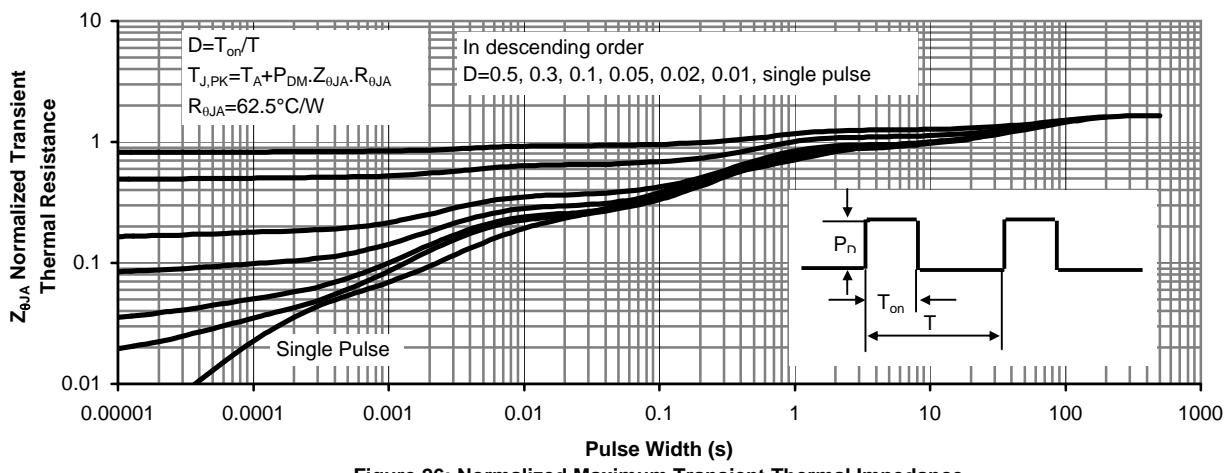
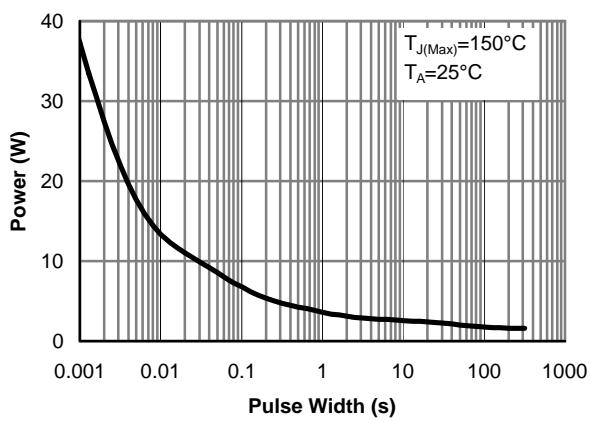
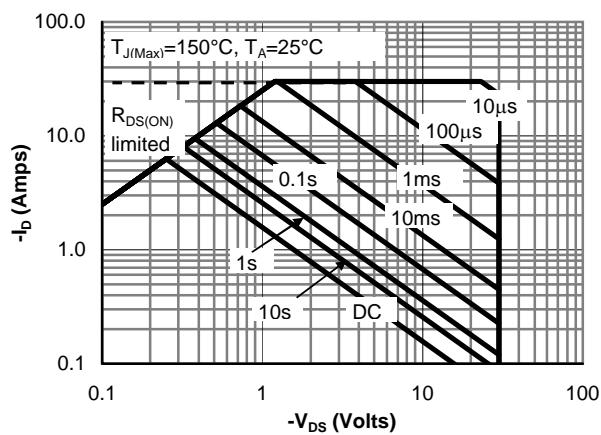
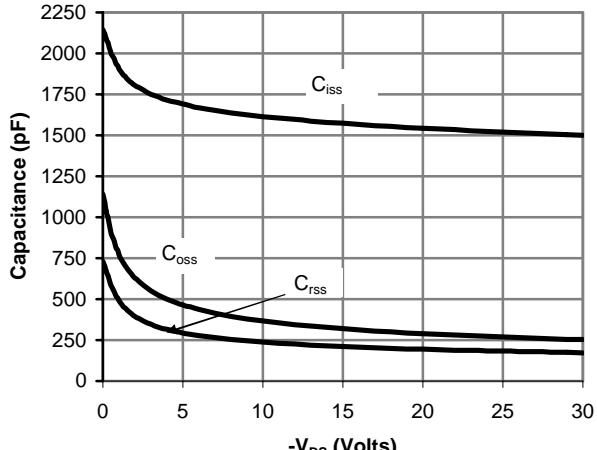
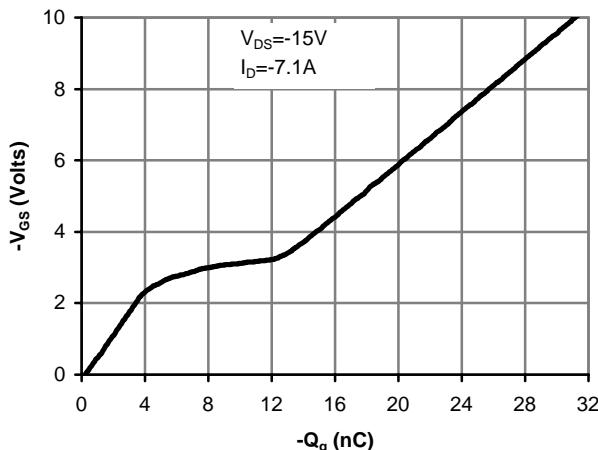







Figure 21: Body-Diode Characteristics

P-CH TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

