

Glass Passivated Single-Phase Bridge Rectifier

Case Style KBPM

FEATURES

- UL recognition file number E54214
- Ideal for printed circuit board
- High surge current capability
- High case dielectric strength
- Solder dip 260 °C, 40 s
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

**RoHS
COMPLIANT**

TYPICAL APPLICATIONS

General purpose use in ac-to-dc bridge full wave rectification for switching power supply, home appliances, office equipment, and telecommunication applications.

MECHANICAL DATA

Case: KBPM

Epoxy meets UL 94V-0 flammability rating

Terminals: Silver plated leads, solderable per J-STD-002 and JESD22-B102

E4 suffix for consumer grade

Polarity: As marked on body

PRIMARY CHARACTERISTICS	
$I_{F(AV)}$	3 A
V_{RRM}	50 V to 800 V
I_{FSM}	80 A
I_R	5 μ A
V_F	1.05 V
T_J max.	150 °C

MAXIMUM RATINGS ($T_A = 25$ °C unless otherwise noted)								
PARAMETER	SYMBOL	3KBP 005M	3KBP 01M	3KBP 02M	3KBP 04M	3KBP 06M	3KBP 08M	UNIT
Maximum repetitive peak reverse voltage	V_{RRM}	50	100	200	400	600	800	V
Maximum RMS voltage	V_{RMS}	35	70	140	280	420	560	V
Maximum DC blocking voltage	V_{DC}	50	100	200	400	600	800	V
Maximum average forward output rectified current at $T_A = 55$ °C (Fig. 1)	$I_{F(AV)}$	3.0						A
Peak forward surge current 50 Hz single half sine-wave superimposed on rated load	I_{FSM}	80						A
Rating for fusing ($t < 10$ ms)	I^2t	32						A^2s
Operating junction and storage temperature range	T_J, T_{STG}	- 55 to + 150						°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^\circ\text{C}$ unless otherwise noted)

PARAMETER	TEST CONDITIONS	SYMBOL	3KBP 005M	3KBP 01M	3KBP 02M	3KBP 04M	3KBP 06M	3KBP 08M	UNIT
Maximum instantaneous forward voltage drop per diode	3.0 A	V_F			1.05				V
Maximum DC reverse current at rated DC blocking voltage per diode	$T_A = 25^\circ\text{C}$ $T_A = 125^\circ\text{C}$	I_R			5.0 500				μA
Typical junction capacitance per diode	4.0 V, 1 MHz	C_J			25				pF

THERMAL CHARACTERISTICS ($T_A = 25^\circ\text{C}$ unless otherwise noted)

PARAMETER	SYMBOL	3KBP 005M	3KBP 01M	3KBP 02M	3KBP 04M	3KBP 06M	3KBP 08M	UNIT
Typical thermal resistance ⁽¹⁾	$R_{\theta JA}$ $R_{\theta JL}$			30 11				$^\circ\text{C}/\text{W}$

Note:

(1) Thermal resistance from junction to ambient and from junction to lead mounted on P.C.B. with, 0.47 x 0.47" (12 x 12 mm) copper pads

ORDERING INFORMATION (Example)

PREFERRED P/N	UNIT WEIGHT (g)	PREFERRED PACKAGE CODE	BASE QUANTITY	DELIVERY MODE
3KBP06M-E4/45	1.912	45	30	Tube
3KBP06M-E4/51	1.912	51	600	Anti-static PVC tray

RATINGS AND CHARACTERISTICS CURVES

($T_A = 25^\circ\text{C}$ unless otherwise noted)

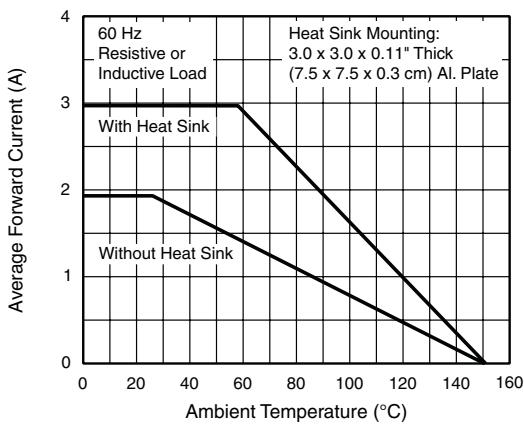


Figure 1. Forward Current Derating Curve

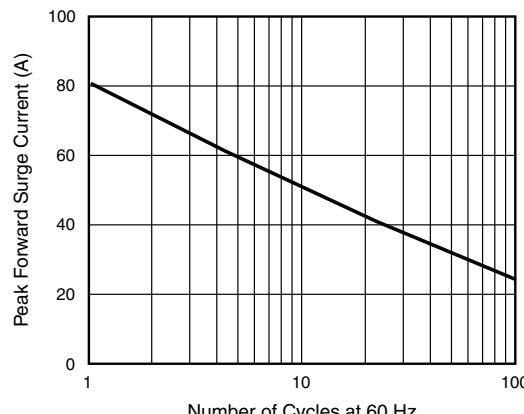


Figure 2. Maximum Non-Repetitive Peak Forward Surge Current Per Diode

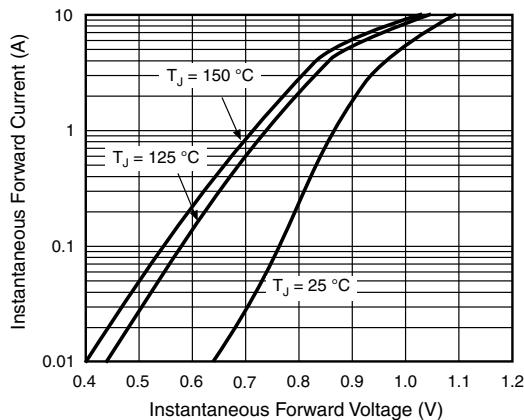


Figure 3. Typical Forward Characteristics Per Diode

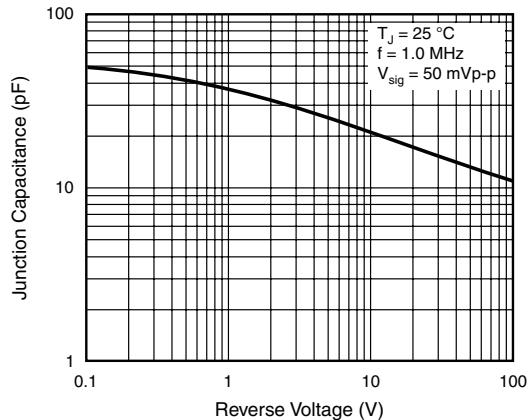


Figure 5. Typical Junction Capacitance Per Diode

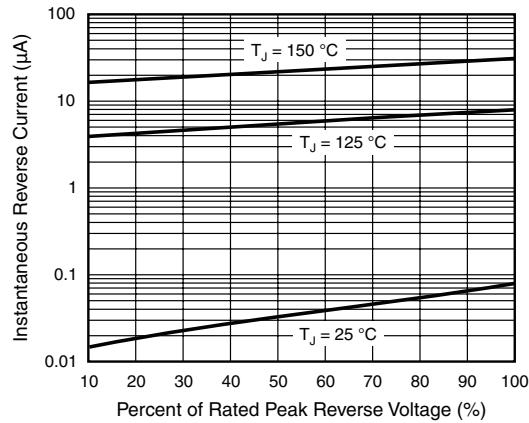
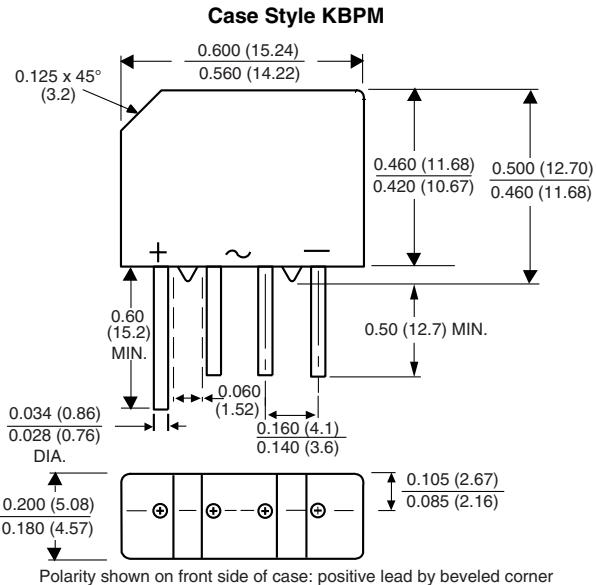



Figure 4. Typical Reverse Leakage Characteristics Per Diode

PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.