SN54194, SN54LS194A, SN54S194, SN74194, SN74LS194A, SN74S194 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

MARCH 1974-REVISED MARCH 1988

- Parallel Inputs and Outputs
- Four Operating Modes:

Synchronous Parallel Load Right Shift Left Shift Do Nothing

- Positive Edge-Triggered Clocking
- Direct Overriding Clear

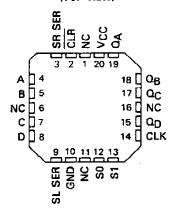
TYPE	TYPICAL MAXIMUM CLOCK FREQUENCY	TYPICAL POWER DISSIPATION
194	36 MHz	195 mW
'L\$194A	36 MHz	75 mW
' S194	105 MHz	425 mW

description

These bidirectional shift registers are designed to incorporate virtually all of the features a system designer may want in a shift register. The circuit contains 46 equivalent gates and features parallel inputs, parallel outputs, right-shift and left-shift serial inputs, operating-mode-control inputs, and a direct overriding clear line. The register has four distinct modes of operation, namely:

Inhibit clock (do nothing)
Shift right (in the direction Q_A toward Q_D)
Shift left (in the direction Q_D toward Q_A)
Parallel (broadside) load

Synchronous parallel loading is accomplished by applying the four bits of data and taking both mode control inputs, SO and S1, high. The data are loaded into the associated flip-flops and appear at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.


Shift right is accomplished synchronously with the rising edge of the clock pulse when SO is high and S1 is low. Serial data for this mode is entered at the shift-right data input. When SO is low and S1 is high, data shifts left synchronously and new data is entered at the shift-left serial input.

Clocking of the shift register is inhibited when both mode control inputs are low. The mode controls of the SN54194/SN74194 should be changed only while the clock input is high.

SN54194, SN54LS194A, SN54S194 . . . J OR W PACKAGE SN74194 . . . N PACKAGE SN74LS194A, SN74S194 . . . D OR N PACKAGE (TOP VIEW)


CLR	<u></u> 1	U 16	D∨cc
SR SER	[]2	15	Q _A
Α	□3	14	□ов
В		13	□ oc
C	□5	12	_ σ _D
D	∏6	11	Crk
SL SER	П 7	10	_ S1
GND	<u>[</u> 8_	9	_ so

SN54LS194A, SN54S194 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

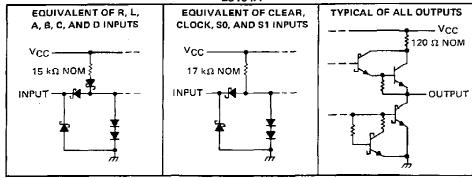
logic symbol†

 $^{^{\}dagger} This$ symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

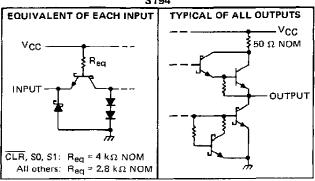
Pin numbers shown are for D. J. N. and W packages.

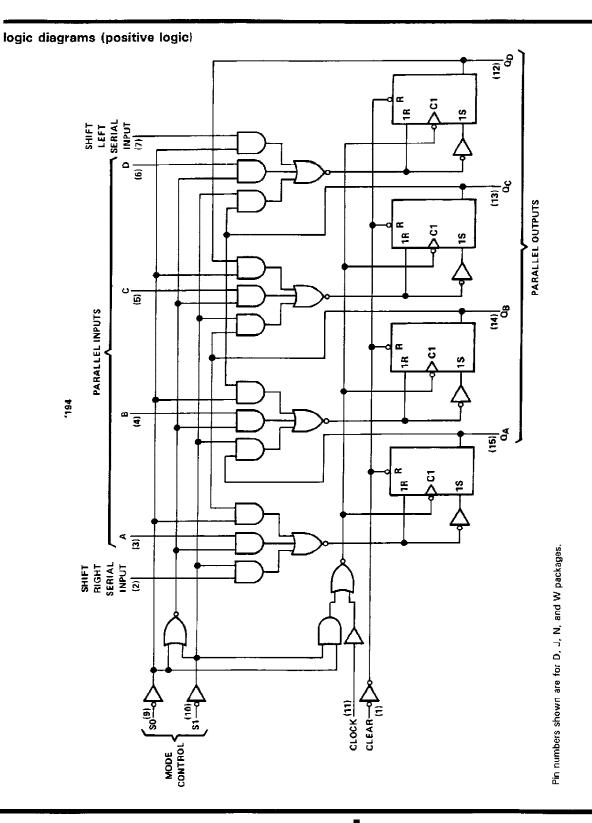

FUNCTION TABLE

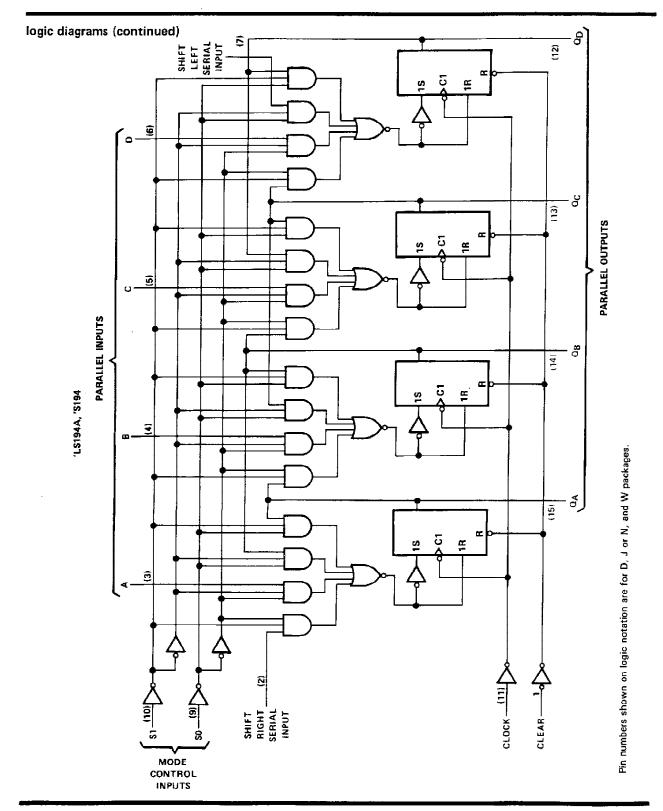
				INPUT	S					OUTPUTS						
	MO	DE	01.00%	SE	HAL _		PARA	LLE		_	_		Δ-			
CLEAR	S1	SO	CLOCK	LEFT	RIGHT	Α	В	С	D	QA	QΒ	σc	ΩD			
L	Х	Х	х	Х	х	х	Х	Х	X	L,	L	L	L			
H	Х	×	L	х	X	×	Х	Х	Х	Q _{A0}	Q_{B0}	a_{co}	a_{D0}			
Н	Н	Н	t	х	х	а	b	c	d	a	b	c	d			
Н	L	н	†	Х	H.	×	×	X	×	н	$Q_{A\Pi}$	Q_{Bn}	α_{Cn}			
н	L	Н	†	х	L	х	Х	Х	Х	Ł	o_{An}	o_{Bn}	$Q_{C\Pi}$			
Н	Н	L	†	Н	X	х	×	X	×	QBn	α_{Cn}	α_{Dn}	н			
н	Н	L	ı	L	х	х	Х	Х	X	QBn	α_{Cn}	$\sigma_{D^{\Pi}}$	L			
н	L	L.	×	X	X	х	Х	Х	Х	α_{A0}		σ_{CO}	Q _{D0}			


- H = high level (steady state)
- L = low level (steady state)
- X = irrelevant (any input, including transitions)
- 1 = transition from low to high level
- a, b, c, d = the level of steady-state input at inputs A, B, C, or D, respectively.
- QAO, QBO, QCO, QDO = the level of QA, QB, QC, Or QD, respectively, before the indicated steady-state input conditions were established.
- Ω_{An} , Ω_{Bn} , Ω_{Cn} , Ω_{Dn} = the level of Q_A , Ω_B , Ω_C , respectively, before the most-recent \uparrow transition of the clock.

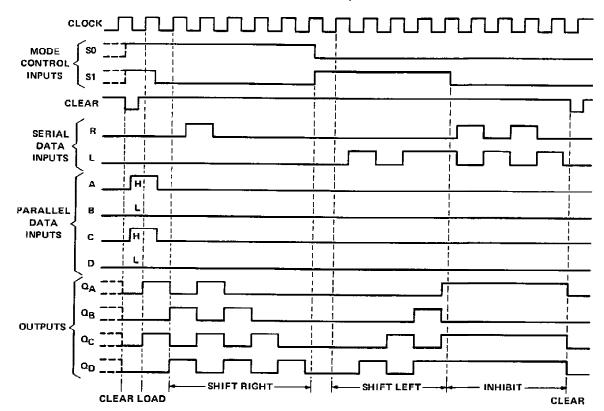
schematics of inputs and outputs


194


'LS194A



'S194



POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

typical clear, load, right-shift, left-shift, inhibit, and clear sequences

SN54194, SN74194 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)			 			 					7 V
Input voltage											
Operating free-air temperature range:	SN54194										-55°C to 125°C
											. 0°C to 70°C
Storage temperature range		,						•			-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			SN5419	4		SN7419	4	
		MIN	MOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5,5	4.75	5	5.25	٧
High-level output current, IOH				-800			-800	μА
Low-level output current, IQL				16			16	mA
Clock frequency, f _{clock}	0		25	0		25	MHz	
Width of clock or clear pulse, tw	20			20			ns	
	Mode control	30			30			ns
Setup time, t _{su}	Serial and parallel data	20			20	-		ns
	Clear inactive-state	25			25			ns
Hold time at any input, t _h		0			0			пѕ
Operating free-air temperature, TA		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

Γ	PARAMETER		NO TIONS		SN5419	4		4		
	PARAMETER	TEST CO	NDITIONS†	MIN	түр‡	мах	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage			2			2			V
VIL	Low-level input voltage					8.0			0.8	٧
VIK	Input clamp voltage	V _{CC} = MIN,	l _I = -12 mA			-1.5		·	-1.5	٧
νон	High-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{1H} = 2 V, I _{OH} = -800 μA	2.4	3.4		2.4	3.4		٧
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OL} = 16 mA	_	0.2	0.4		0.2	0.4	٧
lj.	Input current at maximum input voltage	V _{CC} = MAX,	V ₁ = 5.5 V			1			1	mΑ
ΉΗ	High-level input current	V _{CC} = MAX,	V _I = 2.4 V			40			40	μА
I _I L	Low-level input current	V _{CC} = MAX,	V ₁ = 0.4 V		<u>-</u>	1.6	_	,	-1.6	mA
los	Short-circuit output current §	V _{CC} = MAX		-20		-57	-18		-57	mA
Icc	Supply current	V _{CC} = MAX,	See Note 2		39	63		39	63	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: With all outputs open, inputs A through D grounded, and 4.5 V applied to S0, S1, clear, and the serial inputs, I_{CC} is tested with a momentary GND, then 4.5 V applied to clock.

switching characteristics, VCC = 5 V, TA = 25 °C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fmax	Maximum clock frequency	C. 15 - F	25	36		MHz
TPHL	Propagation delay time, high-to-low-level output from clear	C _L = 15 pF,		19	30	us
^t PLH	Propagation delay time, low-to-high-level output from clock	$R_L = 400 \Omega$,		14	22	ns
tPHL	Propagation delay time, high-to-low-level output from clock	See Figure 1		17	26	ns

 $^{^\}ddagger$ All typical values are at V_{CC} = 5 V, T_A = 25°C.

Not more than one output should be shorted at a time.

SN54LS194A, SN74LS194A 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)														7 V
Input voltage				_										7 V
Operating free-air temperature range:	SN54LS194A									-	-55	°C t	o 12	5°C
	SN74LS194A		, .				,					0°C	to 7	0°C
Storage temperature range											-65	°C t	o 15	വ°C

NOTE 1: Voltage values are with respect to network ground terminal,

recommended operating conditions

	*	SN	154LS19	94Δ	SN	74LS19	4Δ	
		MIN	MOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH	-			-400			-400	μА
Low-level output current, IQL				4	1		8	mΑ
Clock frequency, fclock	0		25	0		25	MHz	
Width of clock or clear pulse, t _W		20			20			กร
	Mode control	30			30			ns
Setup time, t _{Su}	Serial and parallel data	20			20			ns
	Clear inactive-state	25			25			ns
Hold time at any input, ^t h		0			0			ns
Operating free-air temperature, TA		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	DADAMETED	-	ST CONDITIO	anet	SN	154LS19	4A	SN			
	PARAMETER	'=	SICONDIIIC	SM2.	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7			8.0	V
٧١	Input clamp voltage	VCC - MIN,	l₁ = −18 mA	1	1		-1.5			-1.5	·V
v _{OH}	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max	V _{IH} = 2 V,	μΑ	2.5	3.5	, , , , , ,	2.7	3.5		٧
· · ·	Law law Law and Community of Sana	V _{CC} = MIN,	V _{IH} = 2 V,		0.25	0.4		0.25	0.4	V	
VOL	Low-level output voltage	VIL = VIL max	!	I _{OL} = 8 mA					0.35	0.5	V
f ₁	Input current at maximum input voltage	V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	mA
Чн	High-level input current	V _{CC} = MAX,	V _I = 2.7 V				20			20	μА
i ₁ L	Low-level input current	V _{CC} = MAX,	V ₁ = 0.4 V		1		-0.4			-0.4	mΑ
los	Short-circuit output current §	VCC = MAX			-20		-100	-20		-100	mA
Icc	Supply current	V _{CC} = MAX,	See Note 2		-	15	23		15	23	mΑ

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions,

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25 \text{ °C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fmax	Maximum clock frequency	Ci = 15 pF,	25	36		MHz
tPHL	Propagation delay time, high-to-low-level output from clear	$C_{L} = 15 \text{ pr.}$ $R_{1} = 2 \text{ k}\Omega.$		19	30	ns
tPLH	Propagation delay time, low-to-high level output from clock	See Figure 1		14	22	វាទ
tPHL	Propagation delay time, high-to-low level output from clock	See rigure 1		17	26	ns

 $[\]frac{1}{4}$ All typical values are at V_{CC} = 5 V, T_{A} = 25°C.

Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 2: With all outputs open, inputs A through D grounded, and 4.5 V applied to S0, S1, clear, and the serial inputs, I_{CC} is tested with a momentary GND, then 4.5 V, applied to clock.

SN54S194, SN74S194 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)									 							7 V
Input voltage																
Operating free-air temperature range:																-
:	SN74S194	•												0°C	to	, 70°C
Storage temperature range				_		_	_	_				_	-65	°C t	to '	150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			N54S19	94	SN74S194]
		MIN	NOM	MAX	MiN	NOM	MAX	UNI
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-1			1	mA
Low-level output current, IOL				20			20	mA
Clock frequency, f _{clock}		0		70	0		70	MHz
Width of clock pulse, tw(clock)		7			7	-		ns
Width of clear pulse, tw(clear)		12		-	12			ns
	Mode control	11			11			ns
Setup time, t _{su}	Serial and parallel data	5			5			пs
	Clear inactive-state	9			9			ns
Hold time at any input, th		3			3			ns
Operating free-air temperature, TA		-55		125	0		70	°C

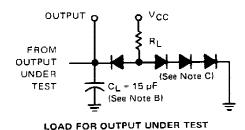
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS!		N54S19	34	9			
	FANAWEIEN	TEST CONDITIONST	MIN	TYP#	MAX	MIN	TYP‡	MAX	TINU
v_{IH}	High-level input voltage		2			2			V
VIL	Low-level input voltage			-	0.8			0.8	V
٧ıĸ	Input clamp voltage	V _{CC} = MIN, I _I = -18 mA			-1.2			-1,2	V
νон	High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -1 mA	2,5	3.4		2.7	3.4		V
Vol	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 20 mA		-	0.5			0.5	V
1	Input current at maximum input voltage	VCC = MAX, V1 = 5.5 V			1			1	mA
ΙН	High-level input current	V _{CC} = MAX, V ₁ = 2.7 V		_	50			50	μА
III.	Low-level input current	V _{CC} = MAX, V _I = 0.5 V	i T		-2			-2	mA
los	Short-circuit output current§	V _{CC} = MAX	-40		-100	-40		-100	mA
		V _{CC} = MAX, See Note 2	<u> </u>	85	135	<u> </u>	85	135	
¹cc	Supply current	V _{CC} = MAX, T _A = 125°C, See Note 2			110				mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

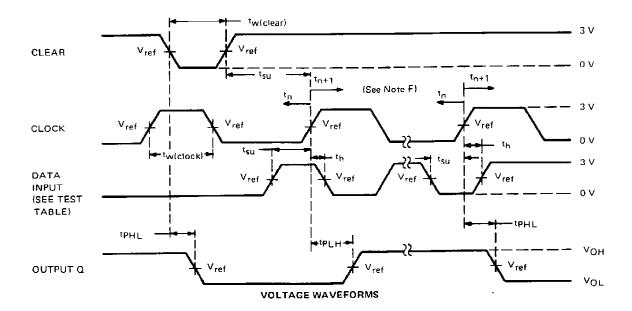
switching characteristics, VCC - 5 V, TA - 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max}	Maximum clock frequency	0 - 15 -F	70	106		MHz
tpHL	Propagation delay time, high-to-low-level output from clear	Cլ = 15 pF,		12.5	18.5	ns
^t PLH	Propagation delay time, low-to-high-level output from clock	$R_L = 280 \Omega$	4	8	12	n\$
tpHL	Propagation delay time, high-to-low-level output from clock	See Figure 1	4	11	16.5	ns



 $^{^{\}ddagger}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$.

Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.


NOTE 2: With all outputs open, inputs A through D grounded, and 4.5 V applies to S0, S1, clear, and the serial inputs, I_{CC} is tested with a momentary GND, then 4.5 V, applied to clock.

PARAMETER MEASUREMENT INFORMATION

. TEST TABLE FOR SYNCHRONOUS INPUTS

DATA INPUT FOR TEST	S1	S0	OUTPUT TESTED (SEE NOTE E)
Α	4.5 V	4.5 V	Ω _A at t _{n+1}
В	4.5 V	4.5 V	Q _B at t _{n+1}
С	4.5 V	4.5 V	QC at tn+1
D	4.5 V	4.5 V	QD at tn+1
L Serial Input	4.5 ∨	0 V	Q _A at t _{n+4}
R Serial Input	0 V	4.5 V	QD at tn+4

NOTES: A. The clock pulse generator has the following characteristics: $Z_{out}\approx 50~\Omega$ and PRR \leqslant 1 MHz, For '194, $t_r\leqslant$ 7 ns and $t_f\leqslant$ 7 ns. For 'LS194A, $t_r\leqslant$ 15 ns and $t_f\leqslant$ 6 ns. For 'S194, $t_r\leqslant$ 2.5 ns and $t_f\leqslant$ 2.5 ns. When testing f_{max} , vary PRR.

- B. C₁ includes probe and jig capacitance.
- C. All diodes are 1N3064 or 1N916.
- D. A clear pulse is applied prior to each test.
- E. For '194 and 'S194, V_{ref} = 1.5 V; for 'LS194A, V_{ref} = 1.3 V.
- F. Propagation delay times (tp_H and tpHL) are measured at tn+1. Proper shifting of data is verified at tn+4 with a functional test.
- G. $t_n = bit$ time before clocking transition. $t_{n+1} = bit$ time after one clocking transition.

 t_{n+4} = bit time after four clocking transitions.

FIGURE 1-SWITCHING TIMES

31-May-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Sample
7604001EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7604001EA SNJ54S194J	Sampl
7604001FA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7604001FA SNJ54S194W	Sampl
7604001FA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7604001FA SNJ54S194W	Sampl
JM38510/07601BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07601BEA	Samp
JM38510/07601BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07601BEA	Samp
JM38510/07601BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07601BFA	Samp
JM38510/07601BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07601BFA	Samp
JM38510/30601B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 30601B2A	Samp
JM38510/30601B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 30601B2A	Samp
JM38510/30601BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30601BEA	Samp
JM38510/30601BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30601BEA	Samp
JM38510/30601BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30601BFA	Samp
JM38510/30601BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30601BFA	Samp
M38510/07601BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07601BEA	Samp
M38510/07601BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07601BEA	Samp
M38510/07601BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07601BFA	Samp
M38510/07601BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07601BFA	Samp

www.ti.com

31-May-2014

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Sample
M38510/30601B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 30601B2A	Sample
M38510/30601B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 30601B2A	Sample
M38510/30601BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30601BEA	Sample
M38510/30601BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30601BEA	Sample
M38510/30601BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30601BFA	Sample
M38510/30601BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30601BFA	Sample
SN54194J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	-55 to 125		
SN54194J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	-55 to 125		
SN54LS194AJ	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54LS194AJ	Sample
SN54LS194AJ	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54LS194AJ	Sample
SN54S194J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54S194J	Sample
SN54S194J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54S194J	Sample
SN74194N	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74194N	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74LS194AD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS194A	Sampl
SN74LS194AD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS194A	Sample
SN74LS194ADE4	ACTIVE	SOIC	D	16		TBD	Call TI	Call TI	0 to 70		Sampl
SN74LS194ADE4	ACTIVE	SOIC	D	16		TBD	Call TI	Call TI	0 to 70		Sampl
SN74LS194ADG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS194A	Sampl
SN74LS194ADG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS194A	Sampl
SN74LS194AN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS194AN	Sampl

www.ti.com

31-May-2014

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74LS194AN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS194AN	Samples
SN74LS194AN3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74LS194AN3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74LS194ANE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS194AN	Samples
SN74LS194ANE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS194AN	Samples
SN74S194N	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74S194N	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74S194N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74S194N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SNJ54LS194AFK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	SNJ54LS 194AFK	Samples
SNJ54LS194AFK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	SNJ54LS 194AFK	Samples
SNJ54LS194AJ	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ54LS194AJ	Samples
SNJ54LS194AJ	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ54LS194AJ	Samples
SNJ54LS194AW	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ54LS194AW	Samples
SNJ54LS194AW	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ54LS194AW	Samples
SNJ54S194FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	SNJ54S 194FK	Samples
SNJ54S194FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	SNJ54S 194FK	Samples
SNJ54S194J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7604001EA SNJ54S194J	Samples
SNJ54S194J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7604001EA SNJ54S194J	Samples
SNJ54S194W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7604001FA SNJ54S194W	Sample
SNJ54S194W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7604001FA SNJ54S194W	Sample

PACKAGE OPTION ADDENDUM

31-May-2014

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54194, SN54LS194A, SN54S194, SN74194, SN74LS194A, SN74S194:

Catalog: SN74194, SN74LS194A, SN74S194

Military: SN54194, SN54LS194A, SN54S194

PACKAGE OPTION ADDENDUM

31-May-2014

NOTE: Qualified Version Definitions:

www.ti.com

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom Amplifiers amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID <u>www.ti-rfid.com</u>

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>