

BGX13S Blue Gecko Xpress *Bluetooth* [®] SiP Module Data Sheet

The BGX13S Blue Gecko Xpress *Bluetooth* [®] SiP Module family of serial replacement modules eliminate Bluetooth firmware development complexity with a serial interface that can operate as a raw data stream or control the device through a command API. The BGX13S can facilitate a device-to-device cable replacement link or communicate with mobile devices through the Xpress Bluetooth mobile library. The device integrates a Bluetooth 5 compliant stack to future-proof applications as Bluetooth 5 adoption increases.

The device is targeted for applications where ultra-small size, reliable high performance RF, low-power consumption, and fast time-to-market are key requirements. At $6.5 \times 6.5 \times 1.4$ mm the BGX13S module fits applications where size is a constraint. BGX13S also integrates a high-performance, ultra-robust antenna, which requires minimal PCB, plastic, and metal clearance. The total PCB area required by BGX13S is only 51 mm². The BGX13S has Bluetooth, CE, full FCC, Japan and South-Korea certifications.

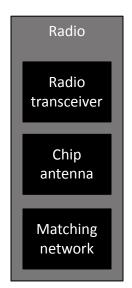
BGX13S SIP modules can be used in a wide variety of applications:

· Health, sports and wellness devices

Serial interface

RX/TX and flow

- · Industrial, home and building automation
- · Smart phone, tablet and PC accessories


Command

parser

Raw data

stream buffers

Bluetooth controller Bluetooth 5 compliant stack Timers OTA manager

KEY FEATURES

- Bluetooth 5 low energy compliant
- · Serial interface with hardware flow control
- · GPIO control through command API
- · Integrated antenna
- TX power up to 8 dBm
- · Encrypted bonding and connectivity
- · Operates as central or peripheral
- · Onboard Bluetooth stack
- Centralized OTA through mobile app library

1. Ordering Information

Table 1.1. Ordering Information

Ordering Code	Protocol Stack	Frequency Band @ Max TX Power	Antenna	GPIO	Packaging
BGX13S22GA-V21R	Bluetooth Low Energy	2.4 GHz @ 8 dBm	Built-in	8	Reel
BGX13S22GA-V21	Bluetooth Low Energy	2.4 GHz @ 8 dBm	Built-in	8	Tray

Table of Contents

1.	Ordering Information	2
2.	Electrical Specifications	5
	2.1 Electrical Characteristics	5 6 7 8 12
3.	Typical Connection Diagrams	14
	3.1 Typical BGX13S Connections	14
4.	Layout Guidelines	15
	4.1 Layout Guidelines	
	4.3 Effect of Plastic and Metal Materials	
	4.4 Effects of Human Body	17
	4.5 2D Radiation Pattern Plots	18
5.	Pin Definitions	
6.	Functional Overview	
	6.1 Introduction	
	6.2 Communication Use Cases	23
	6.3 Embedded Interface	23
	6.4 Command Mode and Streaming Mode	
	6.5 Command API	
	6.6 GPIO Control	
	6.7 Device Configuration	24 24
	6.9 OTA	
	6.10 Direct Test Mode Support	
7.	Package Specifications	
	7.1 BGX13S Package Marking	
	7.2 BGX13S Package Dimensions	26
	7.3 BGX13S Recommeded PCB Land Pattern	29
8.	Tape and Reel Specifications	32
	8.1 Tape and Reel Packaging	32

	8.2 Reel and Tape Specifications	32
	8.3 Orientation and Tape Feed	33
	8.4 Tape and Reel Box Dimensions	34
	8.5 Moisture Sensitivity Level	34
9.	Soldering Recommendations	35
	9.1 Soldering Recommendations	35
10	. Certifications	36
	10.1 Certifications Pending	36
11	. Revision History	37

2. Electrical Specifications

2.1 Electrical Characteristics

All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:

- Typical values are based on T_{AMB} = 25 °C and V_{BAT} = 3.3 V, by production test and/or technology characterization.
- · Radio performance numbers are measured in conducted mode, based on Silicon Laboratories reference designs using output power-specific external RF impedance-matching networks for interfacing to a 50 Ω antenna.
- Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature, unless stated otherwise.

Refer to for more details about operational supply and temperature limits.

2.1.1 Absolute Maximum Ratings

Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available guality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.

Table 2.1. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Storage temperature range	T _{STG}		-50	_	150	°C
Voltage on any supply pin	V _{DDMAX}		-0.3	_	3.8	V
Voltage ramp rate on any supply pin	V _{DDRAMPMAX}		_	_	1	V / µs
DC voltage on any GPIO pin	V _{DIGPIN}		-0.3	_	IOVDD+0.3	V
Maximum RF level at input	P _{RFMAX2G4}		_	_	10	dBm
Total current into supply pins	I _{VDDMAX}	Source	_	_	200	mA
Total current into VSS ground lines	I _{VSSMAX}	Sink	_	_	200	mA
Current per I/O pin	I _{IOMAX}	Sink	_	_	50	mA
		Source	_	_	50	mA
Current for all I/O pins	I _{IOALLMAX}	Sink	_	_	200	mA
		Source		_	200	mA
Junction temperature	TJ		-40	_	105	°C

2.1.2 Operating Conditions

The following subsections define the operating conditions for the module.

2.1.2.1 General Operating Conditions

Table 2.2. General Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Operating ambient temperature range	T _A		-40	25	85	°C
VBATT operating supply voltage	V _{VBATT}		2.4	3.3	3.8	V
VBATT current	I _{VBATT}		_	_	200	mA

2.1.3 Power Consumption

Unless otherwise indicated, typical conditions are: VBATT = 3.3 V. T = 25 $^{\circ}$ C. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 $^{\circ}$ C.

Table 2.3. Power Consumption

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Active supply current, Unconnected, Idle	IACTIVE_IDLE	Baud rate ≤ 9600 bps	_	3	_	μA
connected, idle		Baud rate > 9600 bps	_	3.25	_	mA
Active supply current, Advertising	I _{ACTIVE_ADV}	Interval = 546.25 ms, Baud rate ≤ 9600 bps	_	90	_	μA
		Interval = 20 ms, Baud rate ≤ 9600 bps	_	2	_	mA
		Interval = 546.25 ms, Baud rate > 9600 bps	_	3.3	_	mA
		Interval = 20 ms, Baud rate > 9600 bps	_	4.7	_	mA
Active supply current, Con-	I _{ACTIVE_CONN}	Idle, Baud Rate ≤ 9600 bps	_	660	_	μA
nected, 15 ms Interval		TX/RX (acknowledged) at highest throughput, Baud Rate ≤ 9600 bps	_	3.5	_	mA
		TX/RX (unacknowledged) at highest throughput, Baud Rate ≤ 9600 bps	_	4	_	mA
		Idle, Baud Rate > 9600 bps	_	3.5	_	mA
		TX/RX (acknowledged) at highest throughput, Baud Rate > 9600 bps	_	5.25	_	mA
		TX/RX (unacknowledged) at highest throughput, Baud Rate > 9600 bps	_	7	_	mA
Supply current in low power	I _{LPM}	Radio disabled	_	3	_	μA
mode		Radio enabled, Advertising, Interval = 546.25 ms	_	90	_	μA
		Radio enabled, Advertising, Interval = 20 ms	_	2	_	mA

2.1.4 2.4 GHz RF Transceiver Characteristics

2.1.4.1 RF Transmitter General Characteristics for 2.4 GHz Band

Unless otherwise indicated, typical conditions are: T = 25 °C, VBATT = 3.3 V. DC-DC on. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz. Conducted measurement from the antenna feedpoint.

Table 2.4. RF Transmitter General Characteristics for 2.4 GHz Band

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Maximum TX power ^{1, 2}	POUT _{MAX}	8 dBm-rated part numbers	_	7.8	_	dBm
Minimum active TX Power	POUT _{MIN}	CW		-30	_	dBm
Output power step size	POUT _{STEP}	-5 dBm< Output power < 0 dBm	_	1	_	dB
		0 dBm < output power < POUT _{MAX}	_	0.5	_	dB
Output power variation vs supply at POUT _{MAX}	POUT _{VAR_V}	1.8 V < V _{VREGVDD} < 3.3 V using DC-DC converter	_	2.1	_	dB
Output power variation vs temperature at POUT _{MAX}	POUT _{VAR_T}	From -40 to +85 °C, PAVDD connected to DC-DC output	_	1.7	_	dB
		From -40 to +85 °C, PAVDD connected to external supply	_	1.7	_	dB
Output power variation vs RF frequency at POUT _{MAX}	POUT _{VAR_F}	Over RF tuning frequency range, PAVDD connected to external supply	_	0.3	_	dB
RF tuning frequency range	F _{RANGE}		2400	_	2483.5	MHz

- 1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table.
- 2. The FCC-rated TXP for the BGM13S module family is 19 dBM. For the CE, Japan, and Korea, the maximum TXP is nominally 8 dBM. The maximum TXP for each region is reported in the formal certification test reports. The end-product manufacturer must make sure that the country limitations are taken into account when configuring the module.

2.1.4.2 RF Receiver General Characteristics for 2.4 GHz Band

Unless otherwise indicated, typical conditions are: T = 25 °C, VBATT = 3.3 V. DC-DC on. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz. Conducted measurement from the antenna feedpoint.

Table 2.5. RF Receiver General Characteristics for 2.4 GHz Band

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
RF tuning frequency range	F _{RANGE}		2400	_	2483.5	MHz
Receive mode maximum	SPUR _{RX}	30 MHz to 1 GHz	_	-57	_	dBm
spurious emission		1 GHz to 12 GHz	_	-47	_	dBm
Max spurious emissions during active receive mode, per	SPUR _{RX_FCC}	216 MHz to 960 MHz, Conducted Measurement	_	-55.2	_	dBm
FCC Part 15.109(a)		Above 960 MHz, Conducted Measurement		-47.2	_	dBm
Level above which RFSENSE will trigger ¹	RFSENSE _{TRIG}	CW at 2.45 GHz	_	-24	_	dBm
Level below which RFSENSE will not trigger ¹	RFSENSE _{THRES}	CW at 2.45 GHz	_	-50	_	dBm

^{1.} RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range.

2.1.4.3 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate

Unless otherwise indicated, typical conditions are: T = 25 °C, VBATT = 3.3 V. DC-DC on. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz. Conducted measurement from the antenna feedpoint.

Table 2.6. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Max usable receiver input level, 0.1% BER	SAT	Signal is reference signal ¹ . Packet length is 20 bytes.	_	10	_	dBm
Sensitivity, 0.1% BER	SENS	Signal is reference signal ¹ . Using DC-DC converter.	_	-94.1	_	dBm
		With non-ideal signals as specified in RF-PHY.TS.4.2.2, section 4.6.1.	_	-93.8	_	dBm
Signal to co-channel interferer, 0.1% BER	C/I _{CC}	Desired signal 3 dB above reference sensitivity.	_	9.0	_	dB
N+1 adjacent channel selectivity, 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm	C/I ₁₊	Interferer is reference signal at +1 MHz offset. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz	_	-3.3	_	dB
N-1 adjacent channel selectivity, 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm	C/I ₁₋	Interferer is reference signal at -1 MHz offset. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz	_	-1.6	_	dB
Alternate selectivity, 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm	C/I ₂	Interferer is reference signal at ± 2 MHz offset. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz	_	-42.0	_	dB
Alternate selectivity, 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm	C/I ₃	Interferer is reference signal at ± 3 MHz offset. Desired frequency 2404 MHz ≤ Fc ≤ 2480 MHz	_	-46.4	_	dB
Selectivity to image frequency, 0.1% BER. Desired is reference signal at -67 dBm	C/I _{IM}	Interferer is reference signal at image frequency with 1 MHz precision	_	-42.0	_	dB
Selectivity to image frequency ± 1 MHz, 0.1% BER. Desired is reference signal at -67 dBm	C/I _{IM+1}	Interferer is reference signal at image frequency ± 1 MHz with 1 MHz precision	_	-47.1	_	dB
Intermodulation performance	IM	Per Core_4.1, Vol 6, Part A, Section 4.4 with n = 3	_	-18.4	_	dBm

^{1.} Reference signal is defined 2GFSK at -67 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 1 Mbps, desired data = PRBS9; interferer data = PRBS15; frequency accuracy better than 1 ppm.

2.1.4.4 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 2 Mbps Data Rate

Unless otherwise indicated, typical conditions are: T = 25 °C, VBATT = 3.3 V. DC-DC on. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz. Conducted measurement from the antenna feedpoint.

Table 2.7. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 2 Mbps Data Rate

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Max usable receiver input level, 0.1% BER	SAT	Signal is reference signal ¹ . Packet length is 20 bytes.	_	10	_	dBm
Sensitivity, 0.1% BER	SENS	Signal is reference signal ¹ . Using DC-DC converter.	_	-90.2	_	dBm
		With non-ideal signals as specified in RF-PHY.TS.4.2.2, section 4.6.1.	_	-89.9	_	dBm
Signal to co-channel interferer, 0.1% BER	C/I _{CC}	Desired signal 3 dB above reference sensitivity.	_	8.6	_	dB
N+1 adjacent channel selectivity, 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm	C/I ₁₊	Interferer is reference signal at +2 MHz offset. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz	_	-7.6	_	dB
N-1 adjacent channel selectivity, 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm	C/I ₁₋	Interferer is reference signal at -2 MHz offset. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz	_	-11.4	_	dB
Alternate selectivity, 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm	C/I ₂	Interferer is reference signal at ± 4 MHz offset. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz	_	-40.3	_	dB
Alternate selectivity, 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm	C/I ₃	Interferer is reference signal at ± 6 MHz offset. Desired frequency 2404 MHz ≤ Fc ≤ 2480 MHz	_	-45.1	_	dB
Selectivity to image frequency, 0.1% BER. Desired is reference signal at -67 dBm	C/I _{IM}	Interferer is reference signal at image frequency with 1 MHz precision	_	-7.6	_	dB
Selectivity to image frequency ± 2 MHz, 0.1% BER. Desired is reference signal at -67 dBm	C/I _{IM+1}	Interferer is reference signal at image frequency ± 2 MHz with 2 MHz precision	_	-40.30	_	dB
Intermodulation performance	IM	Per Core_4.1, Vol 6, Part A, Section 4.4 with n = 3	_	-18.4	_	dBm

^{1.} Reference signal is defined 2GFSK at -67 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 2 Mbps, desired data = PRBS9; interferer data = PRBS15; frequency accuracy better than 1 ppm.

2.1.5 Non-Volatile Configuration Storage

Table 2.8. Non-Volatile Configuration Storage

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Update cycles before failure	UC		10000	_	_	cycles
Data retention	RET		10	_	_	years
Supply voltage during update	V _{DD}		1.62	_	3.6	V

2.1.6 General-Purpose I/O (GPIO)

Table 2.9. General-Purpose I/O (GPIO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input low voltage	V _{IL}	GPIO pins	_	_	IOVDD*0.3	V
Input high voltage	V _{IH}	GPIO pins	IOVDD*0.7	_	_	V
Output high voltage relative	V _{OH}	Sourcing 3 mA, IOVDD ≥ 3 V,	IOVDD*0.8	_	_	V
to IOVDD		Drive Strength = Weak				
		Sourcing 1.2 mA, IOVDD ≥ 1.62 V,	IOVDD*0.6	_	_	٧
		Drive Strength = Weak				
		Sourcing 20 mA, IOVDD ≥ 3 V,	IOVDD*0.8	_	_	V
		Drive Strength = Strong				
		Sourcing 8 mA, IOVDD ≥ 1.62 V,	IOVDD*0.6	_	_	V
		Drive Strength = Strong				
Output low voltage relative to	V _{OL}	Sinking 3 mA, IOVDD ≥ 3 V,	_	_	IOVDD*0.2	V
IOVDD		Drive Strength = Weak				
		Sinking 1.2 mA, IOVDD ≥ 1.62 V,	_	_	IOVDD*0.4	V
		Drive Strength = Weak				
		Sinking 20 mA, IOVDD ≥ 3 V,	_	_	IOVDD*0.2	V
		Drive Strength = Strong				
		Sinking 8 mA, IOVDD ≥ 1.62 V,	_	_	IOVDD*0.4	V
		Drive Strength = Strong				
Input leakage current	I _{IOLEAK}	All GPIO except LFXO pins, GPIO ≤ IOVDD	_	0.1	30	nA
		LFXO Pins, GPIO ≤ IOVDD	_	0.1	50	nA
I/O pin pull-up/pull-down resistor	R _{PUD}		30	40	65	kΩ
Pulse width of pulses re- moved by the glitch suppres- sion filter	tioglitch		15	25	45	ns
Output fall time, From 70%	t _{IOOF}	C _L = 50 pF,	_	1.8	_	ns
to 30% of V _{IO}		Drive Strength = Strong				
		C _L = 50 pF,	_	4.5	_	ns
		Drive Strength = Weak				
Output rise time, From 30%	t _{IOOR}	C _L = 50 pF,	_	2.2	_	ns
to 70% of V _{IO}		Drive Strength = Strong				
		C _L = 50 pF,	_	7.4	_	ns
		Drive Strength = Weak				

3. Typical Connection Diagrams

3.1 Typical BGX13S Connections

Typical connections for the BGX13S module are shown in Figure 3.1 Typical Connections for BGX13S on page 14. This diagram shows connections for:

- · Power supplies
- · Reset line
- · external crystal connections
- · UART connection to an embedded host
- 32.768 kHz crystal Required in applications that must meet 500 ppm Bluetooth Sleep Clock accuracy requirement. Recommended crystal is KDS part number 1TJG125DP1A0012 or equivalent.

Note: It is recommended to connect the RESETn line to the host CPU.

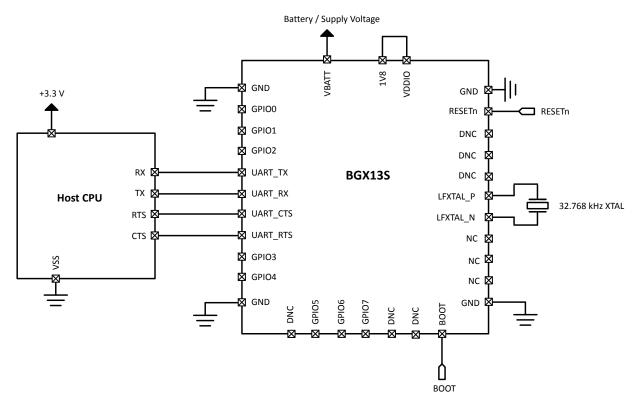


Figure 3.1. Typical Connections for BGX13S

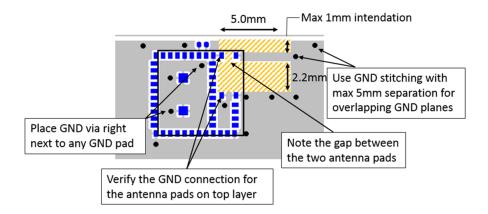
4. Layout Guidelines

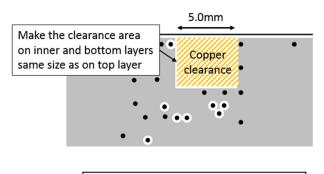
For optimal performance of the BGX13S, please follow the PCB layout guidelines and ground plane recommendations indicated in this section.

4.1 Layout Guidelines

This section contains generic PCB layout and design guidelines for the BGX13S module. For optimal performance:

- · Place the module at the edge of the PCB, as shown in the figures in this chapter.
- · Do not place any metal (traces, components, etc.) in the antenna clearance area.
- · Connect all ground pads directly to a solid ground plane.
- · Place the ground vias as close to the ground pads as possible.




Figure 4.1. BGX13S PCB Top Layer Design

The following rules are recommended for the PCB design:

- · Trace to copper clearance 150um
- · PTH drill size 300um
- · PTH annular ring 150um

Important:

The antenna area must align with the pads precisely. Please refer to the recommended PCB land pattern for exact dimensions.

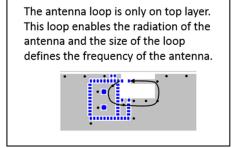


Figure 4.2. BGX13S PCB Middle and Bottom Layer Design

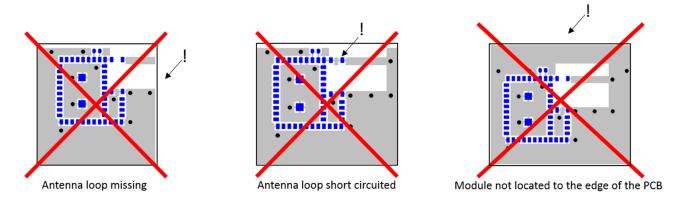


Figure 4.3. Poor Layout Designs for the BGX13S

Layout checklist for BGX13S:

- 1. Antenna area is aligned relative to the module pads as shown in the recommended PCB land pattern.
- 2. Clearance area within the inner layers and bottom layer is covering the whole antenna area as shown in the layout guidelines.
- 3. The antenna loop is implemented on the top layer as shown in the layoyt guidelines.
- 4. All dimensions within the antenna area are precisely as shown in the recommended PCB land pattern.
- 5. The module is placed near the edge of the PCB with max 1mm indentation.
- 6. The module is not placed in the corner of the PCB.

4.2 Effect of PCB Width

The BGX13S module should be placed at the center of the PCB edge. The width of the board has an impact to the radiated efficiency and, more importantly, there should be enough ground plane on both sides of the module for optimal antenna performance. Figure 4.4 BGX13S PCB Top Layer Design on page 16 gives an indcation of ground plane size vs. maximum achievable range.

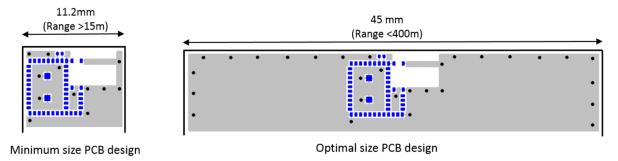


Figure 4.4. BGX13S PCB Top Layer Design

The impact of the board size to the radiated performance is a generic feature of all PCB and chip antennas and it is not a unique feature of the BGX13S. For the BGX13S the depth of the board is not important and does not impact the radiated performance.

4.3 Effect of Plastic and Metal Materials

The antenna on the BGX13S is insensitive to the effects of nearby plastic and other materials with low dielectric constant. No separation between the BGX13S and plastic or other materials is needed. The board thickness does not have any impact the module.

Any metal within the antenna area or in close proximity to the antenna area may detune the antenna. In this case it is possible to retune the antenna by adjusting the width of the antenna loop. To avoid detuning of the antenna, the minimum distance to any metal should be more than 3 mm. Encapsulating the module inside metal casing will prevent the radiation of the antenna.

Figure 4.5 Antenna Tuning on page 17 shows how it is possible to adjust the frequency of the antenna by adjusting the width of the antenna loop. The antenna is extremely robust against any objects in close proximity or in direct contact with the antenna and it is recommended not to adjust the dimensions of the antenna area unless it is clear that a metal object, such as a coin cell battery, within the antenna area is detuning the antenna.

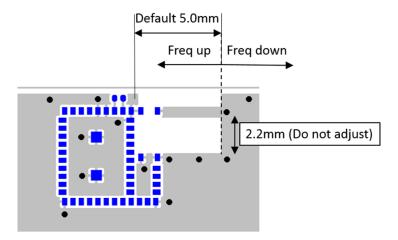


Figure 4.5. Antenna Tuning

4.4 Effects of Human Body

Placing the module in contact with or very close to the human body will negatively impact antenna efficiency and reduce range.

4.5 2D Radiation Pattern Plots

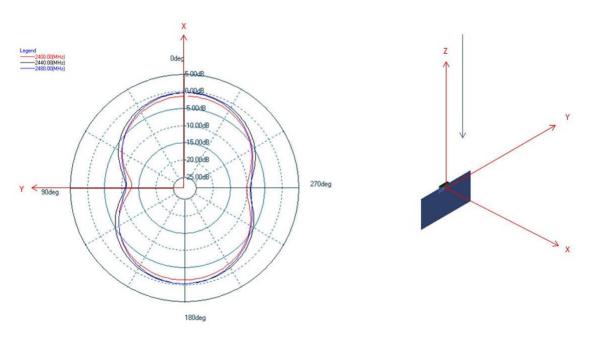


Figure 4.6. Typical 2D Radiation Pattern - Front View

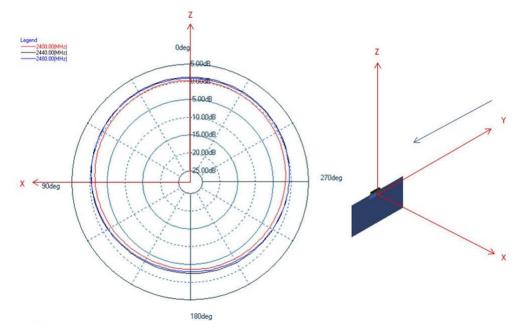


Figure 4.7. Typical 2D Radiation Pattern - Side View

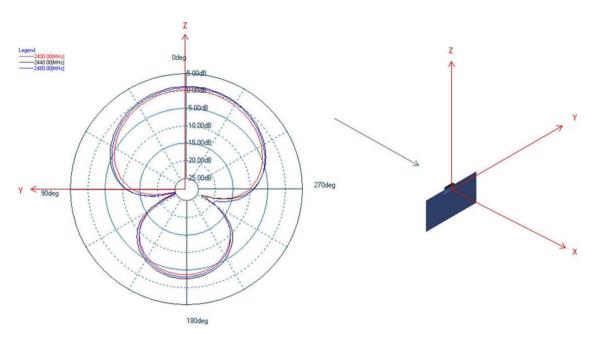


Figure 4.8. Typical 2D Radiation Pattern – Top View

5. Pin Definitions

5.1 BGX13S Device Pinout

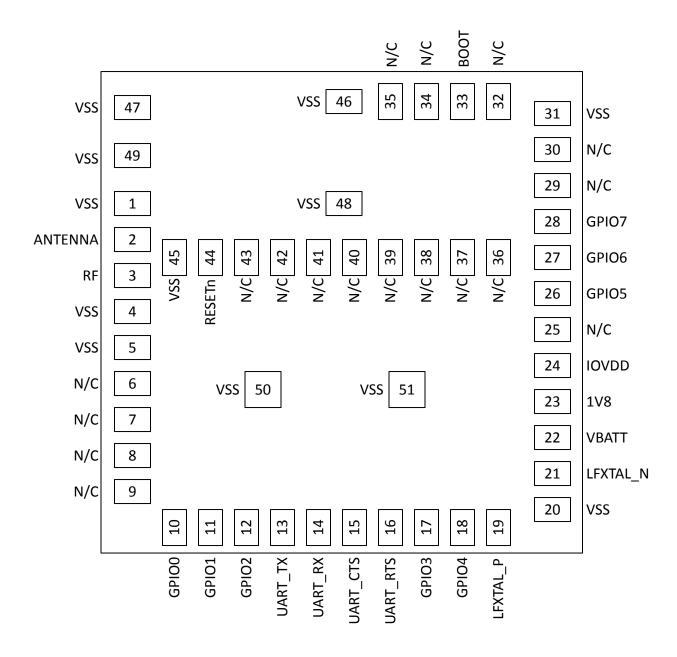


Figure 5.1. BGX13S Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see or .

Table 5.1. BGX13S Device Pinout

Pin Name	Pin(s)	Description
VSS	1 4 5 20 31 45 46 47 48 49 50 51	Ground
RF	3	50 Ohm I/O for external antenna connection.
GPIO0	10	Pin with input/output functionality configured by the command API.
GPIO1	11	Pin with input/output functionality configured by the command API.
GPIO2	12	Pin with input/output functionality configured by the command API.
GPIO3	17	Pin with input/output functionality configured by the command API.
GPIO4	18	Pin with input/output functionality configured by the command API.
GPIO5	26	Pin with input/output functionality configured by the command API.
GPIO6	27	Pin with input/output functionality configured by the command API.
UART_TX	13	Digital output
UART_RX	14	Digital input
UART_CTS	15	Digital input
UART_RTS	16	Digital output
GPI07	28	Pin with input/output functionality configured by the command API.
VBATT	22	Battery supply voltage input to the internal DC-DC and analog supply.
IOVDD	24	Digital IO power supply.
LFXTAL_P	19	Low frequency external oscillator pin.
LFXTAL_N	21	Low frequency external oscillator pin.
RESETn	44	Reset input, active low. To Apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
ANTENNA	2	50 Ohm input, pin for internal 2.4 GHz antenna
1V8	23	1.8V output of the internal DC-DC converer. Internally decoupled - do not add external decoupling.
воот	33	Digital input to force module entrance into DFU bootlading state. See commandA-PI documentation for functional details.

Pin Name	Pin(s)	Description
N/C	6 7 8 9 10 11 25 29 30 32 34 35 36 37 38 39 40 41 42 43	No Connect.

6. Functional Overview

6.1 Introduction

The BGX13S creates a Bluetooth 5 compliant BLE cable replacement interface, facilitating a BLE link to a second embedded device or a mobile device. An embedded MCU controls the device and communicates across the BLE link through a serial interface and control signals. Parameters stored in non-volatile memory and configurable through the serial interface adjust performance characteristics of the device. Silicon Labs offers iOS and Android mobile libraries for Blue Gecko Xpress devices to speed mobile development and simplify communication with the device. This library also controls OTA management, facilitating secure and reliable updates to the device's embedded stack.

This functional overview does not cover each command supported by the command API. The complete command API specification is available at www.devtools.silabs.com/BGXCommandAPI(PLACEHOLDER)

6.2 Communication Use Cases

The BGX13S family facilitates two types of BLE communication links:

- · BGX-to-mobile
- BGX-to-BGX

In the BGX-to-mobile communication use case, the BGX13S operates as a peripheral that is discoverable and connectable when configured to that state through either the command API or the pin states driven by the embedded MCU. Using the Xpress mobile library, mobile applications can scan for BGX13S devices, connect, and communicate with the device in both streaming and remote command modes, where the mobile app can execute command API functions remotely.

In the BGX-to-BGX communication use case, one BGX13S must be configured as the central and one or more other BGX devices should be configured as a peripheral. Devices can be configured at runtime through the command API, or those settings can be saved to non-volatile memory so that each device wakes from power-on or low power states as either a peripheral or central. For more information on advertising and connection options, please see the command API documentation.

6.3 Embedded Interface

The BGX13S family uses a 8-N-1 USART interface for data and flow control signalling. The interface is used both for a raw data streaming interface and a command interface, depending on additional hardware pin configuration.

UART_TX and UART_RX are defined with flow directions relative to the BGX. Bytes sent from the embedded host to the BGX use the UART_RX pin. Bytes sent from the BGX to the embedded host appear on the UART_TX pin.

UART_CTS is a digital input that controls the state of the UART_RTS digital output on the other end of the wireless link. Assertion of a CTS/RTS pair signals that the embedded MCU driving its respective UART_CTS is available to receive bytes.

The baud rate of the BGX13S is a configurable parameter. For information on the process by which a baud rate change gets processed and executed by the device, please see the command API documentation.

State control signals and visual indicators described below can be assigned to any of the GPIO pins through the command API. These settings can be stored in non-volatile memory and take effect during the next power cycle. For information on configuration of standard GPIO and available special function I/O available on the device, please see the command API documentation.

6.4 Command Mode and Streaming Mode

The BGX13S is designed to wake and offer optimized serial interface with hardware follow control. When operating in a peripheral role and when flow control signals are monitored, the device may never need to leave streaming mode during operation.

However, when use cases require more advanced runtime configuration, the device can switch to command interface through pin or escape sequence. Commands defined here can control scanning, advertising, connection state, and GPIO settings.

The command interface is also used to configure and store customizable parameters.

Streaming mode can be switched to command mode through an escape sequence of characters if the sequence has been previously saved in the device's configuration. A comand can be issued in command mode to switch to streaming mode. Stream mode and command mode entrance can be controlled through a device port pin state, if a pin has been previously defined for that purpose.

6.5 Command API

Each command begins with a command name followed by arguments, and the syntax of each command is defined in the command API documentation.

The command interface saves settings as key-value pairs. These values can be used at runtime to modify the operational state, and they can also be stored in non-volatile memory. Values stored in non-volatile memory function to configure the device's startup/default state.

6.6 GPIO Control

The BGX13S offers 8 GPIO pins. These pins can be configured as state control pins or visual indicator pins. Alternatively, they can be used as general purpose I/O pins. Digital output settings can be set and digital input state can be read through the command interface locally or remotely through the remote command execution using the mobile libraries.

6.7 Device Configuration

Device configuration is handled through the command API, where commands are executed when the serial interface is set to operate in command mode. These commands can also be executed remotely through the mobile library unless prohibited through previous configuration.

Additionally, a device configuration can be generated and saved using Simplicity Studio's Xpress Configurator tool. A generated configuration can be submitted to Silicon Labs through the process defined in that application. Silicon Labs will then validate the configuration request, generate a custom orderable part number, and deliver first article samples for testing. Developers should contact sales representatives for more information about this process. Once first article samples have been validated by the customer, this custom orderable part number can be ordered directly from Silicon Labs.

6.8 Security Features

BGX13S devices communicate with LE secure connections, establishing encrypted communication upon connection.

Device OTA requires an encrypted image signed by Silicon Laboratories. Only firmware developed, signed, and encrypted by Silicon Labs can be bootloaded successfully on the device.

6.9 OTA

The BGX13S supports secure OTA of the embedded stack and the command interface. Images are encrypted and signed by Silicon Laboratories. OTA can be performed through the mobile library APIs. Specific device firmware versions can be selected and programmed through these APIs. See command API documentation for more information.

Orders of the default device OPN will ship with the latest release version of the device firmware. The firmware version is not guaranteed to be the same for all items shipped. No firmware update for an OPN will break backwards compatibility with existing functionality, within functional limits specified in this document and as noted in command API documentation.

Contact Silicon Labs technical support for information on customer factory programming options for custom OPN ordering with a specified device firmware version and for customer factory programming options.

6.10 Direct Test Mode Support

The BGX13S 's command API offers a command set that configure the device to support the Direct Test Mode (DTM) protocol as defined in the Bluetooth Core Specification Version 4.2, Volume 6, part F.

See the command API for information about commands to support specific DTM test procedures.

7. Package Specifications

7.1 BGX13S Package Marking

The figure below shows the package markings printed on the module.

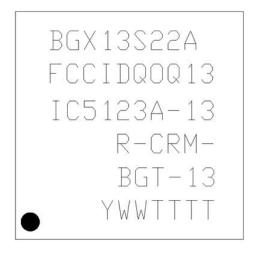


Figure 7.1. BGX13S Package Marking

Explanations:

Marking	Explanation
BGM13SENG	The part number designation
	1. Family Code (B=Blue)
	2. G (Gecko)
	3. M (Module)
	4. Series (1,2,)
	5. Device Configuration (1,2,)
	6. Module Type (S= SiP Module, P= PCB Module)
	7. ENG = Engineering Status
FCCID13	FCC Certification ID
IC5123A-13	IC5123A-13
MSIP-CRM-BGM-13	KC (Korea) Certification ID
YWWTTTT	1. Y = Manufacturing Year
	2. WW = Manufacturing Work Week
	3. TTTT = Trace Code

7.2 BGX13S Package Dimensions

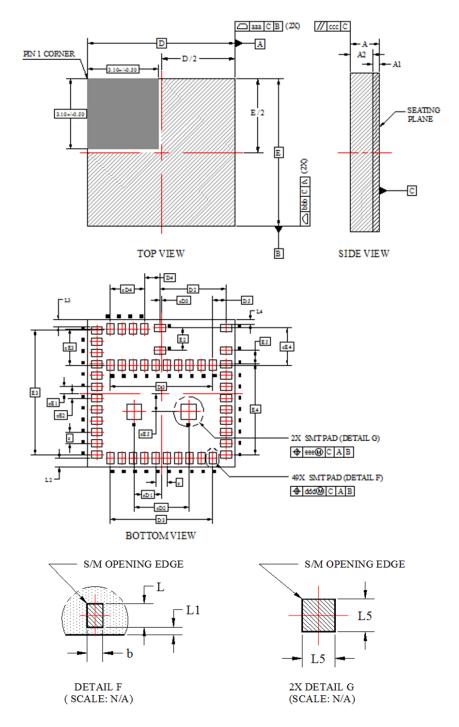


Figure 7.2. BGX13S Package Dimensions

Dimension	MIN	NOM	MAX
A	1.20	1.30	1.40
A1	0.26	0.30	0.34
A2	0.95	1.00	1.05
b	0.27	0.32	0.37
D	6.50 BSC		
D2	2.92 BSC		

Dimension	MIN	NOM	MAX
D3		4.50 BSC	
D4	0.68 BSC		
D5		0.60 BSC	
е		0.50 BSC	
E		6.50 BSC	
E2		1.00 BSC	
E3		5.50 BSC	
E4		4.00 BSC	
E5		0.60 BSC	
L	0.43	0.48	0.53
L1	0.11	0.16	0.21
L2	0.34	0.39	0.44
L3	0.24	0.29	0.34
L4	0.14	0.19	0.24
L5	0.62	0.67	0.72
eD1	1.20 BSC		
eD2	2.40 BSC		
eD3	0.07 BSC		
eD4	1.50 BSC		
eE1	0.30 BSC		
eE2	0.20 BSC		
eE3	1.60 BSC		
eE4	1.65 BSC		
eE5	0.80 BSC		
aaa	0.10		
bbb	0.10		
ccc	0.10		
ddd	0.10		
eee	0.10		

Dimension	MIN	NOM	MAX

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Tolerances are:
 - a. Decimal:

$$X.X = \pm 0.1$$

$$X.XX = \pm 0.05$$

$$X.XXX = \pm 0.03$$

- b. Angular:
 - ±0.1 Degrees
- 3. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- 4. This drawing conforms to the JEDEC Solid State Outline MO-220.
- 5. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
- 6. Hatching lines means package shielding area.
- 7. Solid pattern (3.1x3.1mm) shows non-shielding area including its side walls. For side wall, borderline between shielding area and not-shielding area could not be defined clearly like top side.

7.3 BGX13S Recommeded PCB Land Pattern

This section describes the recommended PCB land pattern for the BGX13S. The antenna copper clearance area is shown in Figure 7.3 BGX13S Recommended Antenna Clearance on page 29, while the X-Y coordinates of pads relative to the origin are shown in Table 7.1 BGX13S Pad Coordinates and Sizing on page 29. The origin is the center point of pin number 47. It is very important to align the antenna area relative to the module pads precisely.

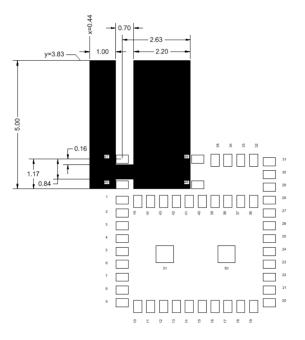


Figure 7.3. BGX13S Recommended Antenna Clearance

Table 7.1. BGX13S Pad Coordinates and Sizing

Pad No.	Pad coordinates (X,Y)	Pad size (mm)
47	Pad Center, Origin (0,0)	0.32 x 0.48
1	(0,-1.60)	
2	(0,-2.10)	
9	(0,-5.60)	
10	(0.60,-5.75)	
19	(5.10, -5.75)	
20	(5.70,-5.60)	
31	(5.70,-0.10)	
32	(5.10,-0.05)	
36	(5.10,-1.65)	
45	(0.60,-1.65)	
49	(0,-1.00)	
46	(2.92,0)	
50	(1.65,-3.70)	0.67 x 0.67
51	(4.05,-3.70)	

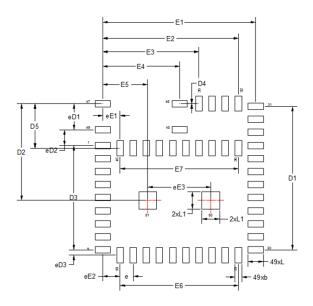


Figure 7.4. BGX13S Recommended PCB Land Pattern

Table 7.2. BGX13S Recommended PCB Land Pattern

Symbol	NOM (mm)
b	0.32 BSC
D1	5.50 BSC
D2	3.70 BSC
D3	4.00 BSC
eD1	1.00 BSC
eD2	0.60 BSC
eD3	0.15 BSC
е	0.50 BSC
E1	5.70 BSC
E2	5.10 BSC
E3	3.60 BSC
E4	2.92 BSC
E5	1.65 BSC
E6	4.50 BSC
E7	4.50 BSC
L	0.48 BSC
L1	0.67 BSC
eE1	0.60 BSC
eE2	0.60 BSC
eE3	2.40 BSC

^{1.} All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05mm is assumed.

- 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
- 3. This Land Pattern Design is based on the IPC-7351 guidelines.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.100mm (4 mils).
- 6. The stencil aperture to land pad size recommendation is 70% paste coverage.

8. Tape and Reel Specifications

8.1 Tape and Reel Packaging

This section contains information regarding the tape and reel packaging for the BGX13S Blue Gecko Module.

8.2 Reel and Tape Specifications

• Reel material: Polystyrene (PS)

· Reel diameter: 13 inches (330 mm)

- · Number of modules per reel: 1000 pcs
- · Disk deformation, folding whitening and mold imperfections: Not allowed
- Disk set: consists of two 13 inch (330 mm) rotary round disks and one central axis (100 mm)
- · Antistatic treatment: Required
- Surface resistivity: $10^4 10^9 \Omega/\text{sq}$.

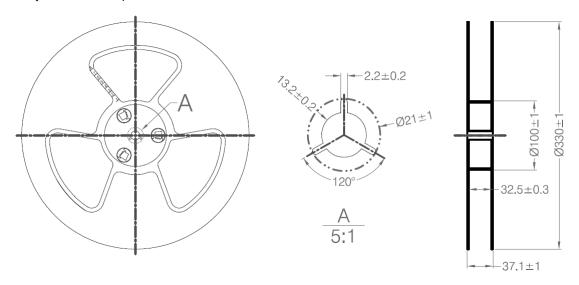


Figure 8.1. Reel Dimensions - Side View

Symbol	Dimensions [mm]
W0	32.5 ± 0.3
W1	37.1 ± 1.0

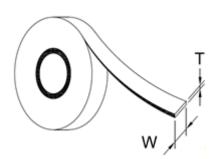


Figure 8.2. Cover tape information

Symbol	Dimensions [mm]
Thickness (T)	0.061
Width (W)	25.5 + 0.2

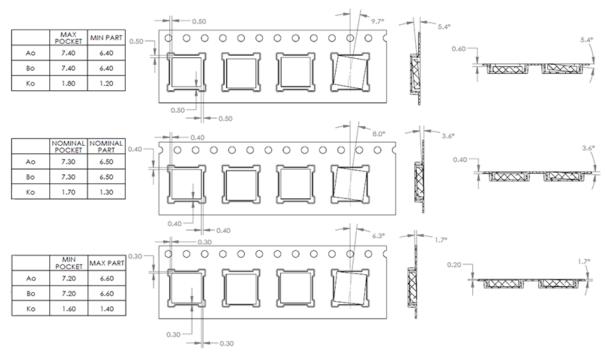


Figure 8.3. Tape information

8.3 Orientation and Tape Feed

The user direction of feed, start and end of tape on reel and orientation of the modules on the tape are shown in the figure below.

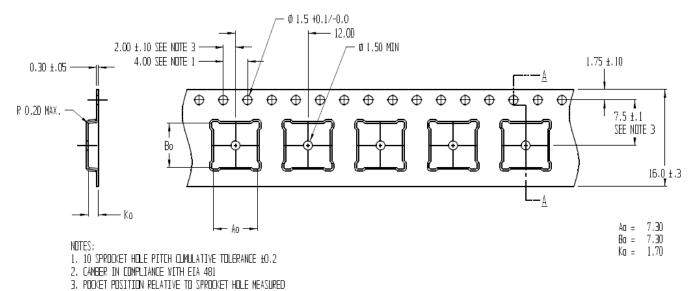


Figure 8.4. Module Orientation and Feed Direction

AS TRUE POSITION OF POCKET, NOT POCKET HOLE

8.4 Tape and Reel Box Dimensions

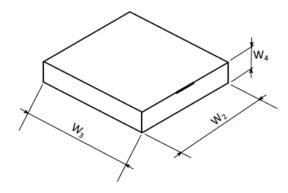


Figure 8.5. Tape and Reel Box Dimensions

Symbol	Dimensions [mm]
W ₂	368
W ₃	338
W ₄	72

8.5 Moisture Sensitivity Level

Reels are delivered in packing which conforms to MSL3 (Moisture Sensitivity Level 3) requirements.

9. Soldering Recommendations

9.1 Soldering Recommendations

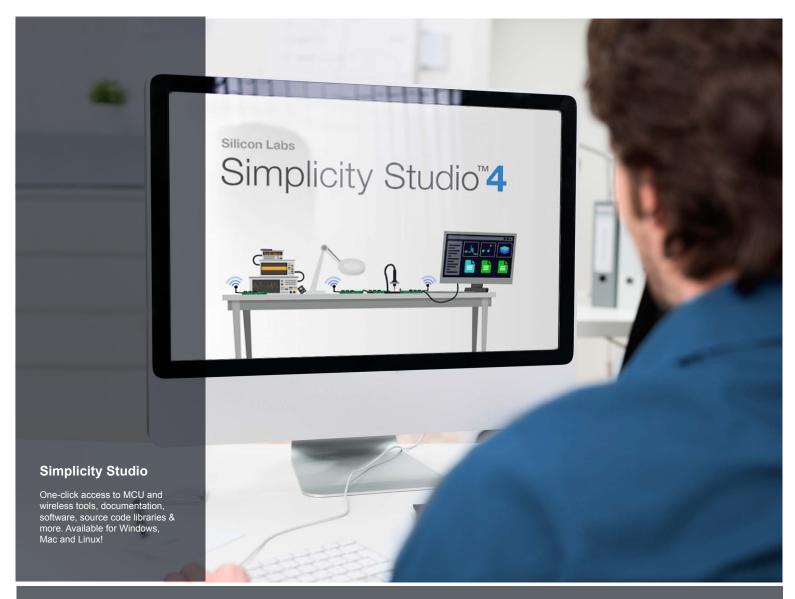
This section describes the soldering recommendations for the BGX13S module.

BGX13S is compatible with industrial-standard reflow profile for Pb-free solders. The reflow profile used is dependent on the thermal mass of the entire populated PCB, heat transfer efficiency of the oven, and particular type of solder paste used.

- · Refer to technical documentations of particular solder paste for profile configurations.
- · Avoid using more than two reflow cycles.
- A no-clean, type-3 solder paste is recommended.
- · A stainless steel, laser-cut, and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- · Recommended stencil thickness is 0.100 mm (4 mils).
- Refer to the recommended PCB land pattern for an example stencil aperture size.
- For further recommendation, please refer to the JEDEC/IPC J-STD-020, IPC-SM-782 and IPC 7351 guidelines.

10. Certifications

10.1 Certifications Pending


Certifications for the BGX13S are not yet complete. Certification details will be provided in future versions of this document.

11. Revision History

Revision 0.5

August 2018

• Public Release

Quality www.silabs.com/quality

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labse®, Bluegiga®, Bluegiga®, Bluegiga®, Bluegiga®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, Z-Wave, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA