

## 74VHC08 • 74VHCT08 Quad 2-Input AND Gate

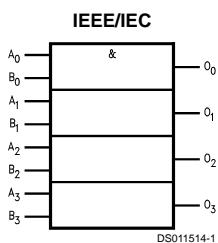
### General Description

The VHC/VHCT08 is an advanced high speed CMOS 2 Input AND Gate fabricated with silicon gate CMOS technology. It achieves the high-speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

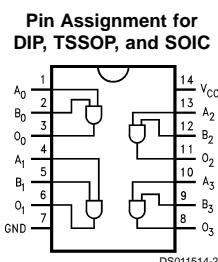
The internal circuit is composed of 4 stages including buffer output, which provide high noise immunity and stable output. An input protection circuit insures that 0V to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery backup. This circuit prevents device destruction due to mismatched supply and input voltages.

### Features

- Low power dissipation:  
 $I_{CC} = 2 \mu A$  (Max) @  $T_A = 25^\circ C$
- High Speed:  
 $t_{pd} = 4.3$  ns (typ) at  $T_A = 25^\circ C$
- High noise immunity:  
VHC  $V_{NIH} = V_{NIL} = 28\%$   $V_{CC}$  (min)  
VHCT  $V_{IH} = 2.0V$ ,  $V_{IL} = 0.8V$
- Power down protection:  
VHC inputs only  
VHCT inputs and outputs
- Low noise:  
 $V_{OLP} = 0.8V$  (max)
- Pin and function compatible with 74HC/HCT08


**Note:** Add external pull up resistor to VHCT outputs to drive CMOS inputs.

### Ordering Code:


| Commercial  | Package Number | Package Description               |
|-------------|----------------|-----------------------------------|
| 74VHC08M    | M14A           | 14-Lead Molded JEDEC SOIC         |
| 74VHC08SJ   | M14D           | 14-Lead Molded EIAJ SOIC          |
| 74VHC08MTC  | MTC14          | 14-Lead Molded JEDEC Type 1 TSSOP |
| 74VHC08N    | N14A           | 14-Lead Molded DIP                |
| 74VHCT08M   | M14A           | 14-Lead Molded JEDEC SOIC         |
| 74VHCT08SJ  | M14D           | 14-Lead Molded EIAJ SOIC          |
| 74VHCT08MTC | MTC14          | 14-Lead Molded JEDEC Type 1 TSSOP |
| 74VHCT08N   | N14A           | 14-Lead Molded DIP                |

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

### Logic Symbol



### Connection Diagram



## Pin Descriptions

| Pin Names     | Description |
|---------------|-------------|
| $A_n$ , $B_n$ | Inputs      |
| $O_n$         | Outputs     |

## Truth Table

| A | B | O |
|---|---|---|
| L | L | L |
| L | H | L |
| H | L | L |
| H | H | H |

### Absolute Maximum Ratings (Note 1)

|                                       |                          |
|---------------------------------------|--------------------------|
| Supply Voltage ( $V_{CC}$ )           | -0.5V to +7.0V           |
| DC Input Voltage ( $V_{IN}$ )         | -0.5V to +7.0V           |
| DC Output Voltage ( $V_{OUT}$ )       |                          |
| VHC                                   | -0.5V to $V_{CC}$ + 0.5V |
| VHCT (Note 2)                         | -0.5V to 7.0V            |
| Input Diode Current ( $I_{IK}$ )      | -20 mA                   |
| Output Diode Current ( $I_{OK}$ )     |                          |
| VHC                                   | $\pm 20$ mA              |
| VHCT                                  | -20 mA                   |
| DC Output Current ( $I_{OUT}$ )       | $\pm 25$ mA              |
| DC $V_{CC}$ /GND Current ( $I_{CC}$ ) | $\pm 50$ mA              |
| Storage Temperature ( $T_{STG}$ )     | -65°C to +150°C          |
| Lead Temperature ( $T_L$ )            |                          |
| (Soldering, 10 seconds)               | 260°C                    |

### Recommended Operating Conditions (Note 3)

|                                         |                   |
|-----------------------------------------|-------------------|
| Supply Voltage ( $V_{CC}$ )             |                   |
| VHC                                     | 2.0V to +5.5V     |
| VHCT                                    | 4.5V to 5.5V      |
| Input Voltage ( $V_{IN}$ )              | 0V to +5.5V       |
| Output Voltage ( $V_{OUT}$ )            | 0V to $V_{CC}$    |
| Operating Temperature ( $T_{OPR}$ )     | -40°C to +85°C    |
| Input Rise and Fall Time ( $t_r, t_f$ ) |                   |
| $V_{CC} = 3.3V \pm 0.3V$ (VHC only)     | 0 ns/V ~ 100 ns/V |
| $V_{CC} = 5.0V \pm 0.5V$                | 0 ns/V ~ 20 ns/V  |

**Note 1:** Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside databook specifications.

**Note 2:**  $V_{OUT} > V_{CC}$  only if output is in H state.

**Note 3:** Unused inputs must be held HIGH or LOW. They may not float.

### DC Electrical Characteristics for VHC

| Symbol   | Parameter                 | $V_{CC}$ (V)   | $T_A = 25^\circ C$   |                      |                      | Units   | Conditions                                         |
|----------|---------------------------|----------------|----------------------|----------------------|----------------------|---------|----------------------------------------------------|
|          |                           |                | Min                  | Typ                  | Max                  |         |                                                    |
| $V_{IH}$ | High Level Input Voltage  | 2.0<br>3.0–5.5 | 1.50<br>0.7 $V_{CC}$ |                      | 1.50<br>0.7 $V_{CC}$ | V       |                                                    |
| $V_{IL}$ | Low Level Input Voltage   | 2.0<br>3.0–5.5 |                      | 0.50<br>0.3 $V_{CC}$ |                      | V       |                                                    |
| $V_{OH}$ | High Level Output Voltage | 2.0            | 1.9                  | 2.0                  | 1.9                  | V       | $V_{IN} = V_{IH}$ or $V_{IL}$ $I_{OH} = -50 \mu A$ |
|          |                           | 3.0            | 2.9                  | 3.0                  | 2.9                  |         | $I_{OH} = -4 mA$                                   |
|          |                           | 4.5            | 4.4                  | 4.5                  | 4.4                  | V       | $I_{OH} = -8 mA$                                   |
|          |                           | 3.0            | 2.58                 |                      | 2.48                 |         |                                                    |
| $V_{OL}$ | Low Level Output Voltage  | 4.5            | 3.94                 |                      | 3.80                 |         |                                                    |
|          |                           | 2.0            |                      | 0.0 0.1              | 0.1                  | V       | $V_{IN} = V_{IH}$ or $V_{IL}$ $I_{OL} = 50 \mu A$  |
|          |                           | 3.0            |                      | 0.0 0.1              | 0.1                  |         | $I_{OL} = 4 mA$                                    |
|          |                           | 4.5            |                      | 0.0 0.1              | 0.1                  | V       | $I_{OL} = 8 mA$                                    |
|          |                           | 3.0            |                      | 0.36                 | 0.44                 |         |                                                    |
| $I_{IN}$ | Input Leakage Current     | 0–5.5          |                      | $\pm 0.1$            | $\pm 1.0$            | $\mu A$ | $V_{IN} = 5.5V$ or GND                             |
|          | Quiescent Supply Current  | 5.5            |                      | 2.0                  | 20.0                 | $\mu A$ | $V_{IN} = V_{CC}$ or GND                           |

### Noise Characteristics for VHC

| Symbol             | Parameter                                | $V_{CC}$ (V) | $T_A = 25^\circ C$ |        | Units | Conditions    |
|--------------------|------------------------------------------|--------------|--------------------|--------|-------|---------------|
|                    |                                          |              | Typ                | Limits |       |               |
| $V_{OLP}$ (Note 4) | Quiet Output Maximum Dynamic $V_{OL}$    | 5.0          | 0.3                | 0.8    | V     | $C_L = 50 pF$ |
| $V_{OLV}$ (Note 4) | Quiet Output Minimum Dynamic $V_{OL}$    | 5.0          | -0.3               | -0.8   | V     | $C_L = 50 pF$ |
| $V_{IHD}$ (Note 4) | Minimum High Level Dynamic Input Voltage | 5.0          |                    | 3.5    | V     | $C_L = 50 pF$ |
| $V_{ILD}$ (Note 4) | Maximum Low Level Dynamic Input Voltage  | 5.0          |                    | 1.5    | V     | $C_L = 50 pF$ |

**Note 4:** Parameter guaranteed by design.

## DC Electrical Characteristics for VHCT

| Symbol           | Parameter                                 | V <sub>CC</sub> (V) | T <sub>A</sub> = 25°C |      |     | T <sub>A</sub> = -40°C to +85°C |      | Units | Conditions                                                      |
|------------------|-------------------------------------------|---------------------|-----------------------|------|-----|---------------------------------|------|-------|-----------------------------------------------------------------|
|                  |                                           |                     | Min                   | Typ  | Max | Min                             | Max  |       |                                                                 |
| V <sub>IH</sub>  | High Level Input Voltage                  | 4.5                 | 2.0                   |      |     | 2.0                             |      | V     |                                                                 |
|                  |                                           | 5.5                 | 2.0                   |      |     | 2.0                             |      |       |                                                                 |
| V <sub>IL</sub>  | Low Level Input Voltage                   | 4.5                 |                       | 0.8  |     | 0.8                             |      | V     |                                                                 |
|                  |                                           | 5.5                 |                       | 0.8  |     | 0.8                             |      |       |                                                                 |
| V <sub>OH</sub>  | High Level Output Voltage                 | 4.5                 | 3.15                  | 3.65 |     | 3.15                            |      | V     | V <sub>IN</sub> = V <sub>IH</sub><br>or V <sub>IL</sub>         |
|                  |                                           | 4.5                 | 2.5                   |      |     | 2.4                             |      | V     |                                                                 |
| V <sub>OL</sub>  | Low Level Output Voltage                  | 4.5                 |                       | 0.0  | 0.1 |                                 | 0.1  | V     | V <sub>IN</sub> = V <sub>IH</sub><br>or V <sub>IL</sub>         |
|                  |                                           | 4.5                 |                       | 0.36 |     |                                 | 0.44 | V     |                                                                 |
| I <sub>IN</sub>  | Input Leakage Current                     | 0–5.5               |                       | ±0.1 |     | ±1.0                            |      | µA    | V <sub>IN</sub> = 5.5V or GND                                   |
| I <sub>CC</sub>  | Quiescent Supply Current                  | 5.5                 |                       | 2.0  |     | 20.0                            |      | µA    | V <sub>IN</sub> = V <sub>CC</sub> or GND                        |
| I <sub>CC</sub>  | Maximum I <sub>CC</sub> / Input           | 5.5                 |                       | 1.35 |     | 1.50                            |      | mA    | V <sub>IN</sub> = 3.4V<br>Other Inputs = V <sub>CC</sub> or GND |
| I <sub>OFF</sub> | Output Leakage Current (Power Down State) | 0.0                 |                       | 0.5  |     | 5.0                             |      | µA    | V <sub>OUT</sub> = 5.5V                                         |

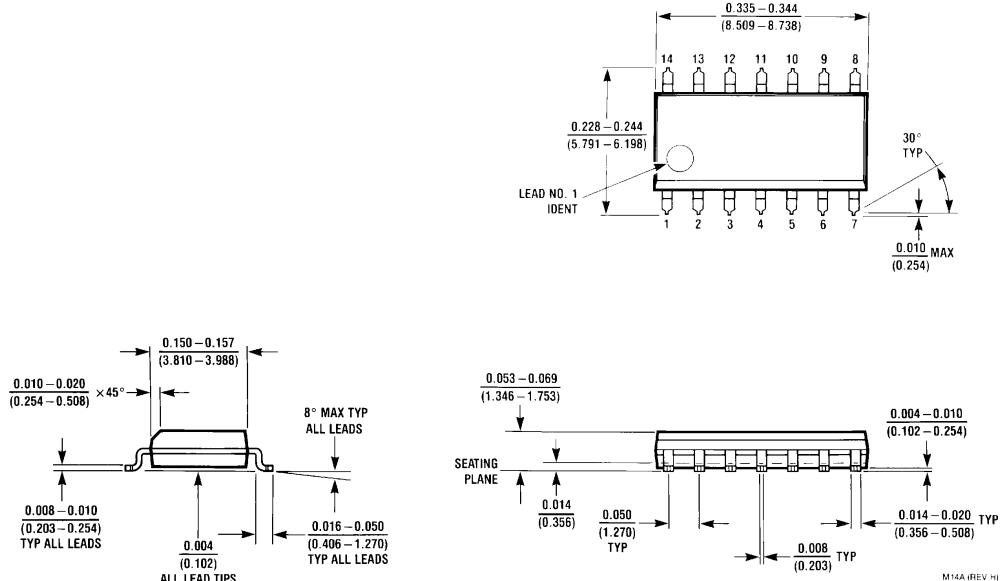
## Noise Characteristics for VHCT

| Symbol                    | Parameter                                    | V <sub>CC</sub> (V) | T <sub>A</sub> = 25°C |       | Units | Conditions             |
|---------------------------|----------------------------------------------|---------------------|-----------------------|-------|-------|------------------------|
|                           |                                              |                     | Typ                   | Limit |       |                        |
| V <sub>OLP</sub> (Note 5) | Quiet Output Maximum Dynamic V <sub>OL</sub> |                     | 0.4                   | 0.8   | V     | C <sub>L</sub> = 50 pF |
| V <sub>OLV</sub> (Note 5) | Quiet Output Minimum Dynamic V <sub>OL</sub> |                     | -0.4                  | -0.8  | V     | C <sub>L</sub> = 50 pF |
| V <sub>IHD</sub> (Note 5) | Minimum High Level Dynamic Input Voltage     |                     |                       | 2.0   | V     | C <sub>L</sub> = 50 pF |
| V <sub>ILD</sub> (Note 5) | Maximum Low Level Dynamic Input Voltage      |                     |                       | 0.8   | V     | C <sub>L</sub> = 50 pF |

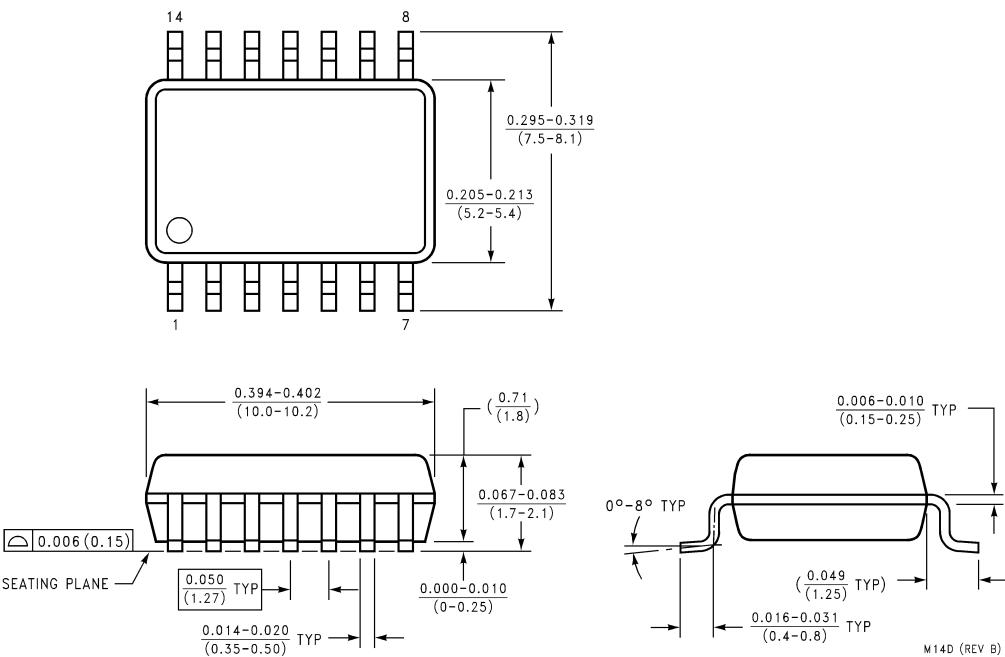
Note 5: Parameter guaranteed by design.

## AC Electrical Characteristics for VHCT

| Symbol                              | Parameter                     | V <sub>CC</sub> (V) | T <sub>A</sub> = 25°C |     |      | T <sub>A</sub> = -40°C to +85°C |      | Units | Conditions             |
|-------------------------------------|-------------------------------|---------------------|-----------------------|-----|------|---------------------------------|------|-------|------------------------|
|                                     |                               |                     | Min                   | Typ | Max  | Min                             | Max  |       |                        |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Propagation Delay             | 3.3±0.3             |                       | 6.2 | 8.8  | 1.0                             | 10.5 | ns    | C <sub>L</sub> = 15 pF |
|                                     |                               |                     |                       | 8.7 | 12.3 | 1.0                             | 14.0 |       | C <sub>L</sub> = 50 pF |
|                                     |                               | 5.0±0.5             |                       | 4.3 | 5.9  | 1.0                             | 7.0  | ns    | C <sub>L</sub> = 15 pF |
|                                     |                               |                     |                       | 5.8 | 7.9  | 1.0                             | 9.0  |       | C <sub>L</sub> = 50 pF |
| C <sub>IN</sub>                     | Input Capacitance             |                     |                       | 4   | 10   |                                 | 10   | pF    | V <sub>CC</sub> = Open |
| C <sub>PD</sub>                     | Power Dissipation Capacitance |                     |                       | 18  |      |                                 |      | pF    | (Note 6)               |

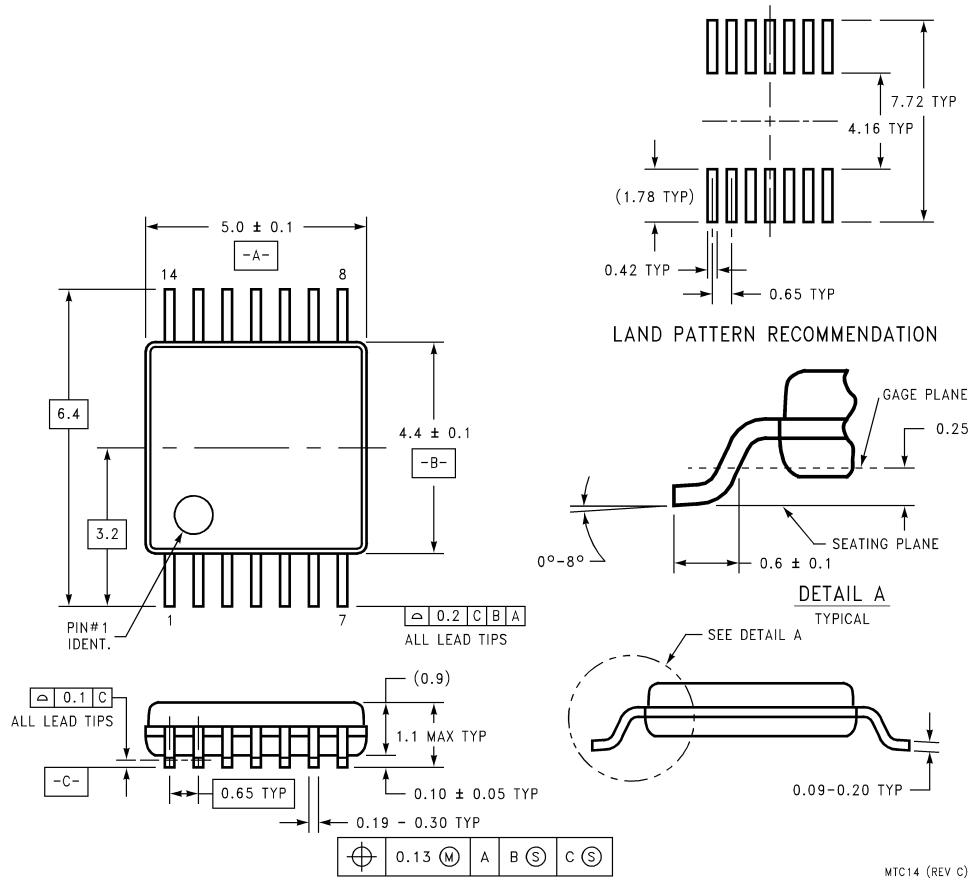

Note 6: C<sub>PD</sub> is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I<sub>CC</sub> (opr.) = C<sub>PD</sub> \* V<sub>CC</sub> \* f<sub>IN</sub> + I<sub>CC</sub>/4 (per gate).

## AC Electrical Characteristics for VHCT


| Symbol                                 | Parameter                        | V <sub>CC</sub><br>(V) | T <sub>A</sub> = 25°C |     |     | T <sub>A</sub> = -40°C<br>to +85°C |     | Units | Conditions             |
|----------------------------------------|----------------------------------|------------------------|-----------------------|-----|-----|------------------------------------|-----|-------|------------------------|
|                                        |                                  |                        | Min                   | Typ | Max | Min                                | Max |       |                        |
| t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | Propagation Delay                | 5.0<br>±0.5            | 5.0                   | 6.9 | 8.0 | 1.0                                | 8.0 | ns    | C <sub>L</sub> = 15 pF |
|                                        |                                  |                        | 5.5                   | 7.9 | 9.0 | 1.0                                | 9.0 |       | C <sub>L</sub> = 50 pF |
| C <sub>IN</sub>                        | Input Capacitance                |                        | 4                     | 10  |     | 10                                 |     | pF    | V <sub>CC</sub> = Open |
| C <sub>PD</sub>                        | Power Dissipation<br>Capacitance |                        | 18                    |     |     |                                    |     | pF    | (Note 7)               |

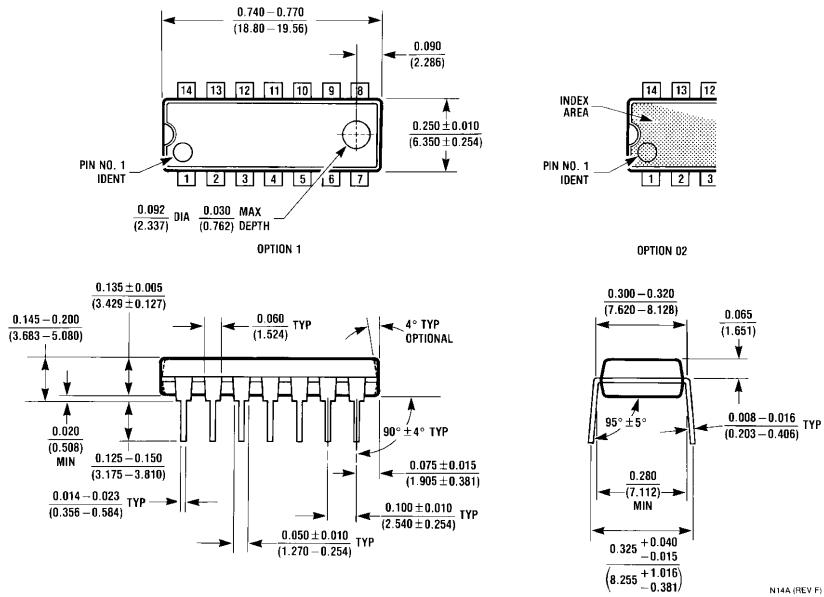
**Note 7:** C<sub>PD</sub> is defined as the value of the internal equivalent capacitance, which is calculated from the operating current consumption without load. Average operating current can be obtained from the equation: I<sub>CC</sub> (opr.) = C<sub>PD</sub> \* V<sub>CC</sub> \* f<sub>IN</sub> + I<sub>CC</sub>/4 (per gate)

**Physical Dimensions** inches (millimeters) unless otherwise noted




14-Lead Small Outline Integrated Circuit—JEDEC SOIC (M)  
Package Number M14A




14-Lead Plastic EIAJ SOIC (SJ)  
Package Number M14D

**Physical Dimensions** inches (millimeters) unless otherwise noted (Continued)



MTC14 (REV C)

**Physical Dimensions** inches (millimeters) unless otherwise noted (Continued)



14-Lead Molded Dual-In-Line Package (MDIP)  
Package Number N14A

**LIFE SUPPORT POLICY**

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI CONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor  
Corporation  
Americas  
Customer Response Center  
Tel: 1-888-522-5372

[www.fairchildsemi.com](http://www.fairchildsemi.com)

Fairchild Semiconductor  
Europe  
Fax: +49 (0) 1 80-530 85 86  
Email: [europe.support@nsc.com](mailto:europe.support@nsc.com)  
Deutsch Tel: +49 (0) 8 141-35-0  
English Tel: +44 (0) 1 793-85-68-56  
Italy Tel: +39 (0) 2 57 5631

Fairchild Semiconductor  
Hong Kong Ltd.  
13th Floor, Straight Block,  
Ocean Centre, 5 Canton Rd.  
Tsimshatsui, Kowloon  
Hong Kong  
Tel: +852 2737-7200  
Fax: +852 2314-0061

National Semiconductor  
Japan Ltd.  
Tel: 81-3-5620-6175  
Fax: 81-3-5620-6179