Final COM'L

MIL

T-46-19-13

Advanced Micro **Devices**

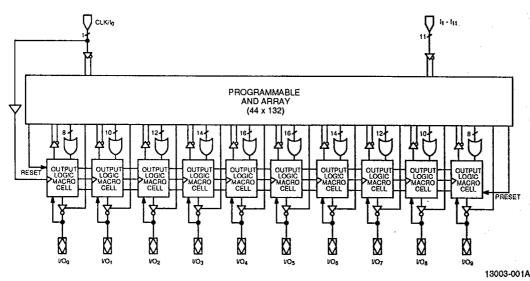
PAL22V10-10/15 AmPAL22V10/A PALCE22V10H-15/25/Q-25 24-pin TTL/CMOS Versatile PAL® Device

DISTINCTIVE CHARACTERISTICS

- As fast as 10 ns propagation delay and 71 MHz **f**MAX
- Low-power EE CMOS versions
- 10 macrocells programmable as registered or combinatorial, and active high or active low to match application needs
- Varied product term distribution allows up to 16 product terms per output for complex functions
- Global asynchronous reset and synchronous preset for initialization
- Power-up reset for initialization and register preload for testability
- Easy design with PALASM® software
- Programmable on standard PAL device programmers
- 24-pin SKINNYDIP® and 28-pin PLCC packages save space

GENERAL DESCRIPTION

The PAL22V10 provides user-programmable logic for replacing conventional SSI/MSI gates and flip-flops at a reduced chip count.


The PAL device implements the familiar Boolean logic transfer function, the sum of products. The PAL device is a programmable AND array driving a fixed OR array. The AND array is programmed to create custom product terms, while the OR array sums selected terms at the outputs.

The product terms are connected to the fixed OR array with a varied distribution from 8 to 16 across the outputs

(see Block Diagram). The OR sum of the products feeds the output macrocell. Each macrocell can be programmed as registered or combinatorial, and active high or active low. The output configuration is determined by two fuses controlling two multiplexers in each macrocell.

The entire PAL device family is supported by the PALASM software package. The PAL family is programmed on conventional PAL device programmers with appropriate personality and socket adapter modules. See the Programmer Reference Guide for approved programmers.

BLOCK DIAGRAM

PAL, PALASM, and SKINNYDIP are registered trademarks of Advanced Micro Devices. This part is covered by various U.S. and foreign patents owned by Advanced Micro Devices

Publication # 14004 Issue Date: February 1990

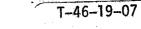
PERFORMANCE OPTIONS

Commercial

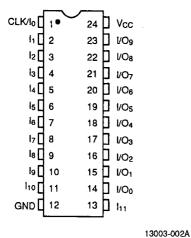
T-46-19-07

T-46-19-13

Spe (t _{PD} ,	


35		L	Std
25	CMOS Q-25	CMOS H-25	A
15		CMOS H-15	-15
10			-10
	55	90	180

Power (Icc, mA)


OPERATING RANGES

Commercial	Military
-10	-15
-15	-20
A (25 ns)	A (30 ns)
Std (35 ns)	Std (40 ns)
H-15	H-25
H-25	H-30
Q-25	

CONNECTION DIAGRAMS Top View

T-46-19-13 PLCC/LCC CLK/10 Š Š 1/07 14 24 I/Ó6 ls 23 1/05 NC [22 NC l6 21 1/04 17 E 20 1/03

la [

Pin 1 is marked for orientation.

GND

E R

ő δ 13003-003A

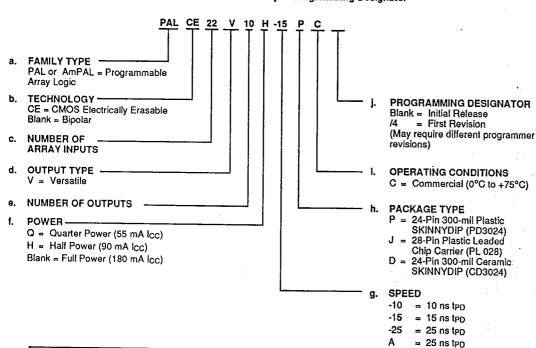
PIN DESIGNATIONS

CLK GND Clock Ground Input Input/Output İΟ NC

No Connect Supply Voltage Vcc

ORDERING INFORMATION **Commercial Products**

T-46-19-07


T-46-19-13

AMD programmable logic products for commercial applications are available with several ordering options. The order number (Valid Combination) is formed by a combination of:

a. Family Type

28E D

- Technology
- **Number of Array Inputs**
- **Output Type**
- Number of Outputs
- Power
- Speed
- g. h.
- Package Type Operating Conditions
- **Programming Designator**

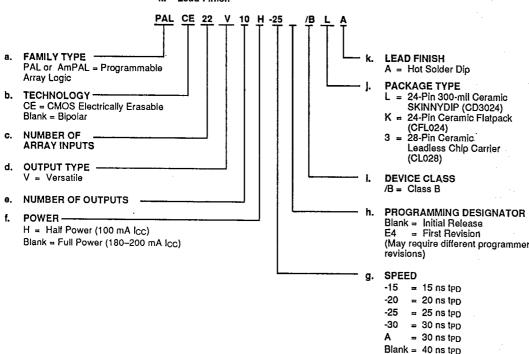
Valid Combin	nations
PAL22V10-10	PC, JC, DC
PAL22V10-15	[
AmPAL22V10A	
AmPAL22V10	
PALCE22V10H-15	511
PALCE22V10H-25	blank,
PALCE22V10Q-25	/4

Valid Combinations

Blank = 35 ns tpD

The Valid Combinations table lists configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

Note: Marked with AMD logo.


ORDERING INFORMATION **APL Products**

T-46-19-07

T-46-19-13

AMD programmable logic products for Aerospace and Defense applications are available with several ordering options. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of: a. Family Type

- Family Type Technology Number of Array Inputs
- Output Type Number of Outputs
- f. Power
- Speed **Programming Designator**
- Device Class
- Package Type Lead Finish

Valid Com	binations
PAL22V10-15	
PAL22V10-20] .
AmPAL22V10A	/BLA, /BKA, /B3A
AmPAL22V10]
PALCE22V10H-25	blank,
PALCE22V10H-30	E4

Valid Combinations

The Valid Combinations table lists configurations planned to be supported in volume for this device.
Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

Note: Marked with AMD logo.

Group A Tests

Group A Tests consist of Subgroups: 1, 2, 3, 7, 8, 9, 10, 11.

Military burn-in is in accordance with the current revision of MIL-STD-883, Test Methods 1015, Conditions A through E. Test conditions are selected at AMD's option.

FUNCTIONAL DESCRIPTION

The PAL22V10 allows the systems engineer to implement the design on-chip, by opening fuse links (or programming EE cells) to configure AND and OR gates within the device, according to the desired logic function. Complex interconnections between gates, which previously required time-consuming layout, are lifted from the PC board and placed on silicon, where they can be easily modified during prototyping or production.

Product terms with all fuses opened assume the logical HIGH state; product terms connected to both true and complement of any single input assume the logical LOW state.

The PAL22V10 has 12 inputs and 10 I/O macrocells (Figure 1). The macrocell allows one of four potential output configurations; registered output or combinatorial I/O, active high or active low (see Figure 2). The configuration choice is made according to the user's design specification and corresponding programming of the configuration bits So - S1. Multiplexer controls are connected to ground (0) through a programmable bit, selecting the "0" path through the multiplexer. Programming the fuse or erasing the bit disconnects the control line from GND and it floats to Vcc (1), selecting the "1"

The device is produced with a fuse or EE cell link at each input to the AND gate array, and connections may be selectively removed by applying appropriate voltages to the circuit. Utilizing an easily-implemented programming algorithm, these products can be rapidly programmed to any customized pattern. Information on approved programmers can be found in the Programmer Reference Guide. Extra test words are pre-programmed during manufacturing to ensure extremely high field programming yields, and provide extra test paths to achieve excellent parametric correlation.

Variable Input/Output Pin Ratio

The PAL22V10 has twelve dedicated input lines, and each macrocell output can be an I/O pin. Buffers for device inputs have complementary outputs to provide user-programmable input signal polarity. Unused input pins should be tied to Vcc or GND.

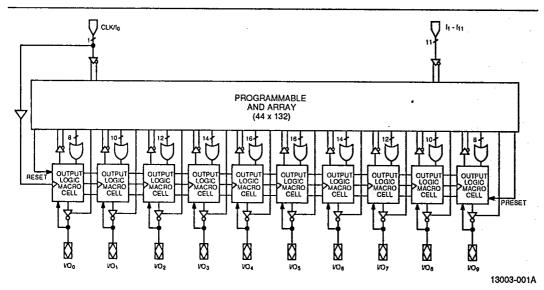
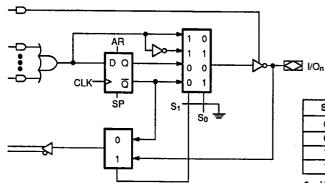


Figure 1. Block Diagram

Registered Output Configuration


Each macrocell of the PAL22V10 includes a D-type flipflop for data storage and synchronization. The flip-flop is loaded on the LOW-to-HIGH transition of the clock input. In the registered configuration $(S_1 = 0)$, the array feedback is from Q of the flip-flop.

Combinatorial I/O Configuration

Any macrocell can be configured as combinatorial by selecting the multiplexer path that bypasses the flip-flop $(S_1 = 1)$. In the combinatorial configuration the feedback is from the pin.

T-46-19-07

T-46-19-13

S ₁	S ₀	Output Configuration
0	0	Registered/Active Low
0	1	Registered/Active High
1	0	Combinatorial/Active Low
1	1	Combinatorial/Active High

0 = Unprogrammed fuse or programmed EE bit

1 = Programmed fuse or erased (charged) EE bit

13003-004A

Figure 2. Output Logic Macrocell Diagram

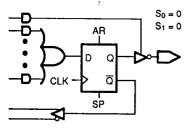


Figure 3a. Registered/Active Low

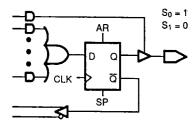


Figure 3b. Registered/Active High

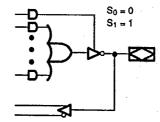


Figure 3c. Combinatorial/Active Low

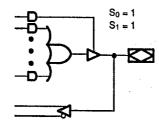


Figure 3d. Combinatorial/Active High

13003-009A

Programmable Three-State Outputs

Each output has a three-state output buffer with threestate control. A product term controls the buffer, allowing enable and disable to be a function of any product of device inputs or output feedback. The combinatorial output provides a bidirectional I/O pin, and may be configured as a dedicated input if the buffer is always dis-

Programmable Output Polarity

The polarity of each macrocell output can be active high or active low, either to match output signal needs or to reduce product terms. Programmable polarity allows Boolean expressions to be written in their most compact form (true or inverted), and the output can still be of the desired polarity. It can also save "DeMorganizing" ef-

Selection is controlled by programmable bit So in the output macrocell, and affects both registered and combinatorial outputs. Selection is automatic, based on the design specification and pin definitions. If the pin definition and output equation have the same polarity, the output is programmed to be active high $(S_0 = 1)$.

Preset/Reset

For initialization, the PAL22V10 has additional Preset and Reset product terms. These terms are connected to all registered outputs. When the Synchronous Preset (SP) product term is asserted high, the output registers will be loaded with a HIGH on the next LOW-to-HIGH clock transition. When the Asynchronous Reset (AR) product term is asserted high, the output registers will be immediately loaded with a LOW independent of the

Note that preset and reset control the flip-flop, not the output pin. The output level is determined by the output polarity selected.

Power-Up Reset

All flip-flops power-up to a logic LOW for predictable system initialization. Outputs of the PAL22V10 will depend on the programmed output polarity. The Vcc rise must be monotonic and the reset delay time is 1-10 µs maximum.

Register Preload

The register on the PAL22V10 can be preloaded from the output pins to facilitate functional testing of complex state machine designs. This feature allows direct load-

ing of arbitrary states, making it unnecessary to cycle through long test vector sequences to reach a desired state. In addition, transitions from illegal states can be verified by loading illegal states and observing proper recovery.

T-46-19-07

Security Fuse

After programming and verification, a PAL22V10 design can be secured by programming the security fuse or EE bit. Once programmed, this fuse defeats readback of the internal programmed pattern by a device programmer, securing proprietary designs from competitors. When the security fuse is programmed, the array will read as if every fuse is programmed, and preload will be disabled.

For the CMOS PALCE22V10, a floating gate is used as the security bit. The bit can only be erased in conjunction with erasure of the entire pattern.

Quality and Testability

The PAL22V10 offers a very high level of built-in quality. Extra programmable fuses provide a means of verifying performance of all AC and DC parameters. In addition. this verifies complete programmability and functionality of the device to provide the highest programming yields and post-programming functional yields in the industry.

The erasability of the CMOS PALCE22V10 allows direct testing of the device array to guarantee 100% programming and functional yields.

Technology

The bipolar PAL22V10 is fabricated with AMD's advanced oxide-isolated bipolar process. This process reduces parasitic capacitances and minimum geometries to provide higher performance. The array connections are formed with proven PtSi fuses for reliable operation. The PAL22V10-10 uses TiW fuses.

The CMOS PALCE22V10 is fabricated with AMD's advanced EE CMOS process. The array connections are formed by electrically-erasable floating gates similar to those found in EEPROMs.

Programming and Erasing

The PAL22V10 can be programmed on standard logic programmers. Approved programmers are listed in the Programmer Reference Guide.

The CMOS PALCE22V10 may be erased to reset a previously configured device back to its virgin state. Erasure is automatically performed by the programming hardware. No special erase operation is required.

T-46-19-13

PAL22V10

2-245

ABSOLUTE MAXIMUM RATINGS

Storage Temperature

-65°C to +150°C

Ambient Temperature with

Power Applied

-55°C to +125°C

Supply Voltage with

Respect to Ground

-0.5 V to +7.0 V

DC Input Voltage (-10) DC Input Voltage (-15) -1.2 V to Vcc + 0.5 V

DC Input Current (-15)

-0.5 V to V_{CC} + 0.5 V -30 mA to + 5 mA

DC Output or I/O Pin Voltage

-0.5 V to $V_{CC} + 0.5 \text{ V}$

Static Discharge Voltage

2001 V

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

T-46-19-07

Commercial (C) Devices

Ambient Temperature (T_A)

Operating in Free Air

0°C to +75°C

Supply Voltage (Vcc)

with Respect to Ground

+4.75 V to +5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
VoH	Output HIGH Voltage	$I_{OH} = -3.2 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = \text{Min.}$	2.4		V
Vol	Output LOW Voltage	$loi_L = 16 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = \text{Min.}$		0.5	٧
V _{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		٧
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		8.0	V
VI	Input Clamp Voltage	I _{IN} = -18 mA, V _{CC} = Min.		-1.2	V
liH	Input HIGH Current	V _{IN} = 2.7 V, V _{CC} = Max. (Note 2)		25	μА
I _{IL}	Input LOW Current	V _{IN} = 0.4 V, V _{CC} = Max. (Note 2)		-100	、μA
_lı	Maximum Input Current	V _{IN} = 5.5 V, V _{CC} = Max.		1	mA
lozh	Off-State Output Leakage Current HIGH	V _{OUT} = 2.7 V, V _{CC} = Max. V _{IN} = V _{IH} or V _{IL} (Note 2)		100	μΑ
lozL	Off-State Output Leakage Current LOW	V _{OUT} = 0.4 V, V _{CC} = Max. V _{IN} = V _{IH} or V _{IL} (Note 2)		-100	μА
Isc	Output Short-Circuit Current	V _{OUT} = 0.5 V, V _{CC} = Max. (Note 3)	-30	-90	mA
lcc	Supply Current	V _{IN} = 0 V, Outputs Open (lout = 0 mA) V _{CC} = Max.		180	mA

- 1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.
- 2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).
- 3. Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vout = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

T-46-19-07

T-46-19-13

Parameter Symbol	Parameter Description	Test Conditio	ns	_10 Typ.	–15 Typ.	Unit
CIN	Input Capacitance Pins 1, 13 Others	$V_{IN} = 2.0 \text{ V}$	V _{CC} = 5.0 V	6	9	
Соит	Output Capacitance	V _{OUT} = 2.0 V	$T_A = 25$ °C $f = 1 \text{ MHz}$	8	9	pF

Note:

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

PRELIMINARY

	(ILLIWITATI								
		···			0	-1	5		
Parameter Symbol	Parameter Description			Min. (Note 3)	, Max.	Min.	Max.	Unit	
teo	Input or Feed	back to Combinatorial (ack to Combinatorial Output				15	ns	
ts	Setup Time fr	rom Input, Feedback or	SP to Clock	8.		10		ns	
t _H	Hold Time			0		0		ns	
tco	Clock to Outp	out	3 %	6		10	ns		
tcr	Clock to Feed	eedback (Note 4)			2.5		2.5	ns	
t _{AR}	Asynchronous	s Reset to Registered C		15	····	20	ns		
tarw	Asynchronou	s Reset Width	10		15		ns		
tarr	Asynchronou	s Reset Recovery Time		. 8	1.00	10		ns	
tspr	Synchronous	Preset Recovery Time		- 8		10		ns	
tw.	011.145.41	LOW		5 -	334.5	6		ns	
twн	Clock Width	HIGH		5.5	161	6		ns	
	Maximum	External Feedback	1/(ts + tco)	71		50		MHz	
fmax	Frequency	Internal Feedback	1/(ts + tcF)	95		80		MHz	
	(Note 5)	No Feedback	1/(tw+ + twL)	100		83	· · · · ·	MHz	
tea	Input to Outpu	ut Enable Using Produc	t Term Control	3	10	2	15	ns	
ten	Input to Outpu	ut Disable Using Produc	ct Term Control	3	10		15	ns	

- 2. See Switching Test Circuit for test conditions.
- 3. Output delay minimums are measured under best-case conditions.
- 4. Calculated from measured fMAX internal.
- These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.

These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature -65°C to +150°C

Supply Voltage with

are not tested.

Respect to Ground -0.5 V to +7.0 V

DC Input Voltage (-15) -1.2 V to +7.0 V

DC Output or I/O Pin Voltage -0.5 V to +7.0 V DC Input Current (-20) -30 mA to +5 mA

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ. Absolute Maximum Ratings are for system design reference; parameters given

OPERATING RANGES

T-46-19-07

Military (M) Devices (Note 1)

Ambient Temperature (T_A)

Operating in Free Air -55°C Min.

Operating Case (Tc)

Temperature

125°C Max.

Supply Voltage (Vcc)

with Respect to Ground

+4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

Note:

1. Military products are tested at T_C = +25°C, +125°C, and -55°C, per MIL-STD-883.

DC CHARACTERISTICS over MILITARY operating ranges unless otherwise specified (Note 2)

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -2 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = \text{Min.}$	2.4		٧
V _{OL}	Output LOW Voltage	$I_{OL} = 12 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = \text{Min.}$		0.5	٧
V _{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 3)	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 3)		8,0	٧
Vı	Input Clamp Voltage	I _{IN} = -18 mA, V _{CC} = Min.		-1.2	٧
liH	Input HIGH Current	V _{IN} = 2.7 V, V _{CC} = Max. (Note 4)		25	μΑ
I _{IL}	Input LOW Current	V _{IN} = 0.4 V, V _{CC} = Max. (Note 4)		-100	μA
lı _	Maximum Input Current	V _{IN} = 5.5 V, V _{CC} = Max.		1	mA
Іогн	Off-State Output Leakage Current HIGH	V _{OUT} = 2.7 V, V _{CC} = Max. V _{IN} = V _{IH} or V _{IL} (Note 4)		100	μА
lozL	Off-State Output Leakage Current LOW	V _{OUT} = 0.4 V, V _{CC} = Max. V _{IN} = V _{IH} or V _{IL} (Note 4)		-100	μΑ
Isc	Output Short-Circuit Current	V _{OUT} = 0.5 V, V _{CC} = Max. (Note 5)	-30	-90	mA
lcc	Supply Current	V _{IN} = 0 V, Outputs Open (I _{OUT} = 0 mA) V _{CC} = Max.		200	mA

- 2. For APL Products, Group A, Subgroups 1, 2, and 3 are tested per MIL-STD-883, Method 5005, unless otherwise noted.
- 3. VIL and VIH are input conditions of output tests and are not themselves directly tested. VIL and VIH are absolute voltages with respect to device ground and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
- 4. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).
- Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vouτ = 0.5 V
 has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

T-46-19-07

Γ–46–19–13

Parameter Symbol	Parameter Description	Test Conditions		-15 Typ.	-20 Typ,	Unit
C _{IN}	Input Capacitance Pins 1, 13 Others	V _{IN} = 2.0 V	V _{CC} = 5.0 V	6	9	_
Соит	Output Capacitance	V _{OUT} = 2.0 V	T _A = 25°C f = 1 MHz	8	9	p₹

Note:

SWITCHING CHARACTERISTICS over MILITARY operating ranges (Note 2)

PRELIMINARY

				FRELIV	MANT			
Parameter				ं न	5	-20	0	·
Symbol	Parameter Desc	ription		∯ Min	Max.	Min.	Max,	Unit
teo	Input or Feedbac	k to Combinatorial Out	put		15		20	ns
ts	Setup Time from	Input, or Feedback to	Clock	10		17		ns
tн	Hold Time			.0		0		ns
tco	Clock to Output				10		15	ns
tcF	Clock to Feedba	ck (Note 3 and 4)	k (Note 3 and 4)		2.5		13	ns
tar	Asynchronous R	set to Registered Output			20		25	ns
tarw	Asynchronous R	eset Width (Note 5)		15		20		ns
tarr	Asynchronous R	eset Recovery Time (N	eset Recovery Time (Note 5)			20		ns
tspa	Synchronous Pre	eset Recovery Time (No	ote 4)	10		20		ns
twL	Clock Midsh	LOW		6		15		ns
twн	Clock Width	HIGH		6		15		ns
fMAX	Maximum	External Feedback	1/(ts + tco)	50		31.2		MHz
IMAX	Frequency (Note 6)	Internal Feedback	1/(ts + tcr)	80		33.3		MHz
tEA	Input to Output E Term Control (No	nable Using Product te 4)			15		20	ns
ten	Input to Output D Term Control (No	Disable Using Product ote 4)			15		20	ns

- See Switching Test Circuit for test conditions. For APL products Group A, Subgroups 9, 10, and 11 are tested per MIL-STD-883, Method 5005, unless otherwise noted.
- 3. Calculated from measured fMAX internal.
- These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where these parameters may be affected.
- 5. tarw and tarr are not directly tested, but are guaranteed by the testing of ts and tar.
- These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.

These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature

-65°C to +150°C

Ambient Temperature with

Power Applied

-55°C to +125°C

Supply Voltage with

Respect to Ground

DC Input Voltage DC Input Current -0.5 V to +7.0 V

-0.5 V to +5.5 V

-30 mA to +5 mA

DC Output or I/O Pin Voltage -0.5 V to V_{CC} Max.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maxi-

mum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices

Ambient Temperature (TA)

Operating in Free Air

Supply Voltage (Vcc)

with Respect to Ground

0°C to +75°C

T-46-19-07

+4.75 V to +5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

		A 9 9 4 4	3.		
Parameter Symbol	Parameter Description	Test Conditions	Min.⊲	Max.	Unit
Vон	Output HIGH Voltage	IOH = -3.2 mA VIN = VIH OF VIL VCC = Min.	(24)	W	V
VoL	Output LOW Voltage	lox = 16 mA ViN = VIH or VIX Vcc = Min	W	∆ 0.5	٧
ViH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		٧
V _{IL}	Input LOW Voltage	Guaranteed Input Logical LQW Voltage for all Inputs (Note 1)		0.8	٧
Vı	Input Clamp Voltage	I _{IN} = -18 mA, V _{CC} = Min.		-1.2	٧
hн	Input HIGH Current	$V_{IN} = 2.7 V_1 V_{CC} = Max. (Note 2)$		25	μА
եռ_	Input LOW Current	V _{IN} = 0.4 V, V _{CC} = Max. (Note 2)		-100	μА
11	Maximum Input Current	V _{IN} = 5.5 V, V _{CC} = Max.		1	mA
Іогн	Off-State Output Leakage Current HIGH	Vout = 2.7 V, Vcc = Max. V _{IN} = V _{IH} or V _{IL} (Note 2)		100	μΑ
lozl	Off-State Output Leakage Current LOW	Vout = 0.4 V, Vcc = Max. V _{IN} = V _{IH} or V _{IL} (Note 2)		-100	μА
Isc	Output Short-Circuit Current	V _{OUT} = 0.5 V, V _{CC} = Max. (Note 3)	-30	-90	· mA
lcc	Supply Current	V _{IN} = 0 V, Outputs Open (lout = 0 mA) V _{CC} = Max.		180	mA

- 1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.
- 2. I/O pin leakage is the worst case of IIL and lozt (or IIH and IOZH).
- Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second, Vout = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

■ AMD2

CAPACITANCE (Note 1)

T-46-19-07

T-46-19-13

Parameter Symbol	Parameter Description	Test Conditio	ns	Тур.	Unit
C _{IN}	Input Capacitance Pins 1, 13 Others	V _{IN} = 2.0 V	V _{CC} = 5.0 V T _A = 25°C	11 6	20
Соит	Output Capacitance	V _{OUT} = 2.0 V	f = 1 MHz	9	pF

Note:

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

	G CHARACTERISTICS OVER COMMERCIAL				24	:0 4 ∂3 1
			<u> </u>	<u> </u>	d A	M)
Parameter Symbol	Parameter Description	Min.	Max.	Min.	Max.	Unit
tPD	Input or Feedback to Combinatorial Output	68	25		35	ns
- ts	Setup Time from Input, Feedback or SP to Clock	20	ME	<i>3</i> 30		ns
tн	Hold Time	3 B	HOV	0	6 D	ns
tco	Clock to Output or Feedback	M.A	15		25	ns
tar	Asynchronous Reset to Registered Output	1	30.	NY RE	40	🕽 ns
tarw	Asynchronous Reset Width	25	M M	₹35 √		ns
tarr	Asynchronous Reset Recovery Time	25	N BY	35)	a ta	ns
tspr	Synchronous Preset Recovery Time	12Q	1/3	€°30		ns
twL	COM J D	15	19	25		ns
twn	Clock Width HIGH	15		25		ns
looky	Maximum Frequency External Feedback 7/(ts 1co)	28.5		18		MHz
tea 🔪	Input to Output Enable Using Product Term Control		25		35	ns
t _{ER}	Input to Quiput Disable Using Product Term Control		25		35	ns

- 2. See Switching Test Circuit for test conditions.
- These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.

These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

T-46-19-13

ABSOLUTE MAXIMUM RATINGS

Storage Temperature

-65°C to +150°C

Supply Voltage with

Respect to Ground

-0.5 V to +7.0 V

DC Input Voltage DC Output or I/O Pin Voltage -0.5 V to +5.5 V

DC Input Current

-30 mA to +5 mA

Output Sink Current

100 mA (Note 6)

-0.5 V to Vcc Max. Temperature

Supply Voltage (Vcc) with Respect to Ground

OPERATING RANGES

Operating in Free Air

Operating Case (Tc)

Military (M) Devices (Note 1)

Ambient Temperature (TA)

+4.50 V to +5.50 V

-55°C Min.

+125°C Max.

Operating ranges define those limits between which the functionality of the device is guaranteed.

Note:

1. Military products are tested at To

mum Ratings for extended periods may affect device reliability. Programming conditions may differ. Absolute Maximum Ratings are for system design reference; parameters given

Stresses above those listed under Absolute Maximum Rat-

ings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maxi-

and -55°C per MIL-STD 883.

DC CHARACTERISTICS over MILITARY operating ranges unless otherwise specified

are not tested.

Note 2)			•	1000	
Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
Voн	Output HIGH Voltage	$V_{CC} = V_{IH}$ or V_{IL}	2.4		V
V _{OL}	Output LOW Voltage	lou = 12 mA V _{IN} = V _{IH} or V _{IL} V _{CC} = Min.) v	0.5	٧
ViH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 3)	2.0		٧
V _{IL}	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 3)		8.0	٧
V _I >	Input Clamp Voltage	$f_{IN} = -18 \text{ mA}, V_{CC} = \text{Min}.$		-1.2	٧
- lin	Input HIGH Current 💸 🔌 🖔	V _{IN} = 2.7 V, V _{CC} = Max. (Note 4)		25	μА
հը 🧳	Input LOW Current	² V _{IN} = 0.4 V, V _{CC} = Max. (Note 4)		-100	μА
li i	Maximum Input Current	V _{IN} = 5.5 V, V _{CC} = Max.		1	mA
Іогн	Off-State Output Leakage Current HIGH	$V_{OUT} = 2.7 \text{ V}, V_{CC} = \text{Max}.$ $V_{IN} = V_{IH} \text{ or } V_{IL} \text{ (Note 4)}$		100	μА
lozL	Off-State Output Leakage Current LOW	V _{OUT} = 0.4 V, V _{CC} = Max. V _{IN} = V _{IH} or V _{IL} (Note 4)		-100	μА
Isc	Output Short-Circuit Current	V _{OUT} = 0.5 V, V _{CC} = Max. (Note 5)	-30	-90	mA
lcc	Supply Current	V _{IN} = 0 V, Outputs Open (I _{OUT} = 0 mA) V _{CC} = Max.		180	mA

- 2. For APL Products, Group A, Subgroups 1, 2, and 3 are tested per MIL-STD-883, Method 5005, unless otherwise noted.
- VIL and VIH are input conditions of output tests and are not themselves directly tested. VIL and VIH are absolute voltages with respect to device ground and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
- 4. I/O pin leakage is the worst case of I_{IL} and I_{OZL} (or I_{IH} and I_{OZH}).
- Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vout = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.
- 6. Not more than one output should sink 100 mA at a time. Duration should not exceed one second.

CAPACITANCE (Note 1)

T-46-19-07

T-46-19-13

Parameter Symbol	Parameter Description	Test Conditio	ns	Тур.	Unit
Cin	Input Capacitance Pins 1, 13 Others	V _{IN} = 2.0 V	V _{CC} = 5.0 V	11	
Соит	Output Capacitance	V _{OUT} = 2.0 V	T _A = 25°C f = 1 MHz	9	pF

Note:

^{1.} These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

		erating ranges		Std \			
Parameter Symbol	Parameter Description	Min.	Max	Min.	Max.	Unit	
tpD	Input or Feedback to Combinatorial Output	c d	₩80		40	ns	
ts	Setup Time from Input, or Feedback to Clock	25	N I	35		ns	
tн	Hold Time	Sea		0	A	ns	
tco	Clock to Output or Feedback	VI. A	20		25	ns	
tan	Asynchronous Reset to Registered Output		35	NY K	45	ns	
tarw	Asynchronous Reset Width (Note 3)	30	AW	₹40 €	1	ns	
t _{ARR}	Asynchronous Reset Recovery Time (Note 3)	ao√	V 18/2	40)	and the same of th	ns	
twL	EOW EOW	(20	KOZ	₩30		ns	
twH	Clock Width HIGH	20	M.	30		ns	
IMAX	Maximum Frequency External Feedback (1/(1s. + 100) (Note 4)	22	9	16.5		MHz	
YA -	Input to Output Enable Using Product Term Control (Note 5)		30		40	ns	
ter -	Input to Output Disable Using Product Term Control (Note 5)		30		40	ns	

- 2. See Switching Test Circuit for test conditions.
- 3. tarkw and tark are not directly tested, but are guaranteed by the testing of ts and tark.
- 4. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
- 5. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where these parameters may be affected.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature -65°C to +150°C

Ambient Temperature with

Power Applied

Supply Voltage with Respect

to Ground

-0.5 V to +7.0 V

DC Input Voltage

(Except Pin 5)

 $-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$

-55°C to +125°C

DC Input Voltage (Pin 5) DC Output or I/O Pin

-0.6 V to +11.0 V

Voltage

 $-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$ Static Discharge Voltage 2001 V

Latchup Current $(T_A = 0^{\circ}C \text{ to } +75^{\circ}C)$

100 mA

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commerciai (C) Devices

T-46-19-07

Ambient Temperature (TA) Operating in Free Air

0°C to +75°C

Supply Voltage (Vcc) with Respect to Ground

(Except H-25)

+4.75 V to +5.25 V

Supply Voltage (Vcc) with Respect to Ground (H-25)

+4.5 V to +5.5 V

Operating Ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	$I_{OH} = -3.2 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = \text{Min.}$	2.4		٧
Vol	Output LOW Voltage	$I_{OL} = 16 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = \text{Min.}$		0.4	٧
V _{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		٧
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	٧
liH	Input HIGH Leakage Current	V _{IN} = 5.5 V, V _{CC} = Max. (Note 2)		10	μА
l _{IL}	Input LOW Leakage Current	V _{IN} = 0 V, V _{CC} = Max. (Note 2)		-10	μА
Іогн	Off-State Output Leakage Current HIGH	$V_{OUT} = 5.5 \text{ V}, V_{CC} = \text{Max.},$ $V_{IN} = V_{IL} \text{ or } V_{IH} \text{ (Note 2)}$		10	μА
lozL	Off-State Output Leakage Current LOW	Vout = 0 V, Vcc = Max. V _{IN} = V _{IL} or V _{IH} (Note 2)		-10	μА
Isc	Output Short-Circuit Current	Vout = 0.5 V, V _{CC} = Max. (Note 3)	-30	-150	mA
lcc	Supply Current	_ · · · · ·	H Q	90 55	mA

- 1. These are absolute values with respect to the device ground and all overshoots due to system and tester noise are included.
- 2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).
- 3. Not more than one output should be tested at a time. Duration of the short-circuit test should not exceed one second. VOUT = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

58E D

□ 0257526 0029573 5 ■ AMD2

T-46-19-07

T-46-19-13

Parameter Symbol	Parameter Description	Test Conditions	s	Тур.	Unit
CiN	Input Capacitance	V _{IN} = 2.0 V	V _{CC} = 5.0 V	5	
Соит	Output Capacitance	V _{OUT} = 2.0 V	$T_A = 25^{\circ}C$ $f = 1 \text{ MHz}$	8	pF

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified , where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter				1	5	-2	5	
Symbol	Parameter D	escription		Min.	Max.	Min.	Max.	Unit
tPD	Input or Feed	back to Combinatorial (Output		15		25	ns
ts	Setup Time f	rom Input, Feedback or	SP to Clock	10		15		ns
tH	Hold Time					0		ns
tco	Clock to Outp	out			10		15	ns
tor	Clock to Feed	o Feedback (Note 3)			7		13	ns
tar	Asynchronou	Reset to Registered Output			20		25	ns
tarw	Asynchronou	Reset Width		15		25		ns
tarr	Asynchronou	s Reset Recovery Time)	10		25		ns
tspr	Synchronous	Preset Recovery Time		10		25		ns
t _{WL}	0	LOW	· · · · · · · · · · · · · · · · · · ·	8		13		ns
twн	Clock Width	HIGH		8		13		ns
	Maximum	External Feedback	1/(ts + tco)	50		33.3		MHz
f _{MAX}	Frequency (Note 4)	Internal Feedback	1/(ts + tcF)	58.8		35.7		MHz
tea	Input to Outp	ut Enable Using Produc	t Term Control		15		25	ns
ten	Input to Outp	ut Disable Using Produc	ct Term Control		15		25	ns

- 2. See Switching Test Circuit for test conditions.
- 3. Calculated from measured fMAX internal.
- 4. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature

-65°C to +150°C

Ambient Temperature

with Power Applied

-55°C to +125°C

-0.5 V to +7.0 V

Supply Voltage with

Respect to Ground

DC Input Voltage (Except Pin 5) -0.5 V to Vcc + 0.5 V

DC Input Voltage (Pin 5)

-0.6 V to +11.0 V

DC Output or I/O Pin Voltage

-0.5 V to V_{CC} + 0.5 V

Static Discharge Voltage

2001 V

Latchup Current

 $(T_A = -55^{\circ}C \text{ to } +125^{\circ}C)$

100 mA

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ. Absolute Maximum Ratings are for system design reference; parameters given

OPERATING RANGES

Military (M) Devices (Note 1)

T-46-19-07

Operating Case

Temperature (Tc)

-55°C to +125°C

Supply Voltage (Vcc)

with Respect to Ground

+4.5 V to +5.5 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

Note:

1. Military products are tested at T_C = +25°C, +125°C and -55°C, per MIL-STD-883.

DC CHARACTERISTICS over MILITARY operating ranges unless otherwise specified (Note 2)

Parameter Symbol	Parameter Description	Test Conditions	Min,	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -2.0 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = \text{Min.}$	2.4		V
Vol	Output LOW Voltage	$I_{OL} = 12 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = \text{Min.}$		0.4	٧
V _{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 3)	2.0	-	V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 3)		8.0	٧
l _{iH}	Input HIGH Leakage Current	V _{IN} = 5.5 V, V _{CC} = Max. (Note 4)		10	μΑ
l _{IL}	Input LOW Leakage Current	V _{IN} = 0 V, V _{CC} = Max. (Note 4)		-10	μΑ
Іогн	Off-State Output Leakage Current HIGH	V _{OUT} = 5.5 V, V _{CC} = Max. V _{IN} = V _{IH} or V _{IL} (Note 4)		10	μА
lozL	Off-State Output Leakage Current LOW	V _{OUT} = 0 V, V _{CC} = Max. V _{IN} = V _{IH} or V _{IL} (Note 4)		-10	μА
Isc	Output Short-Circuit Current	V _{CUT} = 0.5 V V _{CC} = Max. (Note 5)	-30	-150	mA
lcc	Supply Current	V _{IN} = 0 V, Outputs Open (lout = 0 mA), V _{CC} = Max.		100	mA

- 2. For APL products, Group A, Subgroups 1, 2 and 3 are tested per MIL-STD-833, Method 5005, unless otherwise noted.
- 3. VIL and VIH are input conditions of output tests and are not themselves directly tested. VIL and VIH are absolute voltages with respect to device ground and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
- 4. I/O pin leakage is the worst case of l_{1L} and l_{OZL} (or l_{1H} and l_{OZH}).
- 5. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. Vout = 0.5 V has been chosen to avoid test problems caused by tester ground degradation. This parameter is not 100% tested, but is evaluated at initial characterization and at any time the design is modified where Isc may be affected.

CAPACITANCE (Note 1)

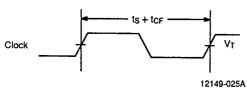
T-46-19-07

T-46-19-13

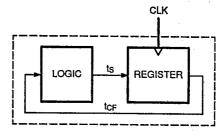
Parameter Symbol	Parameter Description	Test Conditions		Тур.	Unit
C _{IN}	Input Capacitance	V _{IN} = 2.0 V	V _{CC} = 5.0 V T _A = 25°C	8	<u> </u>
Соит	Output Capacitance	V _{OUT} = 2.0 V	f = 1 MHz	9	pF

Note:

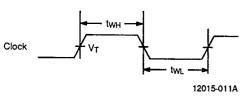
1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.


SWITCHING CHARACTERISTICS over MILITARY operating ranges (Note 2)

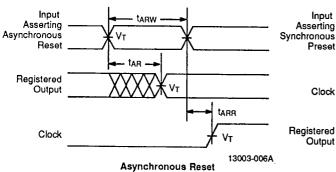
Parameter				-2	5	-30)	
Symbol	Parameter Desc	ription	1	Min.	Max.	Min.	Max.	Unit
tpD	Input or Feedbac	k to Combinatorial Out	put		25		30	ns
ts	Setup Time from	Input, Feedback or SP	to Clock	20		20		ns
ťн	Hold Time (Note	4)		0		0		ns
tco	Clock to Output	ock to Output			20		20	ns
tcF	Clock to Feedba	ick (Note 3)			18		18	ns
tar	Asynchronous R	eset to Registered Out	et to Registered Output		30		35	ns
tarw	Asynchronous R	eset Width (Note 4)		25		30		ns
tarr	Asynchronous R	ynchronous Reset Recovery Time (Note 4)		25		30		ns
tspr	Synchronous Pre	eset Recovery Time		25		30	•	ns
twL	Clock Width	LOW		15		15		ns
twH	CIOCK WIGHT	HIGH		15		15		ns
	Maximum	External Feedback	1/(ts + tco)	25		25		MHz
f _{MAX}	Frequency (Note 5)	Internal Feedback	1/(ts + tcF)	26		26		MHz
tea		put to Output Enable Using Product			25		30	ns
ten	Input to Output Disable Using Product Term Control (Note 4)			25		30	ns	

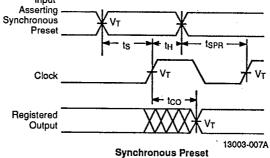


- 2. See Switching Test Circuit for test conditions. For APL products Group A, Subgroups 7, 8, 9, 10, and 11 are tested per MIL-STD-883, Method 5005, unless otherwise noted.
- 3. Calculated from measured fMAX internal.
- 4. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where these parameters may be affected.
- 5. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.


28E D ■ 0257526 0029576 0 ■ AMD2 T-46-19-07 SWITCHING WAVEFORMS Input or Input or Feedback Feedback tpD Combinatorial Clock ۷τ Output 12015-010A Combinatorial Output Registered Output 12015-012A Registered Output CLK

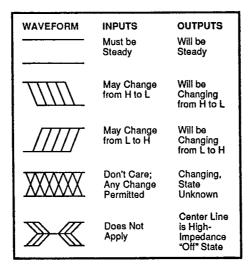
Clock to Feedback (f_{MAX} Internal) See Path at Right


12015-021A



Clock Width

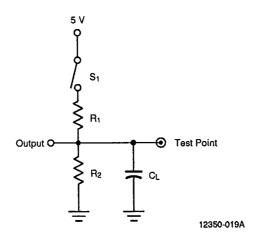
Input to Output Disable/Enable



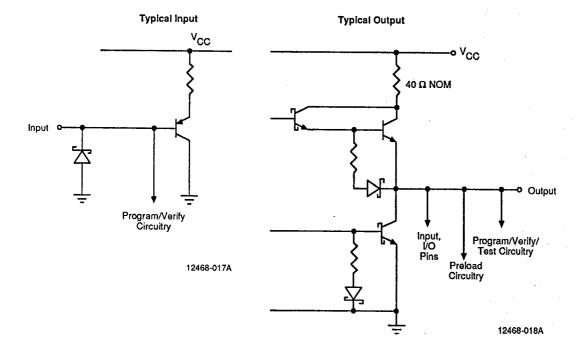
- 1. $V_T = 1.5 V$.
- 2. Input pulse amplitude 0 V to 3.0 V.
- 3. Input rise and fall times 2-5 ns typical. (2-4 ns for 22V10-10)

KEY TO SWITCHING WAVEFORMS

T-46-19-07


T-46-19-13

KS000010-PAL



SWITCHING TEST CIRCUIT

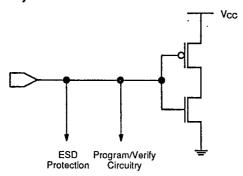
Specification	S ₁		Commercial		Military		Measured		
		CL	R ₁	R ₂	R ₁	R ₂	Output Value		
tpp, tco, tcf	Closed						1.5 V		
tea.	$Z \rightarrow H$: Open $Z \rightarrow L$: Closed	50 pF	50 pF	300 Ω	390 Ω	390 Ω CMOS:	750 Ω CMOS:		1.5 V
ten	H → Z: Open L → Z: Closed	5 pF			338 Ω	248 Ω	$H \rightarrow Z$: $V_{OH} = 0.5 \text{ V}$ L $\rightarrow Z$: $V_{OL} + 0.5 \text{ V}$		

T-46-19-13

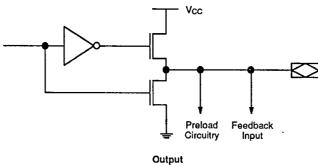
ENDURANCE CHARACTERISTICS

T-46-19-07

T-46-19-13


The PALCE22V10 is manufactured using AMD's advanced Electrically Erasable process. This technology uses an EE cell to replace the fuse link used in bipolar

parts. As a result, the device can be erased and reprogrammed – a feature which allows 100% testing at the factory.


Endurance Characteristics

Symbol	Parameter	Min.	Units	Test Conditions
Min Dettern Date Detection Tree	Min. Pattern Data Retention Time	10	Years	Max. Storage Temperature
tdr	Mill. Pattern Data Neterition Time	20	Years	Max. Operating Temperature (Military)
N	Min. Reprogramming Cycles	100	Cycles	Normal Programming Conditions

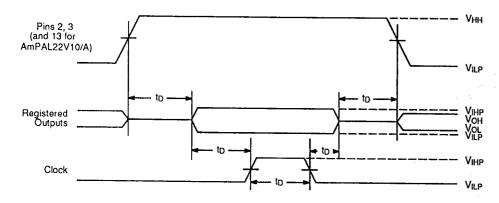
INPUT/OUTPUT EQUIVALENT SCHEMATICS CMOS Devices Only

Input

12197-013A

OUTPUT REGISTER PRELOAD Bipolar Devices Only

The preload function allows the registers to be loaded from the output pins. This feature aids functional testing of sequential designs by allowing direct setting of output states. The procedure for preloading follows.


- 1. Raise V_{CC} to 5.0 V \pm 0.5 V.
- 2. Set pins 2 and 3 (and 13 for AmPAL22V10/A) to V_{HH} to disable outputs and enable preload.
- 3. Apply the desired value (VILP/VIHP) to all registered output pins. Leave combinatorial output pins floating.

T-46-19-07

T-46-19-13

- 4. Clock pin 1 from ViLP to VIHP.
- 5. Remove V_{ILP}/V_{IHP} from all registered output pins.
- 6. Lower pins 2 and 3 to VILP.
- 7. Enable the output registers according to the programmed pattern.
- 8. Verify VoL/VoH at all registered output pins. Note that the output pin signal will depend on the output polarity.

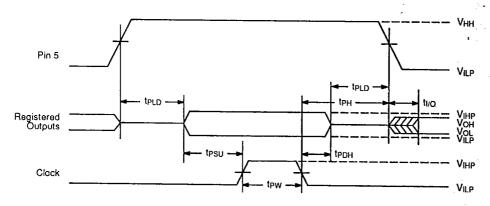
Parameter Symbol	Parameter Description	Min.	Rec.	Max.	Unit
V _{HH}	Super-level input voltage	10	11	12	V
VILP	Low-level input voltage	0	0	0.5	v
V _{IHP}	High-level input voltage	2.4	5.0	5.5	V
to	Delay time	100	200	1000	ns

14004-002A

Output Register Preload Waveform

T-46-19-13

OUTPUT REGISTER PRELOAD CMOS Devices Only


The preload function allows the registers to be loaded from the output pins. This feature aids functional testing of sequential designs by allowing direct setting of output states. The procedure for preloading follows.

- 1. Raise V_{CC} to 5.0 V \pm 0.5 V.
- 2. Set pin 5 to V_{HH} to disable outputs and enable preload.
- 3. Apply the desired value ($V_{\text{ILP}}/V_{\text{IHP}}$) to all registered output pins. Leave combinatorial output pins floating.

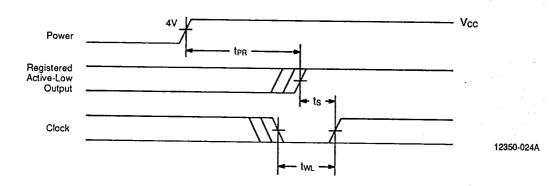
- 4. Clock pin 1 from V_{ILP} to V_{IHP} .
- 5. Remove VILP/VIHP from all registered output pins.
- 6. Lower pin 5 to VILP.
- 7. Enable the output registers according to the programmed pattern.
- 8. Verify Vol/VoH at all registered output pins. Note that the output pin signal will depend on the output polarity.

Parameter Symbol	Parameter Description	Min.	Rec.	Max.	Unit
V _{HH}	Super-level input voltage	9,5	10	10.5	V
VILP	Low-level input voltage	0	0	0.5	l v
VIHP	High-level input voltage	3.0	4.0	Vcc	v
tPLD	Setup and Hold Data to Preload (Pin 5)	50	50		μs
tesu	Data Setup Prior to Applying Preload Latch Pulse	1.0	1.0*		μs
tpDH	Data Hold After Latch Pulse	1.0	1.0*	···	μs
t _{PH}	Mode Hold After Latch Pulse	1.0	1.0*		μs
tpw	Latch Pulse Width	1.0	1.0*		μs
tvo	I/O Valid After Pin 5 Drops from V _{HH} to TTL Levels			100	μs
<u>dVr</u> dt	V _{HH} Rising Slew Rate (Pin 5)	10	*****	100	V/μs
<u>d∨f</u> dt	V _{HH} Falling Slew Rate (Pin 5)		2.0	3.0	V/µs

 $^{^{\}circ}$ Recommended value is as close to 1.0 μs + tolerance as practical, but not less than 1.0 μs .

14004-003A

Output Register Preload Waveform


POWER-UP RESET

The power-up reset feature ensures that all flip-flops will be reset to LOW after the device has been powered up. The output state will depend on the programmed pattern. This feature is valuable in simplifying state machine initialization. A timing diagram and parameter table are shown below. Due to the synchronous operation of the power-up reset and the wide range of ways Vcc

can rise to its steady state, two conditions are required to ensure a valid power-up reset. These conditions are:

- 1. The V_{CC} rise must be monotonic.
- 2. Following reset, the clock input must not be driven from LOW to HIGH until all applicable input and feedback setup times are met.

Parameter Symbol	Parameter Description		Max.	Unit
tpR	Power-up Reset Time	Bipolar	1	
		CMOS	10	με
ts	Input or Feedback Setup Time	or Feedback Setup Time		!
twL	Clock Width LOW	~	See Switching Characteristics	

Power-Up Reset Waveform