

Vishay High Power Products

Phase Control Thyristors (Stud Version), 200 A

FEATURES

- · Center amplifying gate
- International standard case TO-209AB (TO-93)

· Hermetic metal case with ceramic insulator (Also available with glass-metal seal up to 1200 V)

- Compression bonded encapsulation for heavy duty operations such as severe thermal cycling
- · Lead (Pb)-free
- Designed and qualified for industrial level

PRODUCT SUMMARY				
I _{T(AV)}	200 A			

TYPICAL APPLICATIONS

- · DC motor controls
- Controlled DC power supplies
- AC controllers

MAJOR RATINGS AND CHARACTERISTICS					
PARAMETER	TEST CONDITIONS	VALUES	UNITS		
		200	А		
I _{T(AV)}	T _C	85	°C		
I _{T(RMS)}		314	А		
I _{TSM}	50 Hz	5000	٨		
	60 Hz	5230	Α		
l ² t	50 Hz	125	kA ² s		
	60 Hz	114	KA-S		
V _{DRM} /V _{RRM}		400 to 2000	V		
tq	Typical	100	μs		
T _J		- 40 to 125	°C		

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS							
TYPE NUMBER	VOLTAGE CODE	V _{DRM} /V _{RRM} , MAXIMUM REPETITIVE PEAK AND OFF-STATE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK VOLTAGE V	$\begin{split} I_{DRM}/I_{RRM} & \text{MAXIMUM} \\ \text{AT T}_{J} = T_{J} & \text{MAXIMUM} \\ \text{mA} \end{split}$			
	04	400	500				
	08	800	900				
ST180S	12	1200	1300	30			
	16	1600	1700				
	20	2000	2100				

Document Number: 94397 Revision: 11-Aug-08

ST180SPbF Series

Vishay High Power Products Phase Control Thyristors (Stud Version), 200 A

ABSOLUTE MAXIMUM RATIN	GS					
PARAMETER	SYMBOL		TEST CONDITIONS			UNITS
Maximum average on-state current	I _{T(AV)}	180° condu	180° conduction, half sine wave		200	Α
at case temperature	,				85	°C
Maximum RMS on-state current	I _{T(RMS)}	DC at 76 °C	case temperati	ure	314	
		t = 10 ms	No voltage		5000	
Maximum peak, one-cycle	I _{TSM}	t = 8.3 ms	reapplied		5230	A kA ² s
non-repetitive surge current	TSM	t = 10 ms	100 % V _{RRM}		4200	
		t = 8.3 ms	reapplied	Sinusoidal half wave, initial $T_J = T_J$ maximum	4400	
Maximum I ² t for fusing	$1^{2}t$ $t = 8$ $t = 1$	t = 10 ms	No voltage		125	
		t = 8.3 ms	reapplied		114	
		t = 10 ms	100 % V _{RRM}		88	
		t = 8.3 ms	reapplied		81	
Maximum I ² √t for fusing	I ² √t	t = 0.1 to 10	ms, no voltage	reapplied	1250	kA²√s
Low level value of threshold voltage	V _{T(TO)1}	(16.7 % x π	(16.7 % x π x $I_{T(AV)}$ < I < π x $I_{T(AV)}$), $T_J = T_J$ maximum		1.08	V
High level value of threshold voltage	V _{T(TO)2}	$(I > \pi \times I_{T(AV)}), T_J = T_J \text{ maximum}$		1.14]	
Low level value of on-state slope resistance	r _{t1}	(16.7 % x π x $I_{T(AV)}$ < I < π x $I_{T(AV)}$), $T_J = T_J$ maximum		1.18	mΩ	
High level value of on-state slope resistance	r _{t2}	$(I > \pi \times I_{T(AV)}), T_J = T_J \text{ maximum}$		1.14	11152	
Maximum on-state voltage	V_{TM}	$I_{pk} = 570 \text{ A}, T_J = 125 ^{\circ}\text{C}, t_p = 10 \text{ ms sine pulse}$		1.75	V	
Maximum holding current	I _H	T. T. assistant and assistant 40 V assisting land		600	mA	
Maximum (typical) latching current	ΙL	$T_J = T_J$ maximum, anode supply 12 V resistive load 1000 (300)			1000 (300)] ""^

SWITCHING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum non-repetitive rate of rise of turned-on current	dl/dt	Gate drive 20 V, 20 Ω , $t_r \le 1~\mu s$ $T_J = T_J$ maximum, anode voltage $\le 80~\%$ V_{DRM}	1000	A/µs
Typical delay time	t _d	Gate current 1 A, $dl_g/dt = 1$ A/ μ s $V_d = 0.67 \% V_{DRM}$, $T_J = 25 °C$	1.0	
Typical turn-off time	t _q	$I_{TM} = 300 \text{ A, } T_J = T_J \text{ maximum, } dI/dt = 20 \text{ A/}\mu\text{s,}$ $V_R = 50 \text{ V, } dV/dt = 20 \text{ V/}\mu\text{s, } \text{gate } 0 \text{ V } 100 \Omega, t_p = 500 \mu\text{s}$	100	μs

BLOCKING					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum critical rate of rise of off-state voltage	dV/dt	$T_J = T_J$ maximum linear to 80 % rated V_{DRM}	500	V/µs	
Maximum peak reverse and off-state leakage current	I _{RRM} , I _{DRM}	$T_J = T_J$ maximum, rated V_{DRM}/V_{RRM} applied	30	mA	

Document Number: 94397 Revision: 11-Aug-08

Phase Control Thyristors (Stud Version), 200 A

Vishay High Power Products

TRIGGERING							
DADAMETER	CVMDOL	_	TEGT COURTIONS		VALUES		
PARAMETER	SYMBOL	'	EST CONDITIONS	TYP.	MAX.	UNITS	
Maximum peak gate power	P_{GM}	$T_J = T_J$ maximum,	, t _p ≤ 5 ms	1	0	W	
Maximum average gate power	P _{G(AV)}	$T_J = T_J$ maximum,	, f = 50 Hz, d% = 50	2	.0] vv	
Maximum peak positive gate current	I _{GM}	$T_J = T_J$ maximum,	, t _p ≤ 5 ms	3	.0	Α	
Maximum peak positive gate voltage	+ V _{GM}	$T_J = T_J$ maximum, $t_p \le 5$ ms		V _{GM} 20		0	V
Maximum peak negative gate voltage	- V _{GM}			5.0		V	
	I _{GT}	T _J = - 40 °C	Maximum required gate trigger/ current/voltage are the lowest	180	-	mA	
DC gate current required to trigger		T _J = 25 °C		90	150		
		T _J = 125 °C		40	-		
		T _J = - 40 °C	value which will trigger all units	2.9	-		
DC gate voltage required to trigger	V_{GT}	T _J = 25 °C	12 V anode to cathode applied	1.8	3.0	V	
		T _J = 125 °C		1.2	-	-	
DC gate current not to trigger	I _{GD}	T - T movimum	Maximum gate current/voltage not to trigger is the maximum	10		mA	
DC gate voltage not to trigger	V _{GD}	$T_J = T_J \text{ maximum}$	value which will not trigger any unit with rated V _{DRM} anode to cathode applied	0.25		V	

THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum operating junction temperature range	TJ		- 40 to 125	°C	
Maximum storage temperature range	T _{Stg}		- 40 to 150		
Maximum thermal resistance, junction to case	R _{thJC}	R _{thJC} DC operation		K/W	
Maximum thermal resistance, case to heatsink	R _{thC-hs}	Mounting surface, smooth, flat and greased	0.04	N/VV	
Mounting torque, ± 10 %		Non-lubricated threads	31 (275)	N · m	
		Lubricated threads	24.5 (210)	(lbf · in)	
Approximate weight			280	g	
Case style		See dimensions - link at the end of datasheeet	TO-209AB (TO-93)		

△R _{thJC} CONDUCTION						
CONDUCTION ANGLE	SINUSOIDAL CONDUCTION	RECTANGULAR CONDUCTION	TEST CONDITIONS	UNITS		
180°	0.015	0.012				
120°	0.019	0.020				
90°	0.025	0.027	$T_J = T_J$ maximum	K/W		
60°	0.036	0.037				
30°	0.060	0.060				

Note

 $\bullet \ \ \, \text{The table above shows the increment of thermal resistance } \, R_{thJC} \, \text{when devices operate at different conduction angles than DC} \,$

Vishay High Power Products Phase Control Thyristors (Stud Version), 200 A

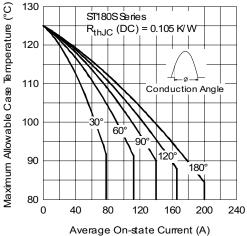


Fig. 1 - Current Ratings Characteristics

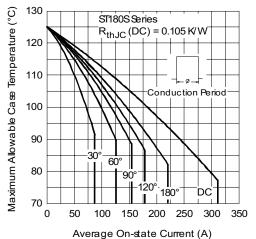


Fig. 2 - Current Ratings Characteristics

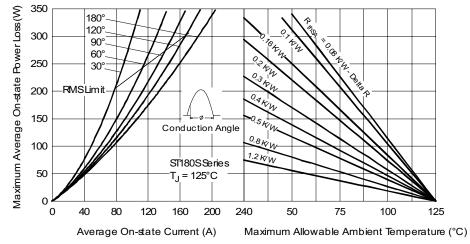


Fig. 3 - On-State Power Loss Characteristics

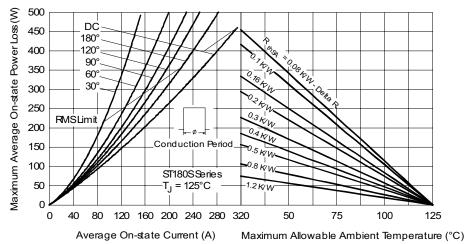


Fig. 4 - On-State Power Loss Characteristics

Phase Control Thyristors (Stud Version), 200 A

Vishay High Power Products

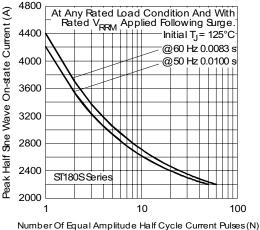


Fig. 5 - Maximum Non-Repetitive Surge Current

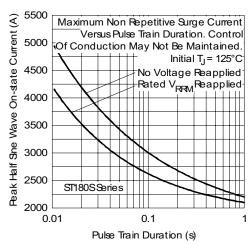


Fig. 6 - Maximum Non-Repetitive Surge Current

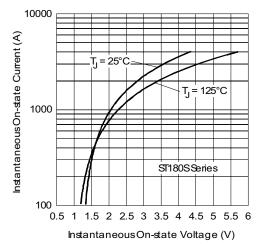


Fig. 7 - On-State Voltage Drop Characteristics

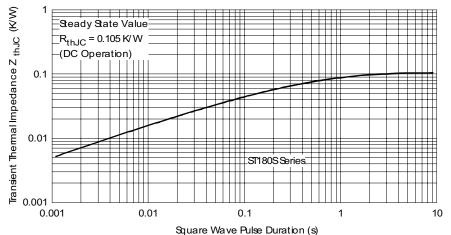
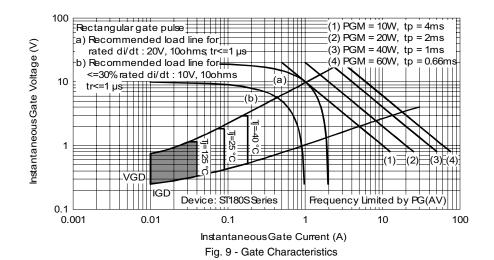
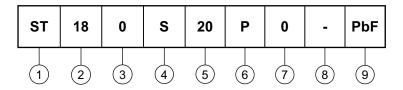



Fig. 8 - Thermal Impedance Z_{thJC} Characteristics


Vishay High Power Products Phase Control Thyristors (Stud Version), 200 A

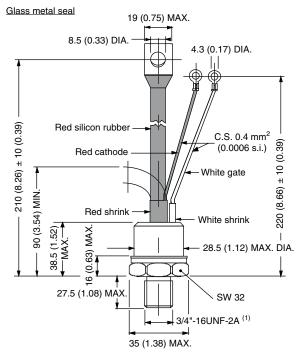
ORDERING INFORMATION TABLE

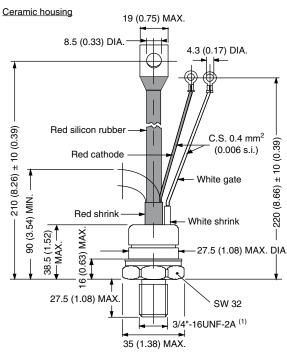
Device code

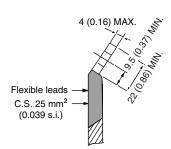
- 1 Thyristor
- 2 Essential part number
- 3 0 = Converter grade
- 4 S = Compression bonding stud
- 5 Voltage code x 100 = V_{RRM} (see Voltage Ratings table)
- 6 P = Stud base 3/4"-16UNF2A threads
- 7 0 = Eyelet terminals (gate and auxiliary cathode leads)
 - 1 = Fast-on terminals (gate and auxiliary cathode leads)
- 8 V = Glass-metal seal (only up to 1200 V)
 - None = Ceramic housing (over 1200 V)
- 9 Lead (Pb)-free

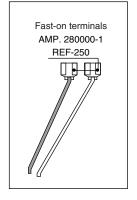
Note: For metric device M16 x 1.5 contact factory

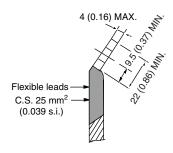
LINKS TO RELATED DOCUMENTS		
Dimensions	http://www.vishay.com/doc?95082	


Document Number: 94397 Revision: 11-Aug-08




Vishay Semiconductors


TO-209AB (TO-93)


DIMENSIONS in millimeters (inches)

Note

(1) For metric device: M16 x 1.5 - length 21 (0.83) maximum

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

<u>ST180S04P1V ST180S06P1V ST180S08P1V ST180S12P1V ST180S16P1 VS-ST180S12P0V VS-ST180S12P0VPBF VS-ST180S04P1VPBF VS-ST180S06P1VPBF ST180S04P0V VS-ST180S08P0V ST180S16P0 ST180S20P1 VS-ST180S20P1PBF VS-ST180S04P0VPBF VS-ST180S08P0VPBF VS-ST180S16P1PBF VS-ST180S16P0PBF VS-ST180S12P1VPBF VS-ST180S20P0PBF VS-ST180S12P1V</u>