
NPN Silicon High-Frequency Transistor

Qualified per MIL-PRF-19500/398

Qualified Levels:
JAN, JANTX, JANTXV
and JANS

DESCRIPTION

This 2N3866(A) silicon VHF-UHF amplifier transistor is military qualified up to the JANS level for high-reliability applications. It is also available in a low profile UB package.

TO-205AD
(formerly TO-39)
Package

Important: For the latest information, visit our website <http://www.microsemi.com>.

FEATURES

- JEDEC registered 2N3866 number
- JAN, JANTX, JANTXV and JANS qualifications also available per MIL-PRF-19500/398
- RoHS compliant

Also available in:

APPLICATIONS / BENEFITS

- Short leaded TO-205AD package
- Lightweight
- Military and other high-reliability applications

UB package
(surface mount)
 [2N3866\(A\)UB](#)

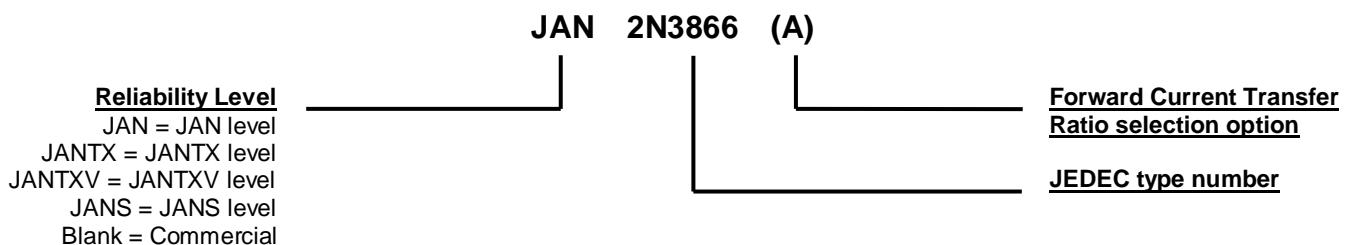
MAXIMUM RATINGS @ $T_A = +25^\circ\text{C}$ unless otherwise noted

Parameters / Test Conditions	Symbol	Value	Unit
Junction & Storage Temperature	T_J, T_{stg}	-65 to +200	°C
Thermal Resistance Junction-to-Case	R_{EJC}	60	°C/W
Thermal Resistance Junction-to-Ambient	R_{EJA}	175	°C/W
Collector – Emitter Voltage	V_{CEO}	30	V
Collector – Base Voltage	V_{CBO}	60	V
Emitter - Base Voltage	V_{EBO}	3.5	V
Total Power Dissipation ⁽¹⁾ @ $T_A = +25^\circ\text{C}$ ⁽¹⁾ @ $T_C = +25^\circ\text{C}$ ⁽²⁾	P_T	1.0 2.9	W
Collector Current	I_C	0.4	A

Notes:

- Derated linearly 5.71 mW/°C for $T_A > +25^\circ\text{C}$
- Derated at 16.6 mW/°C for $T_C > +25^\circ\text{C}$

MSC – Lawrence
6 Lake Street,
Lawrence, MA 01841
Tel: 1-800-446-1158 or
(978) 620-2600
Fax: (978) 689-0803


MSC – Ireland
Gort Road Business Park,
Ennis, Co. Clare, Ireland
Tel: +353 (0) 65 6840044
Fax: +353 (0) 65 6822298

Website:
www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed, kovar base, nickel cap
- TERMINALS: Gold plate, solder dip (Sn63/Pb37) available upon request. NOTE: Solder dip will eliminate RoHS compliance.
- MARKING: Part number, date code, manufacturer's ID and serial number
- POLARITY: NPN
- WEIGHT: Approximately 1.064 grams
- See [Package Dimensions](#) on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS

Symbol	Definition
I_B	Base current: The value of the dc current into the base terminal.
I_C	Collector current: The value of the dc current into the collector terminal.
V_{BE}	Base-emitter voltage: The dc voltage between the base and the emitter.
V_{CB}	Collector-base voltage: The dc voltage between the collector and the base.
V_{CBO}	Collector-base voltage, base open: The voltage between the collector and base terminals when the emitter terminal is open-circuited.
V_{CE}	Collector-emitter voltage: The dc voltage between the collector and the emitter.
V_{CEO}	Collector-emitter voltage, base open: The voltage between the collector and the emitter terminals when the base terminal is open-circuited.
V_{CC}	Collector-supply voltage: The supply voltage applied to a circuit connected to the collector.
V_{EBO}	Emitter-base voltage, collector open: The voltage between the emitter and base terminals with the collector terminal open-circuited.

ELECTRICAL CHARACTERISTICS @ $T_A = +25^\circ\text{C}$, unless otherwise noted

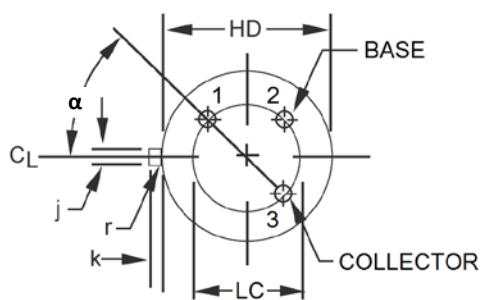
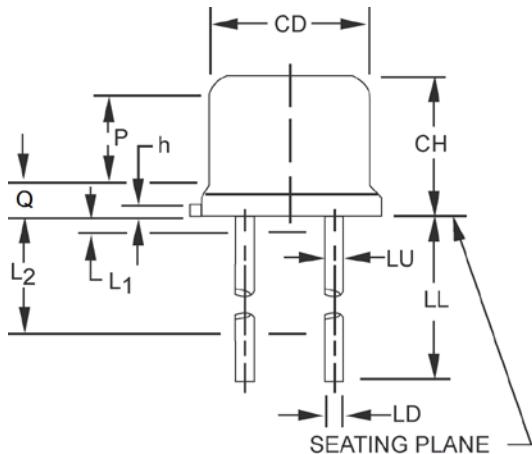
Characteristics	Symbol	Min	Max	Unit
-----------------	--------	-----	-----	------

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $I_C = 5 \text{ mA}$	$V_{(\text{BR})\text{CEO}}$	30		V
Collector-Base Breakdown Voltage $I_C = 100 \mu\text{A}$	$V_{(\text{BR})\text{CBO}}$	60		V
Emitter-Base Breakdown Voltage $I_E = 100 \mu\text{A}$	$V_{(\text{BR})\text{EBO}}$	3.5		V
Collector-Emitter Cutoff Current $V_{\text{CE}} = 28 \text{ V}$	I_{CEO}		20	μA
Collector-Emitter Cutoff Current $V_{\text{CE}} = 55 \text{ V}$	I_{CES1}		100	μA

ON CHARACTERISTICS⁽¹⁾

Forward-Current Transfer Ratio $I_C = 50 \text{ mA}, V_{\text{CE}} = 5.0 \text{ V}$ $I_C = 360 \text{ mA}, V_{\text{CE}} = 5.0 \text{ V}$	2N3866 2N3866A 2N3866 2N3866A	h_{FE}	15 25 5 8	200 200	
Collector-Emitter Saturation Voltage $I_C = 100 \text{ mA}, I_B = 10 \text{ mA}$		$V_{\text{CE}(\text{sat})}$		1.0	V
Collector-Emitter Cutoff Current – High Temp Operation $V_{\text{CE}} = 55 \text{ V}, T_A = +150^\circ\text{C}$		I_{CES2}		2.0	mA
Forward-Current Transfer Ratio – Low Temperature Operation $V_{\text{CE}} = 5.0 \text{ V}, I_C = 50 \text{ mA}, T_A = -55^\circ\text{C}$	2N3866 2N3866A	h_{FE3}	7 12		



DYNAMIC CHARACTERISTICS

Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio $I_C = 50 \text{ mA}, V_{\text{CE}} = 15 \text{ V}, f = 200 \text{ MHz}$	2N3866 2N3866A	$ h_{\text{FE}} $	2.5 4.0	8.0 7.5	
Output Capacitance $V_{\text{CB}} = 28 \text{ V}, I_E = 0, 100 \text{ kHz} \leq f \leq 1.0 \text{ MHz}$		C_{obo}		3.5	pF

POWER OUTPUT CHARACTERISTICS

Power Output $V_{\text{CC}} = 28 \text{ V}; P_{\text{in}} = 0.15 \text{ W}; f = 400 \text{ MHz}^*$ $V_{\text{CC}} = 28 \text{ V}; P_{\text{in}} = 0.075 \text{ W}; f = 400 \text{ MHz}^*$ * See Figure 4 on MIL-PRF-19500/398	$P_{1\text{out}}$ $P_{2\text{out}}$	1.0 0.5	2.0	W
Collector Efficiency $V_{\text{CC}} = 28 \text{ V}; P_{\text{in}} = 0.15 \text{ W}; f = 400 \text{ MHz}$ $V_{\text{CC}} = 28 \text{ V}; P_{\text{in}} = 0.075 \text{ W}; f = 400 \text{ MHz}$	$n1$ $n2$	45 40		%
Clamp Inductive Collector-Emitter Breakdown Voltage $V_{\text{BE}} = -1.5 \text{ V}, I_C = 40 \text{ mA}$	$V_{(\text{BR})\text{CEX}}$	55		V

(1) Pulse Test: pulse width = 300 μs , duty cycle $\leq 2.0\%$

PACKAGE DIMENSIONS

Ltr	Dimensions				Notes	
	Inch		Millimeters			
	Min	Max	Min	Max		
CD	0.305	0.335	7.75	8.51		
CH	0.240	0.260	6.10	6.60		
HD	0.335	0.370	8.51	9.40		
h	0.009	0.041	0.23	1.04		
j	0.028	0.034	0.71	0.86	3	
k	0.029	0.045	0.74	1.14	3, 4	
LD	0.016	0.021	0.41	0.53	8, 9	
LL	0.500	0.750	12.7	19.05		
LC	0.200 TP		5.08 TP		7	
LU	0.016	0.019	0.41	0.48	8, 9	
L1	-	0.050	-	1.27	8, 9	
L2	0.250	-	6.35	-	8, 9	
P	0.100	-	2.54	-	7	
Q	-	0.030	-	0.76	5	
r	-	0.010	-	0.25	10	
α	45° TP		45° TP		7	

NOTES:

1. Dimensions are in inches.
2. Millimeters are given for information only.
3. Beyond r (radius) maximum, TL shall be held for a minimum length of 0.011 inch (0.28 mm).
4. Dimension TL measured from maximum HD.
5. Body contour optional within zone defined by HD, CD, and Q.
6. CD shall not vary more than .010 inch (0.25 mm) in zone P. This zone is controlled for automatic handling.
7. Leads at gauge plane 0.054 +0.001 -0.000 inch (1.37 +0.03 -0.00 mm) below seating plane shall be within 0.007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC.
8. Dimension LU applies between L1 and L2. Dimension LD applies between L2 and LL minimum. Diameter is uncontrolled in L1 and beyond LL minimum.
9. All three leads.
10. The collector shall be internally connected to the case.
11. Dimension r (radius) applies to both inside corners of tab.
12. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
13. Lead 1 = emitter, lead 2 = base, lead 3 = collector.