

Product Description

The PE43701 is a HaRP™-enhanced, high linearity, 7-bit RF Digital Step Attenuator (DSA). This highly versatile DSA covers a 31.75 dB attenuation range in 0.25 dB steps. The Peregrine 50Ω RF DSA provides a parallel or serialaddressable CMOS control interface. It maintains high attenuation accuracy over frequency and temperature and exhibits very low insertion loss and low power consumption. Performance does not change with Vdd due to on-board regulator. This next generation Peregrine DSA is available in a 5x5 mm 32-lead QFN footprint.

The PE43701 is manufactured on Peregrine's UltraCMOS™ process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate, offering the performance of GaAs with the economy and integration of convention CMOS.

Figure 1. Package Type

32-lead 5x5x0.85 mm QFN Package

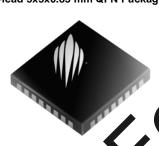
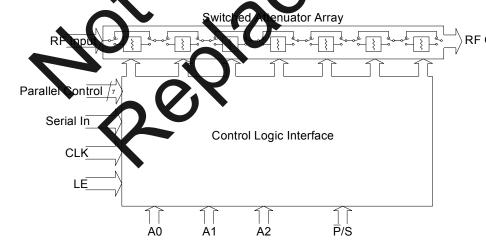



Figure 2. Fun hematic Diag

Product Specification

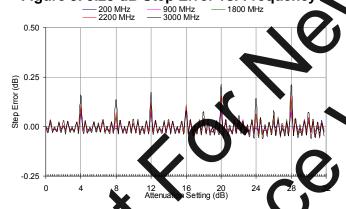
PE43701

50 Ω RF Digital Attenuator 7-bit, 31.75 dB, 9 kHz - 4.0 GHz

Features

- HaRP™-enhanced UltraCMOS™ device
- Attenuation: Q-25 dB steps to 31.75 dB
- High Linear bical +59

- - essable: Program up to addresses 000 - 111
- atteriation state @ power-up (PUP)
- IOS Compatible
- lo DC blocking capacitors required
- Packaged in a 32-lead 5x5x0.85 mm QFN


Table 1. Electrical Specifications @ +25°C, V_{DD} = 3.3 V or 5.0 V

Parameter	Test Conditions	Frequency	Min	Typical	Max	Units
Frequency Range			9 kHz		4.0	GHz
Attenuation Range	0.25 dB Step			0 – 31.75		dB
Insertion Loss		9 kHz ≤ 4 GHz		1.9	2.4	dB
Attenuation Error	0 dB - 7.75 dB Attenuation settings 8 dB - 31.75 dB Attenuation settings 0 dB - 31.75 dB Attenuation settings	9 kHz < 3 GHz 9 kHz < 3 GHz 3 GHz ≤ 4 GHz			±(0.2+1.5%) ±(0.15+4%) ±(0.25+4.5%)	dB dB dB
Return Loss		9 kHz - 4 GHz				dB
Relative Phase	All States	9 kHz - 4 GHz		44		deg
P1dB (note 1)	Input	20 MHz - 4 GHz	30	32		dBm
IIP3	Two tones at +18 dBm, 20 MHz spacing	20 MHz - 4 GHz	A (59	4	dBm
Typical Spurious Value		1MHz		-110		dBm
Video Feed Through				10		mVpp
Switching Time	50% DC CTRL to 10% / 90% RF		5	65		ns
RF Trise/Tfall	10% / 90% RF			400		ns
Settling Time	RF settled to within 0.05 dB of final value RBW = 5 MHz, Averaging ON.) /	4	25	μs

Note 1. Please note Maximum Operating Pin (50Ω) of +23dBm as shown in Table 3.

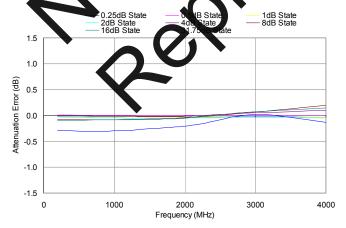

Performance Plots

Figure 3. 0.25 dB Step Error vs. Frequency

^{*}Monotonicity is held so long as Step-Error does not cross-ellow -0.25

Figure 5 4.25 B Major State Bit E-ro

©2008-2009 Peregrine Semiconductor Corp. All rights reserved.

Figure 4. 0.25dB Attenuation vs. Attenuation State

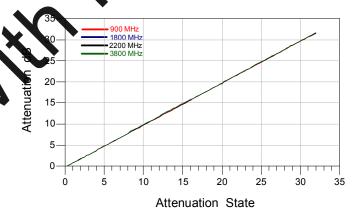
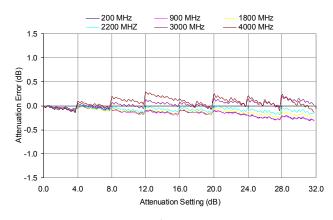



Figure 6. 0.25 dB Attenuation Error vs. Frequency

Document No. 70-0243-06 | L

UltraCMOS™ RFIC Solutions

Figure 7. Insertion Loss vs. Temperature

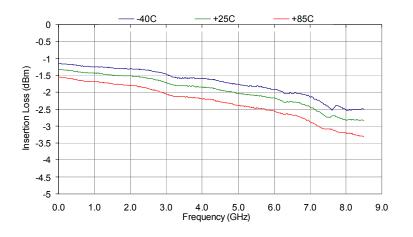


Figure 8. Input Return Loss vs. Attenuation:

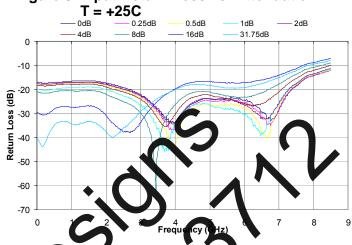


Figure 9. Output Return Loss vs. Attenuation:

oss vs. Temperature:

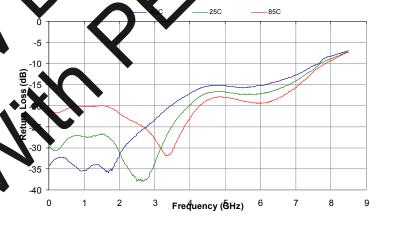


Figure 11. Output Return Loss vs. 16dB State

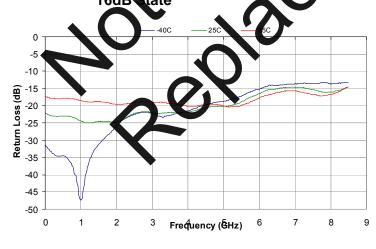


Figure 12. Relative Phase vs. Frequency

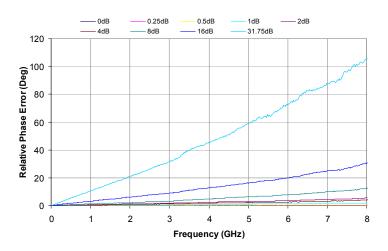


Figure 13. Relative Phase vs. Temperature: 31.75dB State

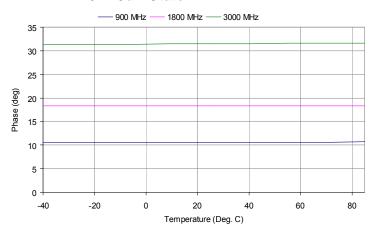


Figure 14. Attenuation Error vs. Attenuation

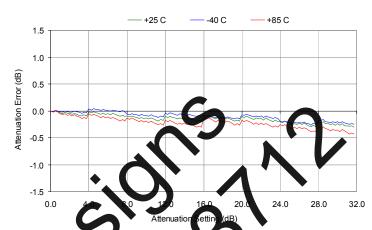
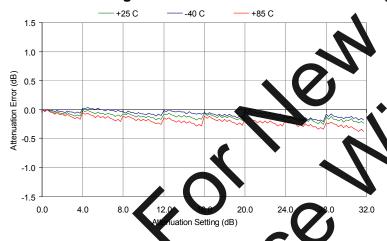



Figure 15. Attenuation Error vs. Attenuation Setting: 1800 MHz

16. Attenuation Error Setting: 3000 MHz vs. Attenuation

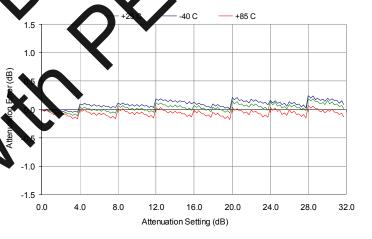


Figure 17. Input IP3

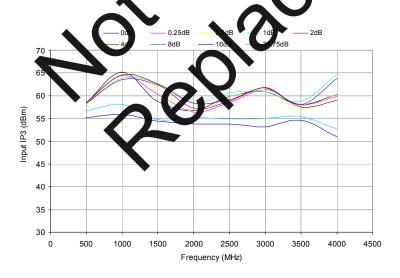
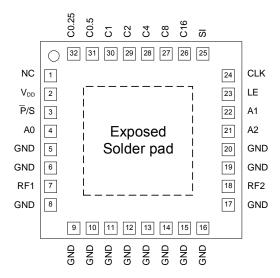



Figure 18. Pin Configuration (Top View)

Table 2. Pin Descriptions

Pin No.	Pin Name	Description
1	N/C	No Connect
2	V_{DD}	Power supply pin
3	₹P/S	Serial/Parallel mode select
4	A0	Address Bit A((LSB)
5, 6, 8-17, 19, 20	GND	Ground
7	RF1	RF1 port
18	RF2	RF2 port
21	A2	Address Bit A2
22	A1	Address Bit A1
23	ÆΕ	Latch Enable input
24	CLI	Serial interface clock input
25	Ī	Serial Interface lopus
20	C16	Attenuation courtrol bit, 16 dB
21	C8	Attenuation control bit, 8 dB
28		Atteruation control bit, 4 dB
29	C2	Attenuation control bit, 2 dB
30	C1	Attenuation control bit, 1 dB
31	C0.5	Attenuation control bit, 0.5 dB
32	C0.25	Attenuation control bit, 0.25 dB
Paddle	GND	Ground for proper operation

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS™ device, observe the same precautions that you would use with other ESDsensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the specified rating.

Latch-Up Avoidance

Unlike conventional Q ces, UltraCM devices are immune

Moisture Sq

the PE43701 in The Moist the 5x5 d kage is MS

Frequency

m 25 kHz switching rate. d to be the speed at which the hing rate is across attenuation states.

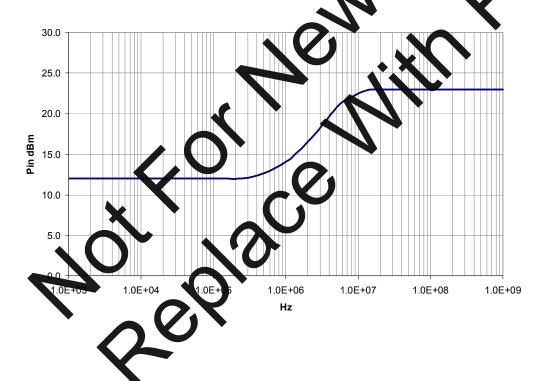
der Pad Connection Exposed 1

The exposed solder pad on the bottom of the package rounded for proper device operation.

Table 3. Operating Ranges

Parameter	Min	Тур	Max	Units
V _{DD} Power Supply Voltage	3.0	3.3		V
V _{DD} Power Supply Voltage		5.0	5.5	V
IDD Power Supply Current		70	350	μΑ
Digital Input High	2.6		5.5	V
P _{IN} Input power (50Ω): 1 Hz ≤ 20 MHz 20 MHz ≤ 4 GHz			See fig. 19 +23	dBm dBm
T _{OP} Operating temperature range	-40	25	85	°C
Digital Input Low	0		1	V
Digital Input Leakage ¹			15	μΑ

Note 1. Input leakage current per Control pin


Table 4. Absolute Maximum Ratings

Symbol	Parameter/Conditions	Min	Max	Units
V_{DD}	Power supply voltage	-0.3	6.0	V
Vı	Voltage on any Digital input	-0.3	5.8	V
P _{IN}	Input power (50Ω) 1 Hz ≤ 20 MHz 20 MHz ≤ SHz		See fig. 19 +23	dBm dBm
T _{ST}	Storage temperature range	-65	150	°C
V _{ESD}	ESD voltage (NBM) ESD voltage (NR shin Model)	1	500 100	V

Note: 1. Human BM, MIL_STD 83 Method 3015.7)

d be restricted to ble. Operation num and absolute ods may reduce reliability.

Figure 19. Maximum Power Handling Capabili

Table 5. Control Voltage

State	Bias Condition
Low	0 to +1.0 Vdc at 2 μA (typ)
High	+2.6 to +5 Vdc at 10 μA (typ)

Table 6. Latch and Clock Specifications

Latch Enable	Shift Clock	Function
0	↑	Shift Register Clocked
1	Х	Contents of shift register transferred to attenuator core

Table 7. Parallel Truth Table

	F	Parallel	Contro	l Settir	ng		Attenuation
D6	D5	D4	D3	D2	D1	D0	Setting RF1-RF2
L	L	L	L	L	L	L	Reference I.L.
L	L	L	L	L	L	Н	0.25 dB
L	L	L	L	L	Н	L	0.5 dB
L	L	L	L	Н	L	L	1
L	L	L	Н	L	L	L	
L	L	Н	L	L	L	I	4 dB
L	Н	L	L	L	L	L	8 dB
Н	L	L	L	L	L	L	16 dB
Н	Н	Н	Н	Н	H	Н	31.75 dB

Table 8. Address Word Truth Table

		Α	ddress	s Word	i			A -l -l
A7 (MSB)	A6	A5	A4	А3	A2	A1	Α0	Address Setting
Х	Χ	Х	Χ	Х	L	L	L	000
Х	Х	Х	Х	Х	L	L	Н	001
Х	Х	Х	Х	Х	_	Н	L	010
Х	Х	Х	Х	Х		Н	Н	1 1
Х	Х	Х	Х		H	L	L	100
Х	Х	Х	X	Х	Н	L		101
X	Х	X			Н	H		1.0
Χ	X	X	Х	X	Н		Н	111

Repuation Word

	7	At	tenuat	ion W	rd	J		Attenuation	
۵	B	D5	D4	D3	D3 2 D1 D0 (LSB)		D0 (LSB)	Setting RF1-RF2	
Ţ	L	L	X	L	L	L	L	Reference I.L.	
٦	ا ـ	با	L	>	L	L	Н	0.25 dB	
L	L	Y	L	L	L	Η	L	0.5 dB	
۵.	-1	١	L	L	Н	L	L	1 dB	
4	4	٦	L	Ι	L	L	L	2 dB	
X	1	_l	Ι	Ш	L	L	L	4 dB	
1		Н	L	L	L	L	L	8 dB	
L	Н	L	L	L	L	L	L	16 dB	
L	Н	Н	Н	Н	Н	Н	Н	31.75 dB	

Table 10. Serial sable Regist

Bits can either be set to logic high or logic low

D7 must be set to logic low

LSB (first in)

Q1	Q14	Q13	Q12	Q11	Q10	Q9	Q8	Q7	Q6	Q5	Q4	Q3	Q2	Q1	Q0
A7	A6	A5	A4	AS	A2	A1	A0	*D7	D6	D5	D4	D3	D2	D1	D0

Attenuation Word

Attenuation Word is derived directly from the attenuation value. For example, to program the 18.25 dB state at address 3:

Address word: XXXXX011

Attenuation Word: Multiply by 4 and convert to binary \rightarrow 4 * 18.25 dB \rightarrow 73 \rightarrow 01001001

Serial Input: XXXXX01101001001

Programming Options

Parallel/Serial-Addressable Selection

Either a parallel or serial-addressable interface can be used to control the PE43701. The \overline{P}/S bit provides this selection, with P/S=LOW selecting the parallel interface and P/S=HIGH selecting the serial interface.

Parallel Mode Interface

The parallel interface consists of seven CMOScompatible control lines that select the desired attenuation state, as shown in Table 7.

The parallel interface timing requirements are defined by Fig. 21 (Parallel Interface Timing Diagram), Table 12 (Parallel Interface AC Characteristics), and switching speed (Table 1).

For *latched*-parallel programming the Latch Enable (LE) should be held LOW while changing attenuation state control values, then pulse LE HIGH to LOW (per Fig. 21) to latch new attenuation state into device.

For direct parallel programming, the Latch En (LE) line should be pulled HIGH. Changing attenuation state control values will than state to new attenuation. Direct Mode ideal for manual control of the device (using hardwre, switches, or jumpers).

Serial-Addressable Inter

The serial-addressable interface is a 16-bit s parallel-out shift register buffered by a translatch. The 16-bits make up two words comprised of 8-bits each. The irst word is the Atta which controls to second word is the Addre ss Word, which is com static (or programmed) logical tates of the A0, A1 inputs. If the is an address match, A changes state its current state will remain unchanged 0 in strates a example timing diagram for programming a state. It is recommended that rallel control inputs be grounded when the DSA is used in Serial Mode.

The serial-addressable interface is controlled using three CMOS-compatible signals: Serial-In (SI), Clock (CLK), and Latch Enable (LE). The SI and CLK inputs allow data to be serially entered into the shift register. Serial data is clocked in LSB first, beginning with the Attenuation Word.

The shift register must be loaded while LE is held LOW to prevent the attenuator value from changing as data is entered. The LE input should then be toggled HIGH and brought LOW again, latching the new data into the DSA. Address word and attenuation word truth tables are listed in Table 8 & Table 9, respectively. A programming example of the serial-addressable register sillustrated in Table 10. The serial-addressable tining diagram is illustrated in Fig. 20.

Power-up€or

The PE4 lize to he maximum power-up for both barallel modes of nd latched etting until the user ng word. In direct-A can be preset to any state para ange by pre-setting the parallel ower-up. In this mode, there is between the time the DSA is powered-up the time the desired state is set. During this power-up delay, the device er ual s to the maximum attenuation setting dB) before defaulting to the user defined the control pins are left floating in this mode uring power-up, the device will default to the minimum attenuation setting (insertion loss state).

Dynamic operation between serial-addressable and parallel programming modes is possible.

If the DSA powers up in serial-addressable mode (\overline{P} / S = HIGH), all the parallel control inputs DI[6:0] must be set to logic low. Prior to toggling to parallel mode, the DSA must be programmed serially to ensure D[7] is set to logic low.

If the DSA powers up in either latched or directparallel mode, all parallel pins DI[6:0] must be set to logic low prior to toggling to serial-addressable mode $(\overline{P}/S = HIGH)$, and *held* low until the DSA has been programmed serially to ensure bit D[7] is set to logic

The sequencing is only required once on powerup. Once completed, the DSA may be toggled between serial-addressable and parallel programming modes at will.

Figure 20. Serial-Addressable Timing Diagram

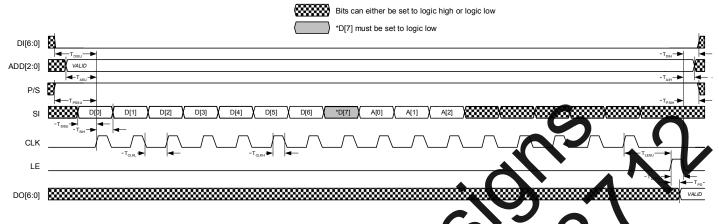


Figure 21. Latched-Parallel/Direct-Parallel Timing Diagram

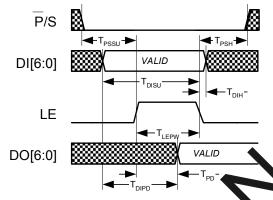


Table 11. Serial-Addressable Interface **AC Characteristics**

 $V_{DD} = 3.3$ or 5.0 V, -40° C \nearrow $T_A < 85$ ° C unless otherwise specified

Symbol	Parameter	Min	Max	pit
F _{CLK}	Serial clock frequency	- /	0	MHz
T _{CLKH}	Serial clock HIGH time	30	-	ns
T _{CLKL}	Serial clock LOW-time	30)	ns
TLESU	Last terial cock rising edge sector to be a Late / Enable rising edge	0	-	ns
TLERW	Letch Enable min. pulse width	30	-	ns
T _{SISU}	Serial data setup time	10	-	ns
T _{SIH}	erial data hold time	10	-	ns
T _{DISU}	Parallel data setup time	100	-	ns
T_DIH	Paralle data hold time	100	1	ns
T _{ASU}	Address setup time	100	-	ns
T _{AH}	Address hold time	100	-	ns
T _{PSSU}	Parallel/Serial setup time	100	-	ns
T _{PSH}	Parallel/Serial hold time	100	-	ns
T_{PD}	Digital register delay (internal)	-	10	ns

 f_{Clk} is verified during the functional pattern test. Serial-Note: Addressable programming sections of the functional pattern are clocked at 10 MHz to verify fclk specification.

Table 12. Parallel and Direct Interface **AC Characteristics**

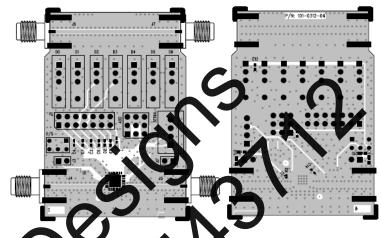
 $V_{DD} = 3.3$ or 5.0 V, -40° C < T_A $< 85^{\circ}$ C, unless otherwise specified

Symbol	Parameter	Min	Max	Unit
T _{LEPW}	Latch Enable minimum pulse width	30	-	ns
T _{DISU}	Parallel data setup time	100	-	ns
T _{DIH}	Parallel data hold time	100	-	ns
T _{PSSU}	Parallel/Serial setup time	100	-	ns
T _{PSIH}	Parallel/Serial hold time	100	-	ns
T _{PD}	Digital register delay (internal)	-	10	ns
T _{DIPD}	Digital register delay (internal, direct mode only)	-	5	ns

Evaluation Kit

The Digital Attenuator Evaluation Kit board was designed to ease customer evaluation of the PE43701 Digital Step Attenuator.

Direct-Parallel Programming Procedure
For automated direct-parallel programming, connect the test harness provided with the EVK from the parallel port of the PC to the J1 & Serial header pin and set the D0-D6 SP3T switches to the 'MIDDLE' toggle position. Position the Parallel/ Serial (P/S) select switch to the Parallel (or left) position. The evaluation software is written to operate the DSA in either Parallel or Serial-Addressable Mode. Ensure that the software is set to program in *Direct-Parallel* mode. Using the software, enable or disable each setting to the desired attenuation state. The software automatically programs the DSA each time an attenuation state is enabled or disabled.


For manual direct-parallel programming, disconnect the test harness provided with the from the J1 and Serial header pins. Pasitid Parallel/Serial (\overline{P}/S) select switch to the left) position. The LE pin on the Senal be tied to V_{DD} . Switches D0-D6 are 23T switches which enable the user to manually program the parallel bits. When any input DVD6 is toggled 'UP', logic high is presented to he parallel input. When toggled 'DOWN', logic low is presented to the parallel input. Setting D0-D6 to the 'MIDD toggle position presents an OPEN, which on-chip logic . Table 9 depicts the parallel programming trut table and Fig. tes the parallel programming timing a

Lacined Farallel Programs ing Procedure
For automated latched-parallel programming, the procedure is identical to the direct-parallel method. The user only must ensure that Latched-Parallel is selected in the software.

For manual latched-parallel programming, the procedure is identical to direct-parallel except now the LE pin on the Serial header must be logic low as the parallel bits are applied. The user must then pulse LE from 0V to V_{DD} and back to 0V to latch the programming word into the DSA. LE must be logic low prior to programming the next word.

Figure 22. Evaluation Board Layout

Peregrine Specification 101-0312

Note: Reference Fig. 23 for Evaluation Board Schematic

Serial-Addressable Programming Procedure Position the Parallel/Serial (\overline{P}/S) select switch to the Serial (or 19ht) position. Prior to cran ming, the user must define an address tting using the ADD header pin. Jump the middle pins on the ADD header A0-A2 (or lower) w of pins to set logic high, or jump the middle pins to the upper row of pins to set logic low. If the ADD pins are left open, then 000 become the default address. The evaluation software is written to operate the DSA in either Parallel or Serial-Addressable Mode. Ensure that the software is set to program in Serial-Addressable mode. Using the software, enable or disable each setting to the desired attenuation state. The software automatically programs the DSA each time an attenuation state is enabled or disabled.

Figure 23. Evaluation Board Schematic

Peregrine Specification 102-0381

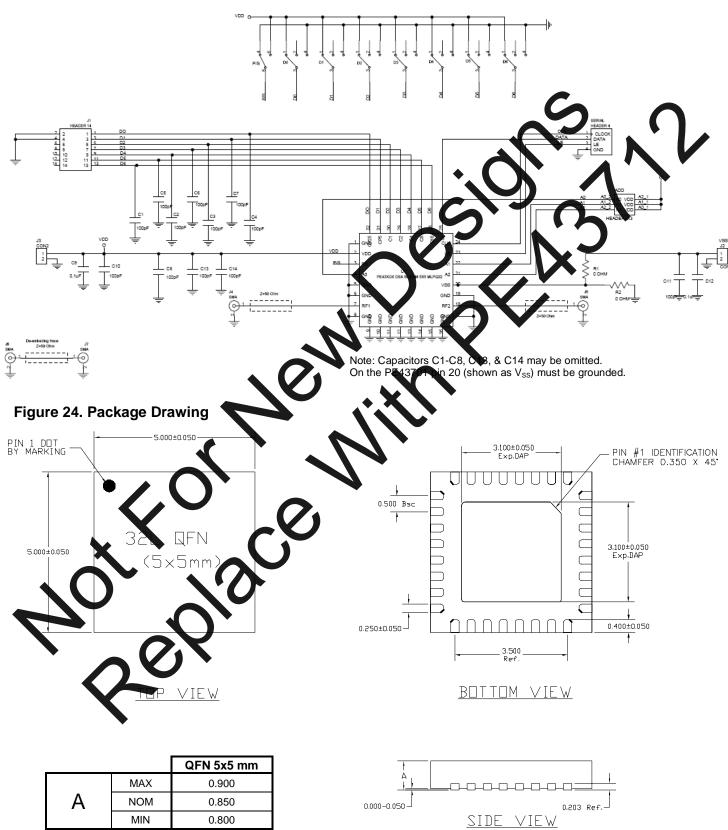
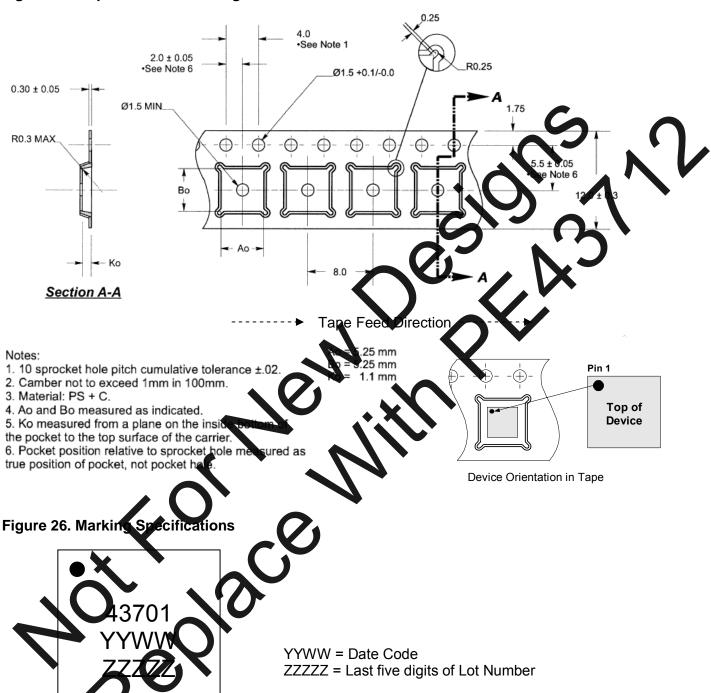



Figure 25. Tape and Reel Drawing

Table 13. Ordering Information

Order Code	Part Marking	Description	Package	Shipping Method
PE43701MLI	43701	PE43701 G - 32QFN 5x5mm-75A	Green 32-lead 5x5mm QFN	Bulk or tape cut from reel
PE43701MLI-Z	43701	PE43701 G - 32QFN 5x5mm-3000C	Green 32-lead 5x5mm QFN	3000 units / T&R
EK43701-01	43701	PE43701 G – 32QFN 5x5mm-EK	Evaluation Kit	1 / Box

©2008-2009 Peregrine Semiconductor Corp. All rights reserved.

Sales Offices

The Americas

Peregrine Semiconductor Corporation

9380 Carroll Park Drive San Diego, CA 92121 Tel: 858-731-9400 Fax: 858-731-9499

Europe

Peregrine Semiconductor Europe

Bâtiment Maine 13-15 rue des Quatre Vents F-92380 Garches, France Tel: +33-1-4741-9173 Fax: +33-1-4741-9173

High-Reliability and Defense Products

Americas San Diego, CA, USA Phone: 858-731-9475 Fax: 848-731-9499

Europe/Asia-Pacific Aix-En-Provence Cedex 3, France Phone: +33-4-4239-3361

Fax: +33-4-4239-7227

For a list of representatives in your area, please refer to our www.psemi.com

Data Sheet Identification

Advance Information

The product is in ormative or design stage sheet contain get specificatio develop Sped fications and fe any mani

Preliminary Specifica

The data sheet cont ta. Additional data regrine reserves the right may be added at date to change specif my time without notice in order sible product. to supply the best p

Product Specification

The data sheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer Notification Form).

Peregrine Semiconductor, Asia Pacific (APAC)

Shanghai, 200040, P.R. China Tel: +86-21-5836-8276 Fax: +86-21-5836-7652

Peregrine Semiconduc

#B-2607, Kolon Tripolis, Geumgok-dong, Bunda onanam-si

Gyeonggi-do, 463-9

Tel: +82-31-728-3

The information in this data sheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this data sheet are implied or granted to any third party.

Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

The Peregrine name, logo, and UTSi are registered trademarks and UltraCMOS, HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp.

Document No. 70-0243-06 | www.psemi.com

©2008-2009 Peregrine Semiconductor Corp. All rights reserved.