
2-FUNCTION, 4-DIGIT LCD AUTOMOTIVE CLOCK—PROGRAMMABLE

ABSOLUTE MAXIMUM RATINGS

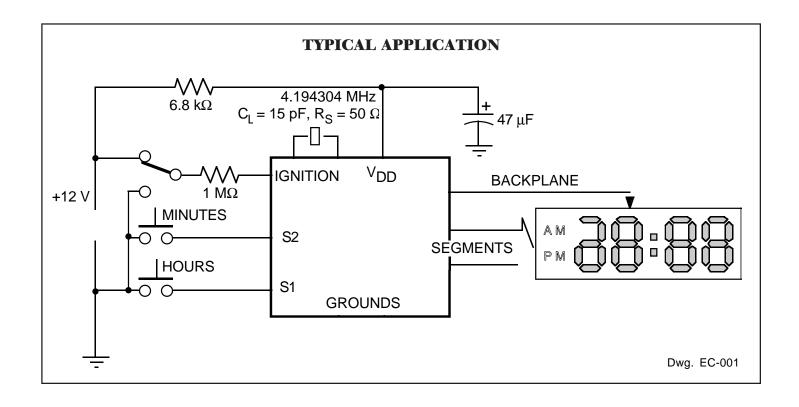
Supply Current, I _{DD} 2.0 mA
Input Voltage Range, V _{IN}
(except V _{PP})0.3 V to V _{DD}
(Programming
Power Voltage, V _{PP}) 18.5 V
Input Current (except V _{PP}), I _{IN} ±10 mA
Power Dissipation, P _D 300 mW
Operating Temperature Range,
T _A 40°C to +85°C
Storage Temperature Range,
T _S 65°C to +150°C

Caution: These CMOS devices have static protection, but are susceptible to damage if exposed to extremely high static electrical charges.

The SCL5616HW is a 2-function digital automotive clock circuit. Fabricated on a single monolithic chip using silicon-gate CMOS PROM technology, it offers low cost, low power, and high reliability. It also includes digital frequency correction, stored in the internal nonvolatile memory, for easy adjustment of the oscillator nominal frequency.

The SCL5616HW is supplied in wafer form and is rated for continuous operation over the automotive temperature range of -40°C to +85°C.

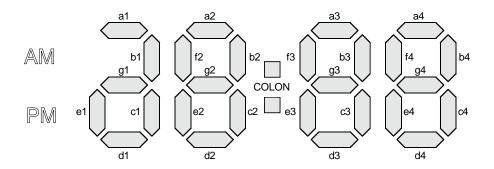
FEATURES


- Digital Tuning of Crystal Frequency
- PROM for Storing Frequency Correction Information
- 12 or 24 Hour Timekeeping Option
- Flashing Colon
- Two Switches Control All Setting Functions
- High Noise Immunity
- Internal Power-Up Reset Circuitry
- Internal Voltage Regulation

Always order by complete part number:

SCL5616HW .

5616 2-FUNCTION, 4-DIGIT LCD AUTOMOTIVE CLOCK


5616 2-FUNCTION, 4-DIGIT LCD AUTOMOTIVE CLOCK

ELECTRICAL CHARACTERISTICS at T_A = -40°C to +85°C, in Typical Application (unless otherwise noted).

			Limits			
Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Operating Voltage Range	V _{DD}	T _A = +25°C	4.5	_	_	V
Zener Voltage	V _{DD}	I _{DD} = 1.0 mA	5.5	_	6.8	V
Segment Output Current	I _{OUT}	V _{DD} = 5.0 V, V _{OUT} = 4.8 V	-20	_	_	μΑ
		V _{DD} = 5.0 V, V _{OUT} = 0.2 V	120	_	_	μΑ
Backplane Output Current	I _{OUT}	V _{DD} = 5.0 V, V _{OUT} = 4.8 V	-80	_	_	μΑ
		V _{DD} = 5.0 V, V _{OUT} = 0.2 V	240	_	_	μΑ
LCD Drive Signal	V _{DISP}	V _{DD} ≥5.0 V	4.0	_	_	V
Input Current	I _{IN}	S1, S2, DATA, or SELECT	-55	_	-700	μΑ
Oscillator Frequency	f _{osc}		-	4.194 304	_	MHz
Oscillator Starting Time	t _{osc}	V _{DD} = Zener voltage	T -	_	200	ms
Oscillator Stability	$\Delta f_{\sf OSC}$	$\Delta V_{DD} = \pm 100 \text{ mV}$	<u> </u>	_	±1.0	ррМ
Backplane Frequency	f _{BP}		T -	64	_	Hz
Switch Debounce Time	t _{DB}		0	_	62.5	ms
Osc. Feedback Resistance	R _{osc}		<u> </u>	16	_	MΩ
Osc. Input Capacitance	C _{osci}		_	15	_	pF
Osc. Output Capacitance	C _{osco}		<u> </u>	30	_	pF
Supply Current	I _{DD}	V _{DD} = 5.0 V		_	1.0	mA

NOTE: Negative current is defined as coming out of (sourcing) the specified device terminal.

DISPLAY FORMAT

FUNCTIONAL DESCRIPTION DATA Logic Levels are $V_{\rm pp}$ and Ground

Power-Up Reset. When power up occurs, the hours and minutes counters are reset, and the clock starts running:

Operation

12-Hour mode and counting starts from 1:00 AM

Programming Modes. Data is loaded by pulling DATA low (1 μ s pulse duration) n times to set the desired bits for frequency correction into the data input register. This information is latched in the RAM, thus allowing the testing of the oscillator frequency adjustment without storing the selected pattern in the PROM cells. The data latched in the RAM is stored in the PROM cells when DATA is held low for a minimum of 10 ms.

The data stored in the data input register is cleared on any SELECT transition (low to high or high to low). It is also cleared when the program power voltage (V_{PP}) is reduced from 18 V to V_{DD} . Clearing the data input register does not affect the data latched in the RAM.

Program V _{PP}	DATA V _D	SELECT V _S	Operation
18 V	Pulse	Ground	DATA load for frequency correction
18 V	Ground	V_{DD}	DATA store
V _{DD}	V_{DD}	Ground	Verify stored data

FREQUENCY CORRECTION

FREQUENCY CORRECTION

Dwg. No. WC-001-1

Frequency Correction. The on-chip oscillator circuit increases the crystal frequency approximately 40 ppm. This ensures that the typical crystal will operate within the tuning range. With $V_{\rm S}$ at ground, data pulses are then used to trim the internal clock frequency by 2 to 254 ppm to the required value. The quantity of data pulses needed (1 to 127) is

$$n = f_{BP} - 64$$

$$128 \times 10^{-6}$$

where $\rm f_{\rm BP}$ is the measured frequency at BACKPLANE. Prior to trimming, it must be between 64.000 128 Hz and 64.016 256 Hz.

Operating Modes. The operating modes of the clock are controlled by the voltages applied to $V_{\rm pp}$, SELECT, IGNITION, and switches S1 and S2.

Program V _{PP}	SELECT V _S	S 1	S2	IGNITION	Mode
V _{DD}	V_{DD}	Open	Open	Χ	Clock running
V _{DD}	V _{DD}	Ground	Ground	12 V	Diagnostic
18 V	Ground	Open	Open	Χ	Programming

X = Irrelevant, ground or 12 V

Clock Running Mode. During the clock running mode, setting functions are achieved by either momentary or continuous operation of switches S1 and S2, which are enabled by IGNITION. Hours or minutes are incremented on S1 or S2 (respectively) depression and continue at a 1 Hz rate while the switch is depressed.

S1	S2	IGNITION	Operation
Open	Open	Х	Clock running
X	Χ	Ground	Setting disabled
Ground	Open	12 V	Set hours
Open	Ground	12 V	Set Minutes
Ground	Ground	12 V	Change counting sequence (12 to 24 hour or 24 to 12 hour)

X = Irrelevant, ground or 12 V for IGNITION, ground or open for S1 and S2

Diagnostic Mode. To enter the diagnostic mode, S1 and S2 are operated with IGNITION connected to 12 V. All segments are displayed for as long as S1 and S2 are depressed. On opening S1 and S2, the clock will leave the diagnostic mode and go through a power-up sequence. In the SCL5616HW, the counting sequence will change (from 12 hour to 24 hour or from 24 hour to 12 hour). To inhibit the power-up reset, hold the DATA input low (ground). The counting mode will change without resetting the hours or minutes counters.

5616 2-FUNCTION, 4-DIGIT LCD AUTOMOTIVE CLOCK

Stored Data Verification. In the verify mode, the complement value of the information stored in the PROM cells is brought out directly to the segment output terminals for easy verification of the stored data. If a bit is programmed (high), the appropriate segment output is turned ON (low). The segments represent the binary equivalent of the number of frequency correction data pulses entered.

Frequency Selection Pulses	64	32	16	8	4	2	1
Segment	b4	c4	d4	e4	c3	e3	c2

RECOMMENDED FLASH PROGRAMMING CHARACTERISTICS at T_A = +25°C, Logic Levels are V_{DD} and Ground (except PROGRAM High)

Characteristic	Symbol	Min.	Max.	Units
PROGRAM High (18 V) to DATA Low	t _{PHDL}	1.0		μs
SELECT Valid to DATA Low	t _{SVDL}	25	_	μs
DATA Low to DATA High	t _{DLH}	1.0	1.5	μs
DATA High to DATA Low	t _{DHL}	1.0	_	μs
DATA Store Pulse Duration	t _{wD}	10	_	ms
DATA High to PROGRAM Low	t _{DHPL}	1.0	_	μs
PROGRAM Low to SELECT Change	t _{PLSX}	1.0		μs
SELECT Low (Verify) to DATA Valid	t _{SLDV}		1.0	μs
DATA Hold from End of Verify	t _{SHDX}	_	10	ns

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the design of its products.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

