

Structure: Silicon Monolithic Integrated Circuit

Product: Audio sound controller

Type: BD3881FV

Feature: 1. Dual built-in recording and playing preamplifiers for cassette tapes

Less external components allows a compact size of the set.

2. The shock sound at power-ON/OFF is absorbed by both power sources.

The reference voltage of signal systems is designed to be a ground level so that low offset voltage and low noise are achieved.

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Limits	Unit	
Dawey Cumby Valtage	VDD	5	V	
Power Supply Voltage	VEE	-5		
Power Dissipation	Pd	850※	mW	
Operating Temperature	Topr	−20~+75	°C	
Storage Temperature	Tastg	-55 ~ +125	°C	

XOver Ta=25°C, derating at the rate of 8.5mW/°C.

When installed on the standard board (Size: $70 \times 70 \times 1.6$ mm).

Operating Voltage Range

Symbol	Limit	Unit
VDD	3.5 ~ 4.75	٧
VEE	-4.75 ~ -3.5	٧

(It must function normally at Ta = 25°C)

Application example

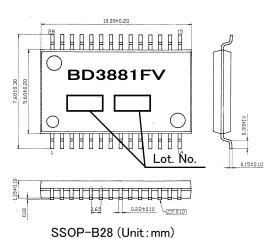
Note that ROHM cannot provide adequate confirmation of patents.

The product described in this specification is designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use this product with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Electrical characteristics

(Ta = 25°C, VDD = 4.5V, VEE = –4.5V, f = 1kHz, Vin = 50mVrms, Rg = 600 Ω ,

RL = $10k\Omega$, Input Selector = Ach, Volume=0dB, Bass=0dB, Treble=0dB, unless otherwise noted.)


	Б	C L Limit				0 191			
	Parameter	Symbol	Min. Typ.		Max.	Unit	Conditions		
	VDD Circuit Current	IQVDD	_	3.0	8.0				
	VEE Circuit Current	IQVEE	-8.0	-3.0	_	mA	Vin = 0Vrms		
	Ach Maximum Input Voltage	Vaim							
	Bch Maximum Input Voltage	Vbim	0.6	0.8	-	Vrms	THD(Vout) =1%, BPF = 400~30kHz		
	Cch Maximum Input Voltage	Vcim					Volume = −24dB		
	Maximum Input Voltage TP	Vimtp	0.6	0.8	-	Vrms	THD(Vout)=1%, BPF = 400∼30kHz GAIN = 10dB Input Selector = TP		
AL	Maximum Output Voltage	Vom	2.2	2.5	-	Vrms	THD = 1%, BPF = 400∼30kHz		
GENERAL	Voltage Gain	Gv	26	28	30	dB	Gv = 20log(Vout/Vin)		
GE	Channel Balance	СВ	-1.5	0	1.5	dB	CB = Gv1-Gv2		
	Total Harmonic Distortion Ratio	THD	-	0.02	0.1	%	BPF = 400-30KHz		
	Output Noise Voltage *	Vno	-	12	20	μ Vrms	Volume = 0dB~-84dB BPF = IHF-A, Rg=0 Ω Input Point = Pin7, Pin8		
	Residual Noise Voltage *	Vmno	-	12	20	μ Vrms	Volume = $0dB \sim -84dB$ BPF = IHF-A, Rg= 0Ω Input Point = Pin7, Pin8		
	Cross-talk between Channels *	СТ	70	85	-	dB	CT = $20log(Vin/Vout)$ BPF = $IHF-A$, $Rg = 0\Omega$		
	Voltage Gain A	Gva				dB			
	Voltage Gain B	Gvb	8	10	12				
	Voltage Gain C	Gvc							
	Cross-talk between Selectors A1ch→B1ch *	CTab1							
5	Cross-talk between Selectors A2ch→B2ch *	CTab2							
INPUT	Cross-talk between Selectors B1ch→C1ch *	CTbc1					$R_g = 0\Omega$, BPF = IHF-A		
	Cross-talk between Selectors B2ch→C2ch *	CTbc2		-110	-70	dB	Vin=500mVrms		
	Cross-talk between Selectors C1ch→A1ch *	CTca1	CTca1						
	Cross-talk between Selectors C2ch→A2ch *	CTca2							
	Output Impedance	Rsout	_	_	50	Ω			
	Voltage Gain RC	Gvrc	38	40	42	dB	f=10kHz		
RECODING EQ	Maximum Output Voltage RC	Vomrc	2.2	2.5	-	Vrms	THD=1%, BPF=400~30kHz		
COL	Input Conversion Noise Voltage RC	Vnorc	_	1.5	3.0	μ Vrms	$R_g = 0\Omega$, BPF = IHF-A		
RE	Slew Rate RC	Vtr	2	4	-	ν/μS	Ng OJE, BIT III /		
	Voltage Gain TP	Gvtp	44	46	48	dB	f=10kHz		
PLAY BACK EQ	Maximum Output Voltage TP	Vomtp	2.2	2.5	-	Vrms	Input Selector = TP THD=1%, BPF=400~30kHz		
PLAY E	Input Conversion Noise Voltage TP	Vnotp	-	1.1	2.0	μ Vrms	Input Selector = TP Rg=2.2kΩ, BPF=IHF-A, Gv=20dB		
	Volume Maximum Input Voltage	Vimv	2.2	2.5	_	Vrms	THD(Vout)=1%, BPF=400 ~ 30kHz Volume ATT=−24dB		
	Volume Input Impedance	Rvin	14	20	26	kΩ			
ш	Volume Control Range	Vr	-87	-84	-81	dB	BPF = IHF-A		
VOLUME	Volume Control Step 1	Sv1	_	2	-	dB	0dB to -36dB		
70/	Volume Control Step 2	Sv2	_	4	_	dB	-36dB to -84dB		
	Volume Setting Error 1	Ev1	-2	0	2	dB	0dB to -72dB		
	Volume Setting Error 2	Ev2	-3	0	3	dB	-76dB to -84dB		
	Volume Maximum Attenuation *	ATTm	_	-118	-90	dB	Volume=-∞, BPF=IHF-A, Vin=3Vrms, ATT=20log(Vout/Vin)-18dB		

	Davamatav	Symbol Limit			0 100			
	Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
- 10	Bass Boost Control Range	Gbbr	+18	+21	+24	dB	f = 70Hz, Vin = 5mVrms BASS = +21dB	
ASS	Bass Control Step	SBC	-	3	-	dB		
8	Bass Setting Error (0dB∼12dB)	E _B s1	-2	0	2	dB	f = 70Hz, Vin = 5mVrms	
	Bass Setting Error (15dB∼21dB)	EBS2	-3	0	3	dB	VIII – SMVrms	
3LE	Treble Boost Control Range	Gtbr	+12	+14	+16	dB	f = 10kHz, Vin = 5mVrms TREBLE = +14dB (fc=300Hz)	
REBL	Treble Control Step	STC	-	2	-	dB	f = 10kHz	
-	Treble Setting Error	ETS	-2	0	2	dB	Vin = 5mVrms	

- * The operational amplifier for PB should be used with the gain of 10dB or above.
- For measurement, VP-9690A (Average value wave detection, Effective value display) IHF-A filter by Matsushita Communication Industrial is used.
- ※ Phase relation between Input/Output signal terminals is Equiphase.
- * Not designed for radiation resistance.

Outline dimension Marking dimension

Block Diagram

Unit: Resistance = Ω

Pin number Pin name

Pin number	Pin name	Pin number	Pin name	Pin number	Pin name	Pin number	Pin name	Pin number	Pin name
1	PB1N	7	VOLIN1	13	CONT	19	INA1	25	REC2O
2	PB1P	8	VOLIN2	14	VEE	20	INA2	26	REC2N
3	PB2P	9	GND	15	BAS2	21	INB1	27	REC1N
4	PB2N	10	TRE1	16	OUT2	22	INB2	28	REC10
5	PB2O	11	TRE2	17	BAS1	23	INC1		
6	PB10	12	VDD	18	OUT1	24	INC2		

Cautions on use

1. About operating voltage range and operating temperature range

Within the Operating Voltage Range and the Operating Temperature Range, while basic circuit functional operations are supposed to be guaranteed, the standard values of the electrical characteristics are guaranteed only when used under the specific conditions defined within these ranges. Thus, the users must verify those conditions before setting constants, elements, voltages, and temperatures. Note that the conditions of power dissipation are also affected with temperatures.

2. About power on reset

A built-in circuit for performing initialization inside the IC at power-ON is provided. In the case of the set design, however, to be on the safe side, it is recommended that data shall be sent to all the addresses as initial data at power-ON and, until this sending operation is completed, the mute shall be applied.

Function	Initial Condition		
Input Selector	MUTE		
REC Output	REC MUTE		
Karaoke	Stereo		
Volume	–∞dB		
Treble Gain	0dB		
Bass Gain	0dB		

3. About 1-wire serial control

As the CONT terminal is designed for inputting a high-frequency digital signal, the wiring and layout patterns should be routed not to cause interference with the analog-signal-related lines.

4. About power ON/OFF

Shock sound absorbing measures at power ON/OFF are implemented on 5pin, 6pin, 16pin, 18pin, 25pin, and 28pin. When booting up power supplies, the VEE side should be booted a little bit earlier than the other side. If the VDD side is booted up first, an excessive current may pass VDD through VEE. When booting off the power supply, the VDD side should be booted off a little bit earlier than the other side. Note that, at this time, voltage change passing through the GND level may produce an abnormally large current.

5. About function switching

On switching between the Volume, Bass, Treble, and REC Mute functions, the action has been taken to absorb such switching shock sound. For the other function switching operations, a combined use of MUTE is recommendable. As measures against the switching shock sound of Karaoke, the bias resistances on 19pin through 24pin should be set to $10k\Omega$ or less.

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/