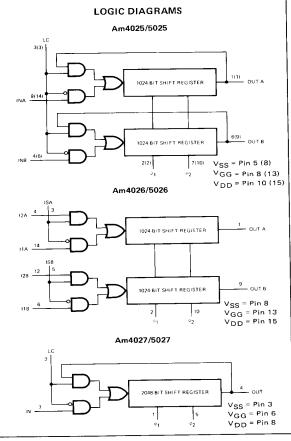
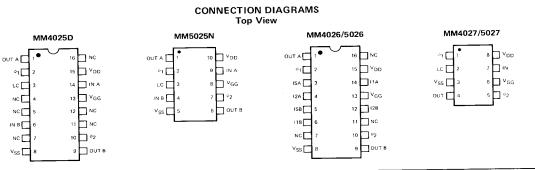
Am4025/5025 · Am4026/5026 · Am4027/5027

2048-Bit Dynamic Shift Registers

Distinctive Characteristics

- 6 MHz data rate guaranteed
- Single 2048 and dual 1024-bit configurations
- Low power dissipation
- TTL compatible data inputs and outputs


- On chip recirculate and input select controls
- Alternate source to National parts
- Full military temperature range devices available
- 100% reliability assurance testing in compliance with MIL-STD-883


FUNCTIONAL DESCRIPTION

The Am4025/6/7 and Am5025/6/7 are military and commercial grade 2048-bit dynamic shift registers. Am4025/5025 is a dual 1024-bit device with on-chip recirculate and a load control (LC) common to both registers. When LC is HIGH, the two registers recirculate data; when LC is LOW new data is entered through the data inputs. The Am4026/5026 is similar, but each register has two data inputs, selected by separate input select (IS) signals. The Am4027/5027 is a single 2048-bit register with on-chip recirculate and a load control. All the devices can drive one standard TTL load or three Am93L series low-power TTL loads. The select, load command, and data inputs may be driven by TTL signals. Two high-voltage clock signals, ϕ 1 and ϕ 2, are required. Internally, each shift register consists of two multiplexed registers, so that a data shift occurs on each $\phi 1$ or $\phi 2$ clock pulse. The data rate, therefore, is double the frequency of either clock signal.

ORDERING INFORMATION

Package	Temperature	Order
Type	Range	Number
10-Pin Molded	0°C to +70°C	MM5025N
16-Pin Hermetic	0° C to $+70^{\circ}$ C	MM5025D
16-Pin Hermetic	55°C to +125°C	MM4025D
16-Pin Molded	0°C to +70°C	MM5026N
16-Pin Hermetic	0°C to +70°C	MM5026DC
16-Pin Hermetic	–55°C to +125°C	MM4026D
8-Pin Molded	0°C to +70°C	MM5027N
8-Pin Hermetic	0° C to $+70^{\circ}$ C	AM5027DC
8-Pin Hermetic	–55°C to +125°C	AM4027DM

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	55°C to +125°C
DC Input Voltage with Respect to V _{CC}	-20V to +0.3V

OPERATING RANGE

Part Number	V _{SS}	V _{DD}	v_{GG}	TA	
MM4025/6/7	+5.0V ±5%	0 ∨	-12V ±10%	-55°C to +125°C	
MM5025/6/7	+5.0V ±5%	0 ∨	-12V ±10%	0°C to +70°C	

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Cond	itions	Min.	Typ. (Note 1)	Max.	Units
v oH	Output High Voltage	I _{OH} = -0.5mA		2.4		Vss	Volts
VOL	Output LOW Voltage	1 _{OL} = 1.6mA		0.0		0.4	Volts
ViH	Input HIGH Level	Guaranteed input logical for all inputs except clock	•	V _{SS} -1.7		V _{SS} +0.3	Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs except clocks		V _{SS} -10		V _{SS} -4.2	Volts
L ₁	Input Leakage Current	V _{IN} = -10V, T _A = 25°C		<u> </u>	10	500	nA
I_{ϕ}	Clock Input Leakage Current	$V_{\phi} = -15V$, $T_{\Delta} = 25^{\circ}C$			50	1000	nA
$V_{\phi H}$	Clock HIGH Level			V _{SS} -1.0		V _{SS} +0.3	Volts
$V_{\phi L}$	Clock LOW Level			V _{SS} -18.5		V _{SS} -14.5	Volts
		T _A = 25°C	.01MHz <f<0.1mhz< td=""><td></td><td>2</td><td>3.5</td><td></td></f<0.1mhz<>		2	3.5	
IGG	VGG Current	V _{SS} =5.0V, V _{GG} =-12.0V	f = 1.0MHz		2	3.5	mΑ
		$V_{\phi L} = -12.0 V$	f = 3.0MHz		2	3.5	
1		t = 115ns	.01MHz <f<0.1mhz< td=""><td></td><td>8</td><td>15</td><td></td></f<0.1mhz<>		8	15	
IDD	V _{DD} Current	Data = 11110000	f = 1.0MHz		22	32	mA
			f = 3.0MHz		48	70	

Note: 1. Typical Limits are at $V_{SS} = 5.0V$, $V_{GG} = -12.0V$ and 25° C ambient.

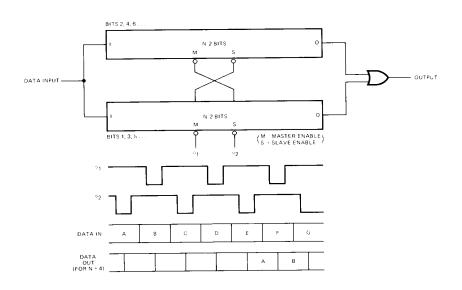
SWITCHING CHARACTERISTICS AND OPERATING REQUIREMENTS OVER OPERATING RANGE

arameters	Definition	Test Conditions	Min.	Typ. (Note 1)	Max.	Units
fD	Data Rate (Note 2)	$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	0.02		6.0	
- 0		$T_A = -55^{\circ} \text{C to } +125^{\circ} \text{C}$	0.12		2.0	
f_{ϕ}	Clock Frequency (Note 3)	T _A = 0°C to +70°C	,01		3.0	MHz
		T _A = -55° C to +125° C	0.06		1.0	
t _¢ d	Delay Between Clocks (Note 3)		10		Note 3	ns
$t_{\phi pw}$	Clock LOW Time	t _{ϕt} = 20ns	0.115		10	μs
t _{∕ot}	Clock Rise and Fall Times	10% to 90%			0.5	μs
ts	Set-Up Time, Data and Select Inputs (See Definitions)		-		35	ns
th	Hold Time, Data and Select Inputs (See Definitions)				20	ns
•	Period From Start of (Note 3) One	$T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	0.165		100	
$t_{\phi p}$	Phase to Start of Other Phase	T _A = -55°C to +125°C	0.165		16.5	μs
^t pd	Delay, Clock to Data Out	C _L = 15pF			80	ns
C(D)	Capacitance, Data Input	V _{1N} = 0, f = 1 MHz,			5	pF
C _(S)	Capacitance, Select Input or LC	All other pins GND (Note 4)			+ 7 -	
C _(φ)	Capacitance, Clock Input	$V_{\phi} = 0$, f = 1MHz, All other pins GND		165	190	pF

Notes: 2. The Data Rate is twice the frequency of either clock phase.

The maximum delay between clocks (φ₁ and φ₂ both HIGH) is a function of junction temperature. The junction temperature is a function of ambient temperature and clock duty cycle. See curves for minimum frequency on page 3,
 This parameter is periodically sampled but not 100% tested. It is guaranteed by design.

TRUTH TABLES


Am4025/5025 and Am4027/5027

LC	IN	OUT	DATA ENTERED
L	L	X	L
L	Н	X	Н
Н	X	L	L
Н	X	Н	Н

Am4026/5026

IS	INPUT 1	INPUT 2	DATA ENTERED
L	L	×	L
L	н	X	Н
н	X	L	L
Н	×	H	Н

FUNCTIONAL EQUIVALENT OF EACH REGISTER

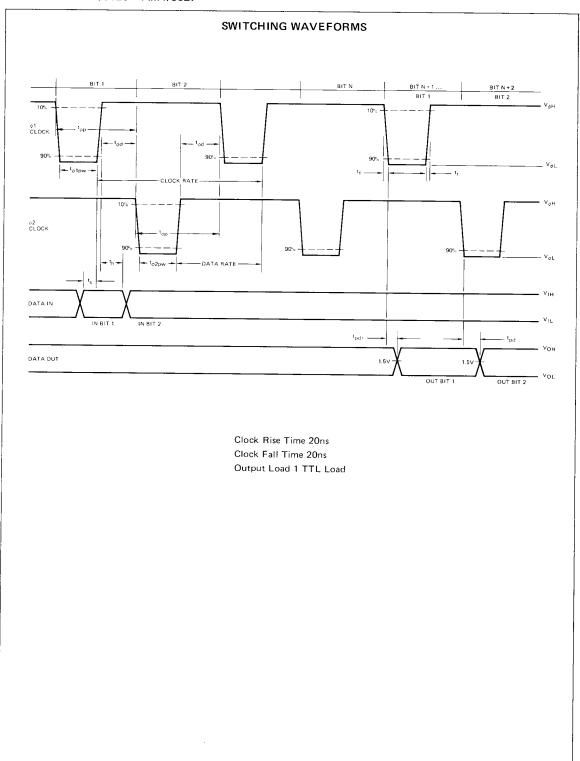
Since the two registers shift on opposite clock pulses, a new data bit is entered on both ϕ_1 and ϕ_2 . Data entering the register on ϕ_1 will appear at the output on ϕ_1 (from the negative edge of ϕ_1 to the negative edge of ϕ_2).

DEFINITION OF TERMS

Dynamic Shift Register A shift register in which data storage occurs on small capacitive nodes rather than in bistable logic circuits. Dynamic shift registers must be clocked continuously to maintain the charge stored on the nodes.

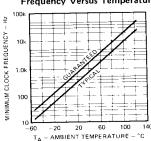
 $\phi_1,\,\phi_2$ The two clock pulses applied to the register. The clock is ON when it is at its negative voltage level and OFF when it is at $V_{SS}.$ Data is accepted into the master of each bit during one phase and is transferred to the slave of each bit during the other phase.

 $t_{\phi d}$ Clock delay time. The time elapsing between the LOW-to-HIGH transition of one clock input and the HIGH-to-LOW transition of the other clock input. During $t_{\phi d}$ both clocks are HIGH and all data is stored on capacitive nodes.

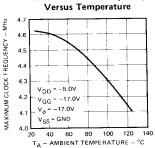

 $t_{\phi pw}$ Clock pulse width. The LOW time of each clock signal. During $t_{\phi pw}$ one of the clocks is ON, and data transfer between master and slave or slave and master occurs.

 $t_{\phi t}$ Clock rise and fall times. The time required for the clock signals to change from 10% to 90% of the total level change occuring.

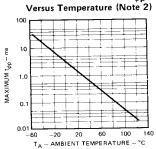
 $t_s(D)$ Data set-up time. The time prior to the LOW-to-HIGH transition of ϕ during which the data on the data input must be steady to be correctly written into the memory.

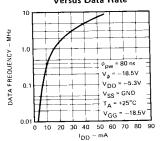

 $t_h(D)$ Data hold time. The time following the LOW-to-HIGH transition of ϕ during which the data must be steady. To correctly write data into the register, the data must be applied by $t_s(D)$ before this transition and must not be changed until $t_h(D)$ after this transition.

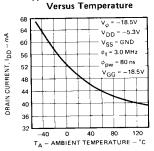
 $t_{\mbox{\scriptsize pd}}$ The delay from a HIGH-to-LOW clock transition to correct data present at the register output.

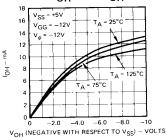


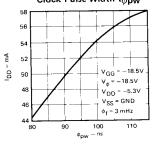
OPERATING CHARACTERISTICS

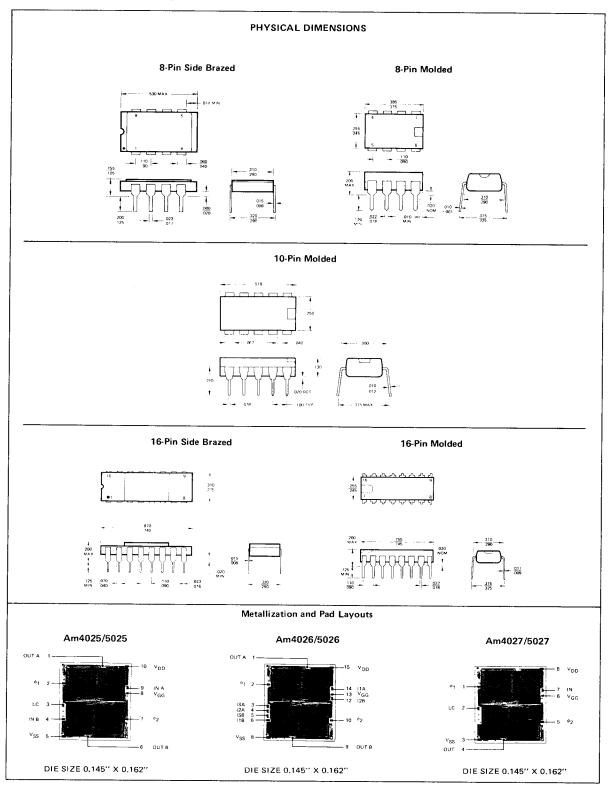

Guaranteed Minimum Clock Frequency Versus Temperature


Maximum Clock Frequency Versus Temperature


Guaranteed Maximum t_{\phip}
Versus Temperature (Note 2)


Typical Power Supply Current Versus Data Rate


Typical Power Supply Current



VOH Versus IOH

Typical Power Supply Current Versus Clock Pulse Width $t_{\phi pw}$

