


An ISO/TS16949 and ISO 9001 Certified Company

TO-220 Plastic Package

MJE15028, MJE15030 MJE15029, MJE15031

MJE15028, 15030 NPN PLASTIC POWER TRANSISTORS MJE15029, 15031 PNP PLASTIC POWER TRANSISTORS High frequency Drivers in Audio Amplifiers

M

	DIM	MIN.	MAX.
	Α	14.42	16.51
	В	9.63	10.67
	С	3.56	4.83
	D		0.90
	Ε	1.15	1.40
	F	3.75	3.88
	G	2.29	2.79
	Н	2.54	3.43
	J		0.56
	K	12.70	14.73
3	L	2.80	4.07
	М	2.03	2.92
	N		31.24
	0	DEG 7	

PIN CONFIGURATION 1. BASE 2. COLLECTOR 3. EMITTER

ABSOLUTE MAXIMUM RATINGS

		15028 15029	15030 15031		
Collector-base voltage (open emitter)	V_{CBO}	max. 120	150 V		
Collector-emitter voltage (open base)	$V_{C\!E\!O}$	max. 120	150 V		
Collector current	I_C	max.	8.0	\boldsymbol{A}	
Total power dissipation up to $T_C = 25^{\circ}C$	P_{tot}	max.	<i>50</i>	W	
Junction temperature	T_{j}	max.	<i>150</i>	${}^{\circ}\!C$	
Collector-emitter saturation voltage	,				
$I_C = 1A$; $I_B = 0.1A$	V_{CEsat}	max.	0.5	V	
D.C. current gain					
$I_C = 0.1 A; V_{CE} = 2 V$	h_{FE}	min.	40		
RATINGS (at T_A =25°C unless otherwise spec	15028	150	030		

7	15029	15031
V_{CBO}	max. 120	150 V
V_{CEO}	max. 120	150 V
	V_{CBO}	15029 V _{CBO} max. 120

MJE15028, MJE15030 MJE15029, MJE15031

Frankton base subtract (among allerton)	I/			<i>r</i> 0		17
Emitter base voltage (open collector)	V_{EBO}	max.		5.0 8.0		V A
Collector current	I_C	max.		6.0 16		A
Collector current (Peak value)	I_C	max.		2.0		
Base current	I_B	max.				A
Total power dissipation up to $T_C = 25^{\circ}C$	P_{tot}	max.		50		W
Derate above 25°C	D	max.		0.4		W∕C
Total power dissipation up to $T_A = 25^{\circ}C$	P_{tot}	max.		2.0		W
Derate above 25°C	TT.	max.	(0.016		W/C
Junction temperature	T_j	max.	150		170	\mathcal{C}
Storage temperature	T_{stg}		-6	5 to -	<i>-150</i>	${\mathscr C}$
THERMAL RESISTANCE						
From junction to case	$R_{th j-c}$	=		2.5		CW
From junction to ambient	R _{th j-a}	=		62.5		CW
CHADACTEDICTICS	·					
CHARACTERISTICS T _{amb} = 25°C unless otherwise specified						
1 amb - 23 C uniess otherwise specified			15028	1	5030	,
			15029		503t	
Collector cutoff current		-	10020	-	0001	
$I_B = 0$; $V_{CE} = 120V$	I_{CEO}	max.	0.1		_	mA
$I_B = 0; \ V_{CE} = 150V$	I_{CEO}	max.	_			mA
$I_E = 0; \ V_{CB} = 120V$	I_{CBO}	max.	10		-	μA
$I_E = 0$; $V_{CB} = 150V$	I_{CBO}	max.	_		10	μA
Emitter cut-off current						
$I_C = 0$; $V_{EB} = 5V$	I_{EBO}	max.		10		μA
Breakdown voltages						
$I_C = 10 \text{ mA}; I_B = 0$	V _{CEO(sus)} *	min.	120		150	V
$I_C = 1 \text{ mA}; I_E = 0$	V_{CBO}	min.	120		150	V
$I_E = 1 \text{ mA}; I_C = 0$	V_{EBO}	min.		5.0		V
Saturation voltage	220					
$I_C = 1 A$; $I_B = 0.1 A$	V_{CEsat}^*	max.		0.5		V
Base emitter on voltage	CESAL					
$I_C = 1A$; $V_{CE} = 2V$	$V_{BE(on)}^*$	max.		1.0		V
D.C. current gain	DL(OII)					
$I_C = 0.1 A; V_{CE} = 2 V$	$h_{\!F\!E}^*$	min.		40		
$I_C = 2 A$; $V_{CE} = 2 V$	h_{FE}^*	min.		40		
$I_C = 3 A$; $V_{CE} = 2 V$	h_{FE}^*	min.		40		
$I_C = 4 A; V_{CE} = 2 V$	h_{FE}^*	min.		20		
Transition frequency $f = 10 \text{ MHz}$	"TE	111111.		20		
	$f_{cc}(1)$	min.		30		MHz
$I_C = 500 \text{ mA}; V_{CE} = 10 \text{ V}$	$f_T(1)$	111111.		30		WITZ

^{*} Pulse test: pulse width $\leq 300~\mu s$; duty cycle $\leq 2\%$.

⁽¹⁾ $f_T = /h_{fe}/ \bullet f_{test}$

Customer Notes

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Discrete Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished on the CDIL Web Site/CD are believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Discrete Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered Trademark of Continental Device India Limited

C-120 Naraina Industrial Area, New Delhi 110 028, India.

Telephone + 91-11-2579 6150, 5141 1112 Fax + 91-11-2579 5290, 5141 1119 email@cdil.com www.cdilsemi.com