Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

User's Manual

78K0/KE1+

8-Bit Single-Chip Microcontrollers

μPD78F0132H μPD78F0133H μPD78F0134H μPD78F0136H μPD78F0138HD μPD78F0132H(A) μPD78F0133H(A) μPD78F0133H(A) μPD78F0134H(A) μPD78F0136H(A) μPD78F0138H(A) μ PD78F0132H(A1) μ PD78F0133H(A1) μ PD78F0134H(A1) μ PD78F0136H(A1) μ PD78F0138H(A1)

Document No. U16899EJ3V0UD00 (3rd edition)
Date Published November 2006 NS CP(K)

© NEC Electronics Corporation 2003 Printed in Japan

[MEMO]

NOTES FOR CMOS DEVICES —

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

4 STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

(5) POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

6 INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

EEPROM is a trademark of NEC Electronics Corporation.

Windows and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

- The information in this document is current as of September, 2006. The information is subject to
 change without notice. For actual design-in, refer to the latest publications of NEC Electronics data
 sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not
 all products and/or types are available in every country. Please check with an NEC Electronics sales
 representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior
 written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
 appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of a customer's equipment shall be done under the full
 responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
 customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
 "Specific".
 - The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

INTRODUCTION

Readers

This manual is intended for user engineers who wish to understand the functions of the 78K0/KE1+ and design and develop application systems and programs for these devices.

The target products are as follows.

78K0/KE1+: µPD78F0132H, 78F0133H, 78F0134H, 78F0136H, 78F0138HD, 78F0132H(A), 78F0133H(A), 78F0134H(A), 78F0136H(A), 78F0138H(A), 78F0132H(A1), 78F0133H(A1), 78F0134H(A1), 78F0136H(A1), 78F0138H(A1)

Purpose

This manual is intended to give users an understanding of the functions described in the **Organization** below.

Organization

The 78K0/KE1+ manual is separated into two parts: this manual and the instructions edition (common to the 78K/0 Series).

78K0/KE1+ User's Manual (This Manual) 78K/0 Series
User's Manual
Instructions

- Pin functions
- · Internal block functions
- Interrupts
- Other on-chip peripheral functions
- Electrical specifications

- · CPU functions
- · Instruction set
- Explanation of each instruction

How to Read This Manual

It is assumed that the readers of this manual have general knowledge of electrical engineering, logic circuits, and microcontrollers.

- → Only the quality grade differs between standard products and (A), (A1) grade products. Read the part number as follows.
 - μ PD78F0132H $\to \mu$ PD78F0132H(A), 78F0132H(A1)
 - μ PD78F0133H $\to \mu$ PD78F0133H(A), 78F0133H(A1)
 - μ PD78F0134H $\rightarrow \mu$ PD78F0134H(A), 78F0134H(A1)
 - μ PD78F0136H $\rightarrow \mu$ PD78F0136H(A), 78F0136H(A1)
 - μ PD78F0138H $\rightarrow \mu$ PD78F0138H(A), 78F0138H(A1)
- To gain a general understanding of functions:
 - → Read this manual in the order of the CONTENTS. The mark <R> shows major revised points. The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.
- How to interpret the register format:
 - → For a bit number enclosed in brackets, the bit name is defined as a reserved word in the RA78K0, and is defined as an sfr variable by #pragma sfr directive in the CC78K0.
- To check the details of a register when you know the register name:
 - → Refer to APPENDIX C REGISTER INDEX.

• To know details of the 78K/0 Series instructions:

ightarrow Refer to the separate document 78K/0 Series Instructions User's Manual (U12326E).

Conventions Data significance: Higher digits on the left and lower digits on the right

Caution: Information requiring particular attention

Remark: Supplementary information

Numerical representations: Binary ····××× or ××××B

 $\begin{array}{ll} \text{Decimal} & \cdots \times \times \times \\ \text{Hexadecimal} & \cdots \times \times \times \text{H} \end{array}$

Differences Between 78K0/KE1+ and 78K0/KE1

	Series Name	78K0/KE1+	78K0/KE1
Item			
Mask ROM version		None	Available
Flash	Power supply	Single power supply	Two power supplies
memory	Self-programming function	Available	None
version	Option byte	Internal oscillator can be stopped/cannot be stopped selectable	None
Version with on-chip debug function		Available (µPD78F0138HD)	None
Regulator		None	Available
Power-on clear function		2.1 V ±0.1 V (fixed)	2.85 V ±0.15 V or 3.5 V ±0.2 V selectable
Minimum instruction execution time		0.125 μs (at 16 MHz operation)	0.166 μs (at 12 MHz operation)

Related Documents

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	Document No.
78K0/KE1+ User's Manual	This manual
78K0/KE1 User's Manual	U16228E
78K/0 Series Instructions User's Manual	U12326E
78K0/Kx1+ Flash Memory Self Programming User's Manual	U16701E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document when designing.

Documents Related to Development Tools (Software) (User's Manuals)

Document Name		Document No.
RA78K0 Ver. 3.80 Assembler Package	Operation	U17199E
	Language	U17198E
	Structured Assembly Language	U17197E
CC78K0 Ver. 3.70 C Compiler	Operation	U17201E
	Language	U17200E
SM+ System Simulator	Operation	U17246E
	User Open Interface	U17247E
ID78K0-QB Ver. 2.81 Integrated Debugger	Operation	U16996E
PM plus Ver. 5.20		U16934E

Documents Related to Development Tools (Hardware) (User's Manuals)

Document Name	Document No.
QB-78K0KX1H In-Circuit Emulator	U17081E
QB-78K0MINI On-Chip Debug Emulator	U17029E

Documents Related to Flash Memory Programming

Document Name	Document No.
PG-FP4 Flash Memory Programmer User's Manual	U15260E

Other Documents

Document Name	Document No.
SEMICONDUCTOR SELECTION GUIDE - Products and Packages -	X13769X
Semiconductor Device Mount Manual	Note
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Note See the "Semiconductor Device Mount Manual" website (http://www.necel.com/pkg/en/mount/index.html).

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document when designing.

CONTENTS

CHAPTER 1 OUTLINE	16
1.1 Features	16
1.2 Applications	17
1.3 Ordering Information	18
1.4 Pin Configuration (Top View)	21
1.5 Kx1 Series Lineup	23
1.5.1 78K0/Kx1, 78K0/Kx1+ product lineup	23
1.5.2 V850ES/Kx1, V850ES/Kx1+ product lineup	26
	29
1.7 Outline of Functions	30
CHAPTER 2 PIN FUNCTIONS	
	33
•	
,	
,	
,	
,	
,	
,	
,	40
,	40
. ,	40
	40
,	
	41
	41
	41
	41
	41
	41
	41
	41
2.3 Pin I/O Circuits and Recommended Connec	ction of Unused Pins42
OUADTED A ODLI ADQUITECTUDE	10
CHAPTER 3 CPU ARCHITECTURE	
· .	46
• •	54
,	
_	61
-	61
5.2.5 Special function registers (SFRS)	

3.3 Instruction Address Addressing	71
3.3.1 Relative addressing	71
3.3.2 Immediate addressing	72
3.3.3 Table indirect addressing	73
3.3.4 Register addressing	73
3.4 Operand Address Addressing	74
3.4.1 Implied addressing	74
3.4.2 Register addressing	75
3.4.3 Direct addressing	76
3.4.4 Short direct addressing	77
3.4.5 Special function register (SFR) addressing	78
3.4.6 Register indirect addressing	79
3.4.7 Based addressing	80
3.4.8 Based indexed addressing	81
3.4.9 Stack addressing	82
CHAPTER 4 PORT FUNCTIONS	
4.1 Port Functions	
4.2 Port Configuration	
4.2.1 Port 0	
4.2.2 Port 1	
4.2.3 Port 2	
4.2.4 Port 3	
4.2.5 Port 4	
4.2.6 Port 5	
4.2.7 Port 6	
4.2.8 Port 7	
4.2.9 Port 12	
4.2.10 Port 13	
4.2.11 Port 14	
4.3 Registers Controlling Port Function	
4.4 Port Function Operations	
4.4.1 Writing to I/O port	
4.4.2 Reading from I/O port	
4.4.3 Operations on I/O port	109
CHAPTER 5 CLOCK GENERATOR	110
5.1 Functions of Clock Generator	110
5.2 Configuration of Clock Generator	
5.3 Registers Controlling Clock Generator	112
5.4 System Clock Oscillator	119
5.4.1 High-speed system clock oscillator	119
5.4.2 Subsystem clock oscillator	119
5.4.3 When subsystem clock is not used	122
5.4.4 Internal oscillator	
5.4.5 Prescaler	
5.5 Clock Generator Operation	

5.6	Time Required to Switch Between Internal Oscillation Clock and High-Speed System	
	Clock	130
5.7	Time Required for CPU Clock Switchover	131
5.8	Clock Switching Flowchart and Register Setting	132
	5.8.1 Switching from internal oscillation clock to high-speed system clock	132
	5.8.2 Switching from high-speed system clock to internal oscillation clock	133
	5.8.3 Switching from high-speed system clock to subsystem clock	134
	5.8.4 Switching from subsystem clock to high-speed system clock	135
	5.8.5 Register settings	136
СНАРТ	FER 6 16-BIT TIMER/EVENT COUNTERS 00 AND 01	137
	Functions of 16-Bit Timer/Event Counters 00 and 01	
6.2	Configuration of 16-Bit Timer/Event Counters 00 and 01	138
6.3	Registers Controlling 16-Bit Timer/Event Counters 00 and 01	143
6.4	Operation of 16-Bit Timer/Event Counters 00 and 01	154
	6.4.1 Interval timer operation	154
	6.4.2 PPG output operations	157
	6.4.3 Pulse width measurement operations	160
	6.4.4 External event counter operation	168
	6.4.5 Square-wave output operation	171
	6.4.6 One-shot pulse output operation	173
6.5	Cautions for 16-Bit Timer/Event Counters 00 and 01	178
СНАРТ	TER 7 8-BIT TIMER/EVENT COUNTERS 50 AND 51	181
7.1	Functions of 8-Bit Timer/Event Counters 50 and 51	181
7.2	Configuration of 8-Bit Timer/Event Counters 50 and 51	183
	Registers Controlling 8-Bit Timer/Event Counters 50 and 51	
7.4	Operations of 8-Bit Timer/Event Counters 50 and 51	190
	7.4.1 Operation as interval timer	
	7.4.2 Operation as external event counter	
	7.4.3 Square-wave output operation	193
	7.4.4 PWM output operation	
7.5	Cautions for 8-Bit Timer/Event Counters 50 and 51	
СНАРТ	TER 8 8-BIT TIMERS HO AND H1	199
8.1	Functions of 8-Bit Timers H0 and H1	199
8.2	Configuration of 8-Bit Timers H0 and H1	199
8.3	Registers Controlling 8-Bit Timers H0 and H1	203
8.4	Operation of 8-Bit Timers H0 and H1	209
	8.4.1 Operation as interval timer/square-wave output	209
	8.4.2 Operation as PWM output mode	212
	8.4.3 Carrier generator mode operation (8-bit timer H1 only)	218
СНАРТ	TER 9 WATCH TIMER	225
9.1	Functions of Watch Timer	225
9.2	Configuration of Watch Timer	227
9.3	Register Controlling Watch Timer	227
94	Watch Timer Operations	229

	Functions of Social Interface HADTS	200
СНАРТЕ	ER 14 SERIAL INTERFACE UART6	290
	13.4.3 Dedicated baud rate generator	285
	13.4.2 Asynchronous serial interface (UART) mode	
	13.4.1 Operation stop mode	
13.4	Operation of Serial Interface UART0	
	Registers Controlling Serial Interface UART0	
	Configuration of Serial Interface UART0	
13.1	Functions of Serial Interface UART0	. 269
CHAPTE	ER 13 SERIAL INTERFACE UARTO	. 269
12.6	Cautions for A/D Converter	. 264
	How to Read A/D Converter Characteristics Table	
	12.4.3 A/D converter operation mode	
	12.4.2 Input voltage and conversion results	258
	12.4.1 Basic operations of A/D converter	256
	A/D Converter Operations	
	Registers Used in A/D Converter	
	Configuration of A/D Converter	
	Functions of A/D Converter	
CHAPTE	ER 12 A/D CONVERTER	. 247
	11.4.2 Operation as buzzer output	246
	11.4.1 Clock output operation	246
11.4	Clock Output/Buzzer Output Controller Operations	. 246
11.3	Register Controlling Clock Output/Buzzer Output Controller	. 244
	Configuration of Clock Output/Buzzer Output Controller	
11.1	Functions of Clock Output/Buzzer Output Controller	. 243
CHAPTE	ER 11 CLOCK OUTPUT/BUZZER OUTPUT CONTROLLER	. 243
	selected by option byte)	242
	10.4.4 Watchdog timer operation in HALT mode (when "internal oscillator can be stopped by software	
	selected by option byte)	
	10.4.3 Watchdog timer operation in STOP mode (when "internal oscillator can be stopped by software	
	option byte	
	10.4.2 Watchdog timer operation when "internal oscillator can be stopped by software" is selected by	
	byte	238
	10.4.1 Watchdog timer operation when "internal oscillator cannot be stopped" is selected by option	
	Operation of Watchdog Timer	
	Registers Controlling Watchdog Timer	
	Configuration of Watchdog Timer	
	Functions of Watchdog Timer	
СНАРТ	ER 10 WATCHDOG TIMER	222
9.5	Cautions for Watch Timer	. 231
	9.4.2 Interval timer operation	
	9.4.1 Watch timer operation	

14.2	Configuration of Serial Interface UART6	294
14.3	Registers Controlling Serial Interface UART6	297
14.4	Operation of Serial Interface UART6	306
	14.4.1 Operation stop mode	306
	14.4.2 Asynchronous serial interface (UART) mode	307
	14.4.3 Dedicated baud rate generator	321
CHAPTE	ER 15 SERIAL INTERFACES CSI10 AND CSI11	328
15.1	Functions of Serial Interfaces CSI10 and CSI11	328
15.2	Configuration of Serial Interfaces CSI10 and CSI11	329
	Registers Controlling Serial Interfaces CSI10 and CSI11	
15.4	Operation of Serial Interfaces CSI10 and CSI11	337
	15.4.1 Operation stop mode	
	15.4.2 3-wire serial I/O mode	338
CHAPTE	ER 16 MULTIPLIER/DIVIDER	348
	Functions of Multiplier/Divider	
	Configuration of Multiplier/Divider	
	Register Controlling Multiplier/Divider	
	Operations of Multiplier/Divider	
	16.4.1 Multiplication operation	
	16.4.2 Division operation	
CHAPTE	ER 17 INTERRUPT FUNCTIONS	357
17.1	Interrupt Function Types	357
	Interrupt Sources and Configuration	
	Registers Controlling Interrupt Functions	
	Interrupt Servicing Operations	
	17.4.1 Maskable interrupt acknowledgement	
	17.4.2 Software interrupt request acknowledgement	
	17.4.3 Multiple interrupt servicing	
	17.4.4 Interrupt request hold	
CHAPTE	ER 18 KEY INTERRUPT FUNCTION	376
	Functions of Key Interrupt	
	Configuration of Key Interrupt	
	Register Controlling Key Interrupt	
CHAPTE	ER 19 STANDBY FUNCTION	378
	Standby Function and Configuration	
	19.1.1 Standby function	
	19.1.2 Registers controlling standby function	
19.2	Standby Function Operation	
	19.2.1 HALT mode	
	19.2.2 STOP mode	
СНАРТЕ	ER 20 RESET FUNCTION	391
	Register for Confirming Reset Source	

CHAPTE	R 21 CLOCK MONITOR	. 399
21.1	Functions of Clock Monitor	. 399
21.2	Configuration of Clock Monitor	. 399
21.3	Registers Controlling Clock Monitor	. 400
21.4	Operation of Clock Monitor	. 401
CHAPTE	R 22 POWER-ON-CLEAR CIRCUIT	. 406
22.1	Functions of Power-on-Clear Circuit	. 406
22.2	Configuration of Power-on-Clear Circuit	. 407
22.3	Operation of Power-on-Clear Circuit	. 407
22.4	Cautions for Power-on-Clear Circuit	. 408
CHAPTE	R 23 LOW-VOLTAGE DETECTOR	. 410
23.1	Functions of Low-Voltage Detector	. 410
23.2	Configuration of Low-Voltage Detector	. 410
23.3	Registers Controlling Low-Voltage Detector	. 411
	Operation of Low-Voltage Detector	
	Cautions for Low-Voltage Detector	
	· · · · · · · · · · · · · · · · · · ·	
CHAPTE	R 24 OPTION BYTE	. 420
24.1	Functions of Option Bytes	. 420
	Format of Option Byte	
	• •	
CHAPTE	R 25 ROM CORRECTION	. 423
25.1	Functions of ROM Correction	. 423
25.2	Configuration of ROM Correction	. 423
	Register Controlling ROM Correction	
	ROM Correction Usage Example	
	ROM Correction Application	
	Program Execution Flow	
	Cautions for ROM Correction	
CHAPTE	R 26 FLASH MEMORY	. 433
26.1	Internal Memory Size Switching Register	. 434
	Internal Expansion RAM Size Switching Register	
	Writing with Flash Programmer	
	Programming Environment	
	Communication Mode	
	Connection of Pins on Board	
	26.6.1 FLMD0 pin	
	26.6.2 FLMD1 pin	
	26.6.3 Serial interface pins	
	26.6.4 RESET pin	
	26.6.5 Port pins	
	26.6.6 Other signal pins	
	26.6.7 Power supply	
26.7	Programming Method	
_0.,	26.7.1 Controlling flash memory	

26.7.2 Flash memory programming mode	448
26.7.3 Selecting communication mode	449
26.7.4 Communication commands	
26.8 Flash Memory Programming by Self-Writing	451
26.8.1 Registers used for self-programming function	
26.9 Boot Swap Function	
26.9.1 Outline of boot swap function	
26.9.2 Memory map and boot area	457
CHAPTER 27 ON-CHIP DEBUG FUNCTION (µPD78F0138HD ONLY)	
27.1 On-Chip Debug Security ID	464
CHAPTER 28 INSTRUCTION SET	465
28.1 Conventions Used in Operation List	465
28.1.1 Operand identifiers and specification methods	465
28.1.2 Description of operation column	466
28.1.3 Description of flag operation column	466
28.2 Operation List	467
28.3 Instructions Listed by Addressing Type	475
CHAPTER 29 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS, (A) GRADE	
PRODUCTS)	478
CHAPTER 30 ELECTRICAL SPECIFICATIONS ((A1) GRADE PRODUCTS)	495
CHAPTER 31 PACKAGE DRAWINGS	511
CHAPTER 32 RECOMMENDED SOLDERING CONDITIONS	515
CHAPTER 33 CAUTIONS FOR WAIT	518
33.1 Cautions for Wait	518
33.2 Peripheral Hardware That Generates Wait	519
33.3 Example of Wait Occurrence	520
APPENDIX A DEVELOPMENT TOOLS	521
A.1 Software Package	524
A.2 Language Processing Software	524
A.3 Control Software	
A.4 Flash Memory Writing Tools	
A.5 Debugging Tools (Hardware)	
A.5.1 When using in-circuit emulator QB-78K0KX1H	
A.5.2 When using on-chip debug emulator QB-78K0MINI	
A.6 Debugging Tools (Software)	527
APPENDIX B NOTES ON TARGET SYSTEM DESIGN	528
APPENDIX C REGISTER INDEX	530
C 1 Pagistar Index (In Alphabetical Order with Pagnet to Pagistar Names)	E20

C.2 Register Index (In Alphabetical Order with Respect to Register Symbol)	534
APPENDIX D LIST OF CAUTIONS	538
APPENDIX E REVISION HISTORY	563
E.1 Major Revisions in This Edition	563
E.2 Revision History up to Previous Edition	564

CHAPTER 1 OUTLINE

1.1 Features

- O Minimum instruction execution time can be changed from high speed (0.125 μ s: @ 16 MHz operation with high-speed system clock) to ultra low-speed (122 μ s: @ 32.768 kHz operation with subsystem clock)
- O General-purpose register: 8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)
- O ROM, RAM capacities

Item	Program Mei	mory	Data Memory					
Part Number	(ROM)		Internal High-Speed RAM ^{Note}	Internal Expansion RAM ^{Note}				
μPD78F0132H	Flash memory ^{Note}	16 KB	512 bytes	-				
μPD78F0133H		24 KB	1024 bytes					
μPD78F0134H		32 KB						
μPD78F0136H		48 KB	1024 bytes	1024 bytes				
μPD78F0138H, 78F0138HD		60 KB						

Note The internal flash memory, internal high-speed RAM capacities, and internal expansion RAM capacities can be changed using the internal memory size switching register (IMS) and the internal expansion RAM size switching register (IXS).

- O On-chip single-power-supply flash memory
- O Self-programming (with boot swap function)
- O On-chip debug function (μ PD78F0138HD only)
- O On-chip power-on-clear (POC) circuit and low-voltage detector (LVI)
- O Short startup is possible via the CPU default start using the on-chip internal oscillator
- O On-chip clock monitor function using on-chip internal oscillator
- O On-chip watchdog timer (operable with internal oscillation clock)
- O On-chip multiplier/divider
- O On-chip key interrupt function
- O On-chip clock output/buzzer output controller
- O I/O ports: 51 (N-ch open drain: 4)
- O Timer

 μ PD78F0132H: 7 channels

μPD78F0133H, 78F0134H, 78F0136H, 78F0138H, 78F0138HD: 8 channels

O Serial interface

 μ PD78F0132H: 2 channels

(UART (LIN (Local Interconnect Network)-bus supported): 1 channel, CSI/UARTNote: 1 channel)

μPD78F0133H, 78F0134H, 78F0136H, 78F0138H, 78F0138HD: 3 channels

(UART (LIN (Local Interconnect Network)-bus supported: 1 channel, CSI/UART^{Note}: 1 channel, CSI: 1 channel)

Note Select either of the functions of these alternate-function pins.

- O 10-bit resolution A/D converter: 8 channels
- <R> O Supply voltage:
 - Standard products and (A) grade products:

 $V_{DD} = 2.5$ to 5.5 V (with internal oscillation clock or subsystem clock: $V_{DD} = 2.0$ to 5.5 $V^{Note 1}$)

• (A1) grade products:

 $V_{DD} = 2.7$ to 5.5 V (with internal oscillation clock: $V_{DD} = 2.0$ to 5.5 $V^{Note 2}$)

- <R> O Operating ambient temperature:
 - Standard products and (A) grade products: T_A = -40 to +85°C
 - (A1) grade products: $T_A = -40 \text{ to } +110^{\circ}\text{C}$
 - **Notes 1.** Use the product in a voltage range of 2.2 to 5.5 V because the detection voltage (V_{POC}) of the power-on-clear (POC) circuit is $2.1 \text{ V} \pm 0.1 \text{ V}$.
 - 2. Use the product in a voltage range of 2.25 to 5.5 V because the detection voltage (VPoc) of the power-on-clear (POC) circuit is 2.0 to 2.25 V.

1.2 Applications

<R>

- O Automotive equipment
 - System control for body electricals (power windows, keyless entry reception, etc.)
 - · Sub-microcontrollers for control
- O Home audio, car audio
- O AV equipment
- O PC peripheral equipment (keyboards, etc.)
- O Household electrical appliances
 - · Outdoor air conditioner units
 - · Microwave ovens, electric rice cookers
- O Industrial equipment
 - Pumps
 - · Vending machines
 - FA (Factory Automation)

<R> 1.3 Ordering Information

• Flash memory version

Part Number	Package	Quality Grade
μPD78F0132HGB-8EU	64-pin plastic LQFP (10 \times 10)	Standard
μ PD78F0132HGB-8EU-A	64-pin plastic LQFP (10 \times 10)	Standard
μ PD78F0132HGC-8BS	64-pin plastic LQFP (14 \times 14)	Standard
μ PD78F0132HGC-8ES-A	64-pin plastic LQFP (14 \times 14)	Standard
μ PD78F0132HGK-9ET	64-pin plastic TQFP (12 \times 12)	Standard
μPD78F0132HGK-9ET-A	64-pin plastic TQFP (12 \times 12)	Standard
μ PD78F0133HGB-8EU	64-pin plastic LQFP (10 \times 10)	Standard
μPD78F0133HGB-8EU-A	64-pin plastic LQFP (10 \times 10)	Standard
μ PD78F0133HGC-8BS	64-pin plastic LQFP (14 \times 14)	Standard
μPD78F0133HGC-8ES-A	64-pin plastic LQFP (14 \times 14)	Standard
μPD78F0133HGK-9ET	64-pin plastic TQFP (12 \times 12)	Standard
μPD78F0133HGK-9ET-A	64-pin plastic TQFP (12 \times 12)	Standard
μPD78F0134HGB-8EU	64-pin plastic LQFP (10 \times 10)	Standard
μPD78F0134HGB-8EU-A	64-pin plastic LQFP (10 \times 10)	Standard
μPD78F0134HGC-8BS	64-pin plastic LQFP (14 \times 14)	Standard
μPD78F0134HGC-8ES-A	64-pin plastic LQFP (14 \times 14)	Standard
μPD78F0134HGK-9ET	64-pin plastic TQFP (12 \times 12)	Standard
μ PD78F0134HGK-9ET-A	64-pin plastic TQFP (12 \times 12)	Standard
μPD78F0136HGB-8EU	64-pin plastic LQFP (10 \times 10)	Standard
μPD78F0136HGB-8EU-A	64-pin plastic LQFP (10 \times 10)	Standard
μPD78F0136HGC-8BS	64-pin plastic LQFP (14 \times 14)	Standard
μPD78F0136HGC-8ES-A	64-pin plastic LQFP (14 $ imes$ 14)	Standard
μ PD78F0136HGK-9ET	64-pin plastic TQFP (12 \times 12)	Standard
μ PD78F0136HGK-9ET-A	64-pin plastic TQFP (12 \times 12)	Standard
μPD78F0138HGB-8EU	64-pin plastic LQFP (10 \times 10)	Standard
μPD78F0138HGB-8EU-A	64-pin plastic LQFP (10 \times 10)	Standard
μPD78F0138HGC-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Standard
μPD78F0138HGC-8ES-A	64-pin plastic LQFP (14 $ imes$ 14)	Standard
μPD78F0138HGK-9ET	64-pin plastic TQFP (12 \times 12)	Standard
μPD78F0138HGK-9ET-A	64-pin plastic TQFP (12 \times 12)	Standard
μPD78F0138HDGB-8EU Note	64-pin plastic LQFP (10 \times 10)	Standard
μPD78F0138HDGC-8BS Note	64-pin plastic LQFP (14 \times 14)	Standard
μPD78F0138HDGK-8A8-A ^{Note}	64-pin plastic LQFP (12 \times 12)	Standard

Note Only the ES (emulation sample) version is available. Use this product for program evaluation.

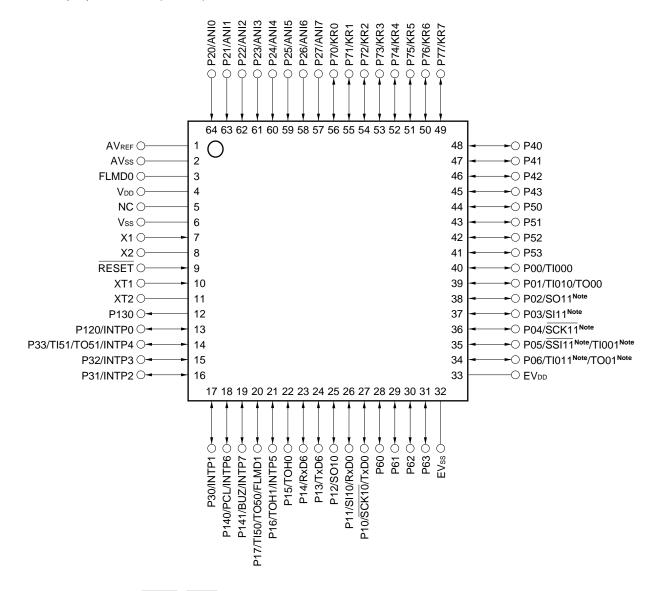
Remark Products that have the part numbers suffixed by "-A" are lead-free products.

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Electronics Corporation to know the specification of the quality grade on the device and its recommended applications.

Part Number	Package	Quality Grade
μPD78F0132HGB(A)-8EU	64-pin plastic LQFP (10 \times 10)	Special
μPD78F0132HGB(A)-8EU-A	64-pin plastic LQFP (10 \times 10)	Special
μPD78F0132HGC(A)-8BS	64-pin plastic LQFP (14 \times 14)	Special
μPD78F0132HGC(A)-8ES-A	64-pin plastic LQFP (14 \times 14)	Special
μPD78F0132HGK(A)-9ET	64-pin plastic TQFP (12 × 12)	Special
μPD78F0132HGK(A)-9ET-A	64-pin plastic TQFP (12 \times 12)	Special
μPD78F0133HGB(A)-8EU	64-pin plastic LQFP (10 \times 10)	Special
μPD78F0133HGB(A)-8EU-A	64-pin plastic LQFP (10 \times 10)	Special
μPD78F0133HGC(A)-8BS	64-pin plastic LQFP (14 \times 14)	Special
μPD78F0133HGC(A)-8ES-A	64-pin plastic LQFP (14 \times 14)	Special
μPD78F0133HGK(A)-9ET	64-pin plastic TQFP (12 \times 12)	Special
μPD78F0133HGK(A)-9ET-A	64-pin plastic TQFP (12 \times 12)	Special
μPD78F0134HGB(A)-8EU	64-pin plastic LQFP (10 \times 10)	Special
μPD78F0134HGB(A)-8EU-A	64-pin plastic LQFP (10 \times 10)	Special
μPD78F0134HGC(A)-8BS	64-pin plastic LQFP (14 \times 14)	Special
μPD78F0134HGC(A)-8ES-A	64-pin plastic LQFP (14 \times 14)	Special
μPD78F0134HGK(A)-9ET	64-pin plastic TQFP (12 \times 12)	Special
μPD78F0134HGK(A)-9ET-A	64-pin plastic TQFP (12 \times 12)	Special
μPD78F0136HGB(A)-8EU	64-pin plastic LQFP (10 \times 10)	Special
μPD78F0136HGB(A)-8EU-A	64-pin plastic LQFP (10 \times 10)	Special
μPD78F0136HGC(A)-8BS	64-pin plastic LQFP (14 \times 14)	Special
μPD78F0136HGC(A)-8ES-A	64-pin plastic LQFP (14 \times 14)	Special
μPD78F0136HGK(A)-9ET	64-pin plastic TQFP (12 \times 12)	Special
μPD78F0136HGK(A)-9ET-A	64-pin plastic TQFP (12 \times 12)	Special
μPD78F0138HGB(A)-8EU	64-pin plastic LQFP (10 \times 10)	Special
μPD78F0138HGB(A)-8EU-A	64-pin plastic LQFP (10 \times 10)	Special
μ PD78F0138HGC(A)-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Special
μ PD78F0138HGC(A)-8ES-A	64-pin plastic LQFP (14 \times 14)	Special
μ PD78F0138HGK(A)-9ET	64-pin plastic TQFP (12 \times 12)	Special
μ PD78F0138HGK(A)-9ET-A	64-pin plastic TQFP (12 \times 12)	Special

Remark Products that have the part numbers suffixed by "-A" are lead-free products.

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Electronics Corporation to know the specification of the quality grade on the device and its recommended applications.


Part Number	Package	Quality Grade
μPD78F0132HGB(A1)-8EU	64-pin plastic LQFP (10 \times 10)	Special
μPD78F0132HGB(A1)-8EU-A	64-pin plastic LQFP (10 \times 10)	Special
μPD78F0132HGC(A1)-8BS	64-pin plastic LQFP (14 \times 14)	Special
μPD78F0132HGC(A1)-8ES-A	64-pin plastic LQFP (14 \times 14)	Special
μPD78F0132HGK(A1)-9ET	64-pin plastic TQFP (12 \times 12)	Special
μPD78F0132HGK(A1)-9ET-A	64-pin plastic TQFP (12 \times 12)	Special
μPD78F0133HGB(A1)-8EU	64-pin plastic LQFP (10 \times 10)	Special
μPD78F0133HGB(A1)-8EU-A	64-pin plastic LQFP (10 \times 10)	Special
μPD78F0133HGC(A1)-8BS	64-pin plastic LQFP (14 \times 14)	Special
μPD78F0133HGC(A1)-8ES-A	64-pin plastic LQFP (14 \times 14)	Special
μPD78F0133HGK(A1)-9ET	64-pin plastic TQFP (12 \times 12)	Special
μPD78F0133HGK(A1)-9ET-A	64-pin plastic TQFP (12 \times 12)	Special
μPD78F0134HGB(A1)-8EU	64-pin plastic LQFP (10 \times 10)	Special
μPD78F0134HGB(A1)-8EU-A	64-pin plastic LQFP (10 \times 10)	Special
μPD78F0134HGC(A1)-8BS	64-pin plastic LQFP (14 \times 14)	Special
μPD78F0134HGC(A1)-8ES-A	64-pin plastic LQFP (14 \times 14)	Special
μPD78F0134HGK(A1)-9ET	64-pin plastic TQFP (12 \times 12)	Special
μPD78F0134HGK(A1)-9ET-A	64-pin plastic TQFP (12 \times 12)	Special
μPD78F0136HGB(A1)-8EU	64-pin plastic LQFP (10 \times 10)	Special
μPD78F0136HGB(A1)-8EU-A	64-pin plastic LQFP (10 \times 10)	Special
μPD78F0136HGC(A1)-8BS	64-pin plastic LQFP (14 \times 14)	Special
μPD78F0136HGC(A1)-8ES-A	64-pin plastic LQFP (14 \times 14)	Special
μPD78F0136HGK(A1)-9ET	64-pin plastic TQFP (12 \times 12)	Special
μPD78F0136HGK(A1)-9ET-A	64-pin plastic TQFP (12 \times 12)	Special
μPD78F0138HGB(A1)-8EU	64-pin plastic LQFP (10 \times 10)	Special
μPD78F0138HGB(A1)-8EU-A	64-pin plastic LQFP (10 \times 10)	Special
μPD78F0138HGC(A1)-8BS	64-pin plastic LQFP (14 \times 14)	Special
μPD78F0138HGC(A1)-8ES-A	64-pin plastic LQFP (14 \times 14)	Special
μPD78F0138HGK(A1)-9ET	64-pin plastic TQFP (12 \times 12)	Special
μPD78F0138HGK(A1)-9ET-A	64-pin plastic TQFP (12 \times 12)	Special

Remark Products that have the part numbers suffixed by "-A" are lead-free products.

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Electronics Corporation to know the specification of the quality grade on the device and its recommended applications.

1.4 Pin Configuration (Top View)

- 64-pin plastic LQFP (10 × 10)
- 64-pin plastic LQFP (14 × 14)
- 64-pin plastic TQFP (12 × 12)
- 64-pin plastic LQFP (12 × 12)

Note SO11, SI11, $\overline{\text{SCK11}}$, $\overline{\text{SSI11}}$, TI001, TI011, and TO01 are available only in the μ PD78F0133H, 78F0134H, 78F0136H, 78F0138HD.

Caution Connect the AVss pin to Vss.

Pin Identification

ANI0 to ANI7: Analog input P140, P141: Port 14

AVREF: Analog reference voltage PCL: Programmable clock output

AVss: Analog ground RESET: Reset

BUZ: Buzzer output RxD0, RxD6: Receive data

EV_{DD}: Power supply for port SCK10, SCK11 Note: Serial clock input/output

EVss: Ground for port SI10, SI11^{Note}: Serial data input FLMD0, FLMD1: Flash programming mode SO10, SO11^{Note}: Serial data output

INTP0 to INTP7: External interrupt input SSI11 Note: Serial interface chip select input

KR0 to KR7: Key return TI000, TI010,

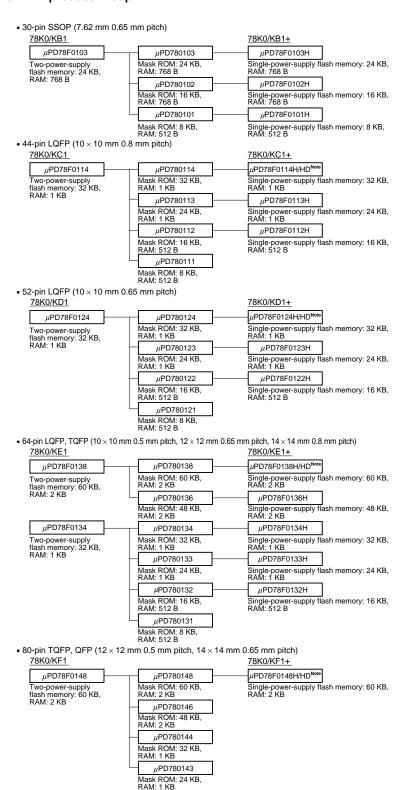
NC: Non-connection TI001^{Note}, TI011^{Note},

P00 to P06: Port 0 TI50, TI51: Timer input

P10 to P17: Port 1 T000, T001^{Note}, P20 to P27: Port 2 T050, T051,

P30 to P33: Port 3 TOH0, TOH1: Timer output TxD0, TxD6: P40 to P43: Port 4 Transmit data P50 to P53: Port 5 V_{DD}: Power supply P60 to P63: Port 6 Ground Vss:

P70 to P77: Port 7 X1, X2: Crystal oscillator (high-speed system clock)


P120: Port 12 XT1, XT2: Crystal oscillator (subsystem clock)

P130: Port 13

Note SO11, SI11, $\overline{\text{SCK11}}$, $\overline{\text{SSI11}}$, TI001, TI011, and TO01 are available only in the μ PD78F0133H, 78F0134H, 78F0136H, 78F0138HD.

1.5 Kx1 Series Lineup

1.5.1 78K0/Kx1, 78K0/Kx1+ product lineup

Note Product with on-chip debug function

The list of functions in the 78K0/Kx1 is shown below.

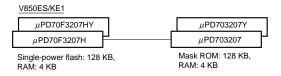
Item	Part Number	781	K0/KB	1	78	K0/k	(C1	78	3K0	/KD1		78	8K0/K	E1		78	3K0/ł	<f1< th=""></f1<>
Number o	of nine	2	0 pins		1	14 nii	20		-2 r	sino			64 nin	^			30 pi	20
Internal	Mask ROM	8	16/		8/	4 pii 24/		8/	_	oins 4/ –	8/	24/	64 pin	48/		24/	48/	
memory	IVIASK ROIVI	0	24	_	16	32		16		2 -	16	32		60	_	32	60	
(KB)	Flash memory			24	-		32	<u> </u>	_	32			32	_	60		-	60
	RAM	0.5	0.7	5	0.5		1	0.5		1	0.5		1	-	2	1		2
Power su	pply voltage		_						= 2	2.5 to 5.5	V ^{Not}	es 1, 2					I	
	instruction execution time	4.0 to 0.2 μs 3.5 to 0.238 = 3.0	3 μs (w 3 5.5 V 5 (whee 3 5.5 V 3 μs (w to 5.5 s (whee 5 V)	') en 10 ') vhen V)	MHz 8.38 I	, Voo MHz	, V _{DD}	Cor 0.16 0.2 \(\mu\) 0.23	nne 6 µ us (' 8 µ us ('	ect REGO s (when when 10 s (when when 5	C pin 12 M) MH: 8.38 MHz,	to Vd IHz, V z, Vdd MHz,	' _{DD} = 4 = 3.5 V _{DD} =	to 5.5	V) 5.5			
CIOCK	X1 input Subclock		_									88 kH:	7					
	Internal oscillator		_						24									
Port	CMOS I/O		17			19			24	0 kHz (1	TP.)		38			1	ΕΛ	
Port	CMOS i/O		17 4			19				0		8	30				54	
	<u> </u>		4							1		0						
	CMOS output									- 1		1						
T:	N-ch open-drain I/O		_				مام ا					4		- la		4 -1-	_) _b
Timer	16 bits (TM0)		4 -1-			1	l ch					-1-		ch		1 ch	2	2 ch
	8 bits (TM5)		1 ch								2	ch						
	8 bits (TMH)									2 ch								
	For watch		_								1	ch						
0	WDT	1 ch																
Serial interface	3-wire CSI ^{Note 3}	1 ch								2	ch		1 ch	<u> </u>	2 ch			
interiace	Automatic transmit/ receive 3-wire CSI	_ 1 ch												1				
	UART ^{Note 3}	_ 1 ch																
	UART supporting LIN-bus									1 ch								
10-bit Α/Γ) converter		4 ch					8 ch										
Interrupt	External		6			7			8	3			9				9	
	Internal	11	12	2		-	1	5			16			19		17		20
Key return	n input		_			4 ch					l	-1	8 ch				l	
Reset	RESET pin									Provide	ed							
	POC				2.85	5 V ±	0.15 V	//3.5 \	/ ±0).20 V (s	elect	able t	ov mas	sk opt	ion)			
	LVI	2.8	35 V/3	.1 V/	3.3 V	±0.1	5 V/3.5	5 V/3.	7 V	/3.9 V/4.	1 V/4	1.3 V :	±0.2 V	(sele	ctable	e by s	oftwa	are)
	Clock monitor									Provide	ed							
	WDT									Provide								
Clock out	put/buzzer output			-	_			Clo	ck on	output				Prov	rided			
Multiplier/	/divider					_		•				16 b	its × 1	6 bits,	32 b	its ÷ 1	6 bit	S
ROM corr	rection						-							Prov	rided		_	
Standby f	unction							H	IAL	T/STOP	mod	le		•		•		
Operating	ambient temperature	Spec	ial (A1 ial (A2) gra	ide pro	oduc	cts: -4 -4 cts: -4	0 to + 0 to + 0 to +	-11(-10(-12(–40 to − 0°C (ma 5°C (flas 5°C (ma	sk Ro sh me sk Ro	OM ve mory OM ve	version)	on)				

Notes 1. If the POC circuit detection voltage (V_{POC}) is used with 2.85 V ± 0.15 V, then use the products in the voltage range of 3.0 to 5.5 V.

- **2.** If the POC circuit detection voltage (V_{POC}) is used with 3.5 V ± 0.2 V, then use the products in the voltage range of 3.7 to 5.5 V.
- 3. Select either of the functions of these alternate-function pins.

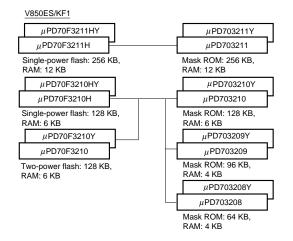
The list of functions in the 78K0/Kx1+ is shown below.

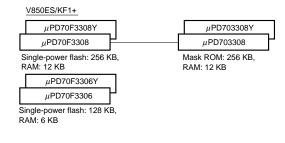
emory B) RAM ewer supply voltanimum instruction RC Crystal RC Subclo Internation CMOS CMOS CMOS N-ch o mer 16 bits 8 bits (8 bits (ash memory AM / voltage truction execution time ystal/ceramic C ubclock ternal oscillator MOS I/O MOS input MOS output ch open-drain I/O s bits (TM0)	0.5 0. $V_{DD} = 0.125 \mu$ 0.238 μ	75 2.5 to s (wh	16 0.5 5.5 V nen 16	MHz, VDD	16 0.5 nal osc = 4.0 to	o 5.5 V), 0) to 5.5 V), 2 to 16 M	.2 μs (0.4 μs 1Hz 32.768	when 10 M s (when 5 M –	48/60 2 / _{DD} = 2.0 to 1Hz, V _{DD} = 3	80 pins 60 2 5.5 V ^{Note 1}) 3.5 to 5.5 V), 2.5 to 5.5 V)				
emory B) RAM ewer supply voltanimum instruction RC Crystal RC Subclo Internation CMOS CMOS CMOS N-ch o mer 16 bits 8 bits (8 bits (AM y voltage truction execution time ystal/ceramic C ubclock ternal oscillator MOS I/O MOS input MOS output ch open-drain I/O s bits (TM0)	0.5 0. V _{DD} = 0.125 μ 0.238 μ - 17	75 2.5 to s (wh	0.5 5.5 V nen 16 nen 8.3	1 ' (with inter MHz, V _{DD} 38 MHz, V _D	0.5 nal osc = 4.0 to	1 cillation clo o 5.5 V), 0 to 5.5 V), 2 to 16 M	0.5 ock or s .2 \mus (0.4 \mus 1Hz	1 subclock: \ when 10 M s (when 5 M	2 / _{DD} = 2.0 to 1Hz, V _{DD} = 3	2 5.5 V ^{Note 1}) 3.5 to 5.5 V),				
B) RAM wer supply volt nimum instructi Crystal RC Subclo Interna orts CMOS CMOS N-ch o mer 16 bits 8 bits (8 bits (y voltage truction execution time ystal/ceramic c ubclock ternal oscillator MOS I/O MOS input MOS output ch open-drain I/O s bits (TM0)	V _{DD} = 0.125 μ 0.238 μ - 17	2.5 to s (wh	5.5 V nen 16 nen 8.3	/ (with inter MHz, Vpb 38 MHz, Vp	nal osc = 4.0 to = 3.0	cillation clo o 5.5 V), 0 0 to 5.5 V), 2 to 16 M	ock or s .2 μs (0.4 μs 1Hz	subclock: \ when 10 N s (when 5 N	/ _{DD} = 2.0 to 1Hz, V _{DD} = 3	5.5 V ^{Note 1}) 3.5 to 5.5 V),				
nimum instruction	truction execution time ystal/ceramic Dibclock ternal oscillator MOS I/O MOS input MOS output the open-drain I/O to bits (TM0)	0.125 μ 0.238 μ - 17 4	s (wh	nen 16 nen 8.3	MHz, Vdd 38 MHz, Vd	= 4.0 to	o 5.5 V), 0) to 5.5 V), 2 to 16 M	.2 μs (0.4 μs 1Hz 32.768	when 10 M s (when 5 M –	1Hz, V _{DD} = 3	3.5 to 5.5 V),				
ock Crystal RC Subclo Interna orts CMOS CMOS CMOS N-ch o mer 16 bits 8 bits (8 bits (ystal/ceramic Dibclock ternal oscillator MOS I/O MOS input MOS output tch open-drain I/O bits (TM0)	0.238 <u>/</u>	s (wh	nen 8.3	38 MHz, Vo	_D = 3.0	2 to 16 N	0.4 µs	(when 5 N		,				
RC Subclo Interna orts CMOS CMOS CMOS N-ch o mer 16 bits 8 bits (8 bits (decident of the control of the contr	- 17 4					2 to 16 M	1Hz 32.768	_		,				
Subclo Interna orts CMOS CMOS CMOS N-ch o mer 16 bits 8 bits (8 bits (ternal oscillator MOS I/O MOS input MOS output ch open-drain I/O s bits (TM0)	- 17 4	3 to 4	MHz	19	:			- B kHz						
Interna orts CMOS CMOS CMOS N-ch o mer 16 bits 8 bits (8 bits (ternal oscillator MOS I/O MOS input MOS output ch open-drain I/O bits (TM0)	17 4			19	2			8 kHz						
cmos CMOS CMOS N-ch o mer 16 bits 8 bits (8 bits (MOS I/O MOS input MOS output ch open-drain I/O bits (TM0)	4			19	2	240 kHz (1	YP.)							
CMOS CMOS N-ch o mer 16 bits 8 bits (8 bits (MOS input MOS output ch open-drain I/O bits (TM0)	4			19				240 kHz (TYP.)						
CMOS N-ch o mer 16 bits 8 bits (8 bits (MOS output ch open-drain I/O bits (TM0)						26			54					
N-ch o mer 16 bits 8 bits (ch open-drain I/O bits (TM0)	_						8							
16 bits 8 bits (8 bits (bits (TM0)	-		1											
8 bits (8 bits (4							
8 bits (hits (TM5)				1 ch					2 ch					
<u>`</u>	oito (Tivio)	1 ch 2 ch													
For wa	bits (TMH)						2 ch								
	or watch	-						1 c	h						
WDT							1 ch								
	wire CSI ^{Note 2}				1 ch					2 ch					
erface Automa	utomatic transmit/					_					1 ch				
	ceive 3-wire CSI														
	ART ^{Note 2}	-						ch							
	ART supporting LIN-bus	1 ch													
								8 ch							
		-					8	9			9				
		11 1	2												
·		_			4 ch				8 ch						
		Provided													
		2.1 V ±0.1 V (detection voltage is fixed) 2.35 V/2.6 V/2.85 V/3.1 V/3.3 V ±0.15 V/3.5 V/3.7 V/3.9 V/4.1 V/4.3 V ±0.2 V													
LVI	/	2.3	35 V/2	2.6 V/2	2.85 V/3.1					4.1 V/4.3 V	±0.2 V				
Clock	ock monitor					(5616			ie)						
l .						Cloc		,u		Provided					
ock output/buzz	buzzei output			_			•			Tiovided					
ternal bus inter	interface					_	,	I			Provided				
					_				16 bits × 16	6 bits. 32 bi	ts ÷ 16 bits				
•					_			Į		Provided	_				
							Provide	ed .							
				μPΓ	78F0114F	ID, 78F			38HD. 78F	-0148HD					
nction			,		,	,		,							
andby function	etion					H	ALT/STOP	mode	!						
	nbient temperature			Star	ndard and	•		•							
Clock r WDT ock output/buzz ternal bus inter ultiplier/divider OM correction elf-programming oduct with on-conction andby function	ternal ternal put SET pin OC /I ock monitor DT /buzzer output interface der ion ming function on-chip debug		2 335 V/2	2.6 V/2	2.1 V 2.85 V/3.1 V - - - - - - - - -	±0.1 V V/3.3 V (sele	Provide Provide Provide Provide Provide Rectable by Provide Provide Rectable by Provide Provide Rectable by Provide Provide Rectable by Provide Provide F0124HD, ALT/STOF (A) grade	ed voltage 3.5 V/3 softwared ed 78F01	9 1 8 ch ge is fixed) .7 V/3.9 V/re) 16 bits × 10	Prov Prov 3 bits, Prov	vided , 32 bir vided BHD				

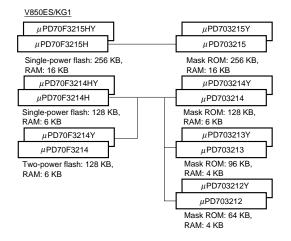

Notes 1. Because the POC circuit detection voltage (V_{POC}) is 2.1 V \pm 0.1 V, use the products in the voltage range of 2.2 to 5.5 V.

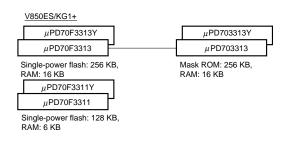
2. Select either of the functions of these alternate-function pins.

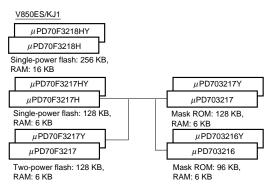
V850ES/KE1+

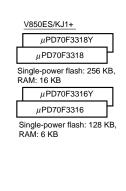

1.5.2 V850ES/Kx1, V850ES/Kx1+ product lineup


- 64-pin plastic LQFP (10 \times 10 mm, 0.5 mm pitch) 64-pin plastic TQFP (12 \times 12 mm, 0.65 mm pitch)


#PD70F3302Y μPD703302Y μPD703302 uPD70F3302 Mask ROM: 128 KB, Single-power flash: 128 KB, RAM: 4 KB RAM: 4 KB


- 80-pin plastic TQFP (12 \times 12 mm, 0.5 mm pitch) 80-pin plastic QFP (14 \times 14 mm, 0.65 mm pitch)




- 100-pin plastic LQFP (14 × 14 mm, 0.5 mm pitch)
- 100-pin plastic QFP (14 × 20 mm, 0.65 mm pitch)

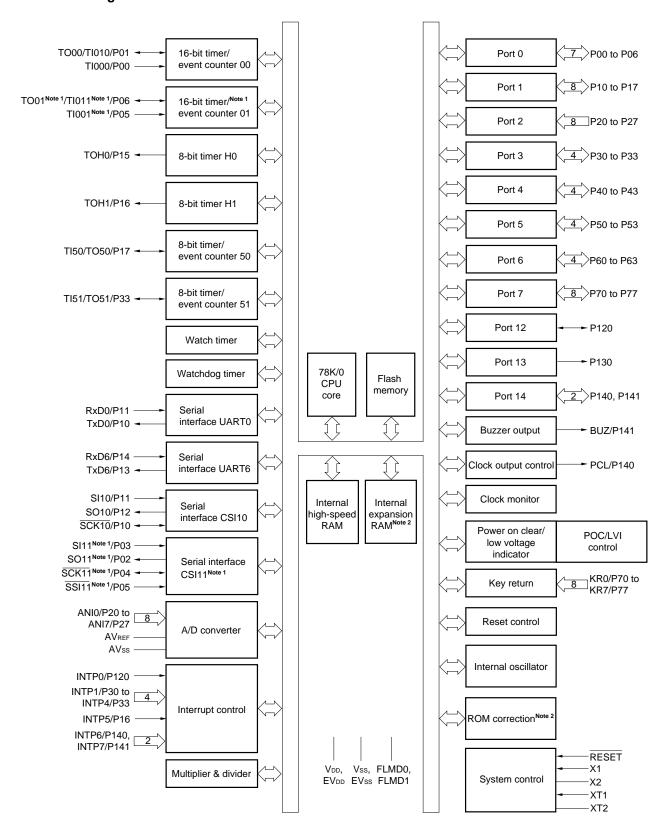
• 144-pin plastic LQFP (20×20 mm, 0.5 mm pitch)

The list of functions in the V850ES/Kx1 is shown below.

ins Mask ROM Flash memory	64 p	oins –		1	0 pins	3				100 p	ns			144 pipe		
	128	_				80 pins						144 pins				
Flash memory		_	64/ 96	128	-	256	-	64/ 96	12	28 –	256	-	96/ 128	-	_	
	_	128	_	_	128	_	256	_	١.	- 128	_	256	_	128	256	
RAM	4		4	6	3	1	12	4		6	1	6		6	16	
ge							2.7 tc	5.5 \	V							
truction execution time						50	ns @	020 M	ИHz	2						
K1 input						2	2 to 1	0 MH	lz							
Subclock							32.76	8 kHz	Z							
nternal oscillator								_								
CMOS input				8						8				16		
CMOS I/O	41 (4)	Note 1		57 (6) ^{Note 1}						72 (8) ^N	ote 1		1	06 (12) ^{No}	te 1	
N-ch open-drain I/O	2	!		2				4						6		
16-bit (TMP)	1 (ch		-		1	ch		_	-	1	ch	-		1 ch	
16-bit (TM0)	1 (ch		2 ch						4 ch	1	6 ch				
B-bit (TM5)	2 (ch		2 ch					2 ch					2 ch		
B-bit (TMH)	2 (ch							2 ch					2 ch		
nterval timer	1 (ch		1 ch						1 ch	l			1 ch		
Vatch	1 (ch			1 ch					1 ch	1			1 ch		
VDT1					1 ch									1 ch		
VDT2																
						ch		6 bits × 1 ch					6		ch	
CSI	2 (
Automatic transmit/receive 3-wire CSI	-				1 ch									2 ch		
JART	2 (ch			2 ch			2 ch						3 ch		
JART supporting LIN-bus	-	-	_					_					_			
	1 (ch		1 ch					1 ch							
Address space		-		128 KB					3 MB					15 MB		
			16 bits										24 bits			
				Multiplex only							Mu	T .				
ler				_								-				
				8 ch												
											1					
			25	126 No		28/20	ONote 2	20	٦/၁·		32/2	∧ Note 2	30/40		11/43 ^{Note 2}	
			25			20/2	9	30	JIJ			4	36/40		1/43	
	0.0	л 1	1		O CIT		Prov	vided		0 01				0 (11		
WDT2																
tion																
	Nο	ne						•		Provid	led					
ction	. 10	-		F	IALT/	IDLE	/STO	P/sub)-IC							
											-					
	subclock internal oscillator iMOS input iMOS input iMOS i/O i-ch open-drain i/O i-ch open-drain i/O i-ch it (TMP) i-bit (TMS) i-bit (TMH) interval timer i/atch i/DT1 i/DT2 iSI iutomatic transmit/receive i-wire CSI iART iART supporting LIN-bus iCNote 2 iddress space iddress bus idde ier inverter iverter iverter ixternal internal internal iout iESET pin iOC iVI iclock monitor i/DT1 i/DT2 ion ition inbient temperature	ubclock internal oscillator MOS input MOS input MOS i/O 41 (4) I-ch open-drain I/O 6-bit (TMP) 1 0 6-bit (TMB) -bit (TMH) 2 0 -bit	Internal oscillator Section Se	subclock Internal oscillator IMOS input IMOS input IMOS I/O I-ch open-drain I/O I-ch			A	According to the content of the co	Section Sect	Authorition Authorition	## 1		April	MoS MoS	Second	

Notes 1. The number of channels in parentheses indicates the number of pins for which the N-ch open drain output can be selected by software.

2. Only in products with an I²C bus (Y products). For the product name, refer to each user's manual.


The list of functions in the V850ES/Kx1+ is shown below.

	Product Name	V850E	S/KE1+	V8	50ES/KI	- 1+	V8	50ES/KG	91+	V850E	ES/KJ1+
Number of	pins	64	pins		80 pins			100 pins		144	1 pins
Internal	Mask ROM	128	-	_	256	_	-	256	-	-	_
memory	Flash memory	-	128	128	-	256	128	-	256	128	256
(KB)	RAM		4	6		12	6	1	16	6	16
Supply vol	tage					2.7 to	5.5 V				
Minimum i	nstruction execution time					50 ns @	20 MHz				
Clock	X1 input					2 to 1	0 MHz				
	Subclock					32.76	8 kHz				
	Internal oscillator					240 kH:	z (TYP.)				
Port	CMOS input		8		8			8			16
	CMOS I/O	41 (4)Note 1	į	57 (6) ^{Note}	1		72 (8) ^{Note}	1	106 (12) ^{Note 1}
	N-ch open-drain I/O			2			4			6	
Timer	16-bit (TMP)	1	ch		1 ch			1 ch		1	ch
	16-bit (TM0)	1	ch		2 ch			4 ch		6	5 ch
	8-bit (TM5)	2	ch		2 ch			2 ch		2	ch :
	8-bit (TMH)	2	ch		2 ch			2 ch		2	ch ch
	Interval timer	1	ch		1 ch			1 ch		1	ch
	Watch	1	ch		1 ch			1 ch		1	ch
	WDT1	1	ch		1 ch			1 ch		1 ch	
	WDT2	1	ch		1 ch			1 ch		1	ch
RTO		6 bits	×1 ch	6	bits × 1	ch	6	bits × 1 o	ch	6 bits	s × 2 ch
Serial	CSI	2	ch		2 ch			2 ch	3	3 ch	
nterface	Automatic transmit/receive 3-wire CSI			1 ch			2 ch		2	? ch	
	UART	1		1 ch			2 ch		2	ch ch	
	UART supporting LIN-bus	1		1 ch			1 ch		1	ch	
	I ² C ^{Note 2}	1		1 ch			1 ch	2 ch			
External	Address space		-		128 KB			3 MB	15 MB		
bus	Address bus		-		16 bits			22 bits	24	bits	
	Mode		_	М	ultiplex o	nly			/separate		
DMA contr	roller		_		-			4 ch	4 ch		
10-bit A/D	converter	8		8 ch			8 ch	10	6 ch		
8-bit D/A c	converter		_		-			2 ch		2	ch ch
Interrupt	External		9		9			9			9
	Internal	26/2	7 ^{Note 2}	:	29/30 ^{Note}	2		41/42 ^{Note}	2	46/4	18 ^{Note 2}
Key return	input	8	ch		8 ch			8 ch		8	ch ch
Reset	RESET pin					Prov	vided .				
	POC					2.7 V or	less fixed				
	LVI		3.1 V/3.3 V ±	0.15 V or 3	3.5 V/3.7	V/3.9 V/4	1.1 V/4.3	V ±0.2 V	(selectable	by software	e)
	Clock monitor			F	Provided	(monitor b	y interna	l oscillato	r)		
	WDT1					Prov	/ided				
	WDT2					Prov	/ided				
ROM corre	ection				4					N	one
Regulator		No	one					Provided			
Standby fu	unction			•	HALT/I	DLE/STO	P/sub-IDI	E mode			
	ambient temperature					T 10	to +85°C				

Notes 1. The number of channels in parentheses indicates the number of pins for which the N-ch open drain output can be selected by software.

2. Only in products with an I²C bus (Y products). For the product name, refer to each user's manual.

1.6 Block Diagram

Notes 1. μ PD78F0133H, 78F0134H, 78F0136H, 78F0138H, and 78F0138HD only.

2. μ PD78F0136H, 78F0138H, and 78F0138HD only

1.7 Outline of Functions

(1/2)

		Item	μPD78F0132H	μPD78F0133H	μPD78F0134H	μPD78F0136H	μPD78F0138H	μPD78F0138H0					
r	Internal memory (bytes)	Flash memory (self-programming supported) ^{Note 1}	16 K	24 K	32 K	48 K	60 K	60 K					
		High-speed RAM ^{Note 1}	512	1 K									
		Expansion RAM ^{Note 1}		=		1 K							
N	Memory s	space	64 KB										
	•	ed system clock n frequency)	Crystal/cerami	c/external clock	oscillation								
		idard products and (A) le products	2 to 16 MHz: V _{DD} = 4.0 to 5.5 V, 2 to 10 MHz: V _{DD} = 3.5 to 5.5 V, 2 to 8.38 MHz: V _{DD} = 3.0 to 5.5 V, 2 to 5 MHz: V _{DD} = 2.5 to 5.5 V										
	(A1)	grade products			/, 2 to 10 MHz: V V, 2 to 5 MHz: \								
		scillation clock n frequency)	On-chip interna	al oscillation (24	0 kHz (TYP.): Va	$_{DD}$ = 2.0 to 5.5 V^{h}	Note 2, 3)						
	Subsyste (oscillatio	m clock n frequency)	Crystal/externa	al clock oscillatio	n								
>		idard products and (A) le products	32.768 kHz: V _{DD} = 2.0 to 5.5 V ^{Note 2}										
	(A1)	grade products	32.768 kHz: V _{DD} = 2.7 to 5.5 V										
(General-p	ourpose registers	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)										
N	Minimum	instruction execution	0.125 μ s/0.25 μ s/0.5 μ s/1.0 μ s/2.0 μ s (high-speed system clock: @ f _{XP} = 16 MHz operation)										
t	time		8.3 μ s/16.6 μ s/33.2 μ s/66.4 μ s/132.8 μ s (TYP.) (internal oscillation clock: @ f _R = 240 kHz (TYP.) operation)										
			122 <i>μ</i> s (subsys	stem clock: whe	n operating at fxt	= 32.768 kHz)							
Ī	Instructio	n set	 16-bit operation Multiply/divide (8 bits × 8 bits, 16 bits ÷ 8 bits) Bit manipulate (set, reset, test, and Boolean operation) BCD adjust, etc. 										
L	I/O ports		Total:		51								
			CMOS I/O 38 CMOS input 8 CMOS output 1 N-ch open-drain I/O 4										

- **Notes 1.** The internal flash memory capacity, internal high-speed RAM capacity, and internal expansion RAM capacity can be changed using the internal memory size switching register (IMS) and the internal expansion RAM size switching register (IXS).
 - 2. Use the product in a voltage range of 2.2 to 5.5 V because the detection voltage (VPoc) of the power-on-clear (POC) circuit is 2.1 V \pm 0.1 V.
 - **3.** For (A1) grade products, use the product in a voltage range of 2.25 to 5.5 V because the detection voltage (VPOC) of the power-on-clear (POC) circuit is 2.0 to 2.25 V.

<R>

(2/2)

	Item		μPD78F0132H	μPD78F013	3H <i>μ</i> PD78F0134I	H μPD78F0136H μPD78F013	(2/2) 8H µPD78F0138HD			
Timers			16-bit timer/e 8-bit timer/ev 8-bit timer: Watch timer Watchdog timer	ent counter:		nannel only in the μ PD78F013 $^{\circ}$	2H)			
٦	Timer o	utputs	5 (PWM output: 4)	6 (PWM out	put: 4)					
Clock outpu	t		 78.125 kHz, 156.25 kHz, 312.5 kHz, 625 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (high-speed system clock: @10 MHz operation) 32.768 kHz (subsystem clock: @32.768 kHz operation) 							
Buzzer outp	out		1.22 kHz, 2.44	kHz, 4.88 kH	z, 9.77 kHz (high	-speed system clock: @10 MH	z operation)			
A/D converte	er		10-bit resolutio	n × 8 channe	s					
Serial interfa	ace		 UART mode 3-wire serial 3-wire serial	I/O mode:		channel channel (none in the μ PD78F0 channel	132H)			
Multiplier/div	vider		16 bits × 16 b32 bits ÷ 16 b		(multiplication) remainder of 16 b	oits (division)				
Vectored interrupt Internal			16	19						
sources		External	9							
Key interrup	ot		Key interrupt (INTKR) occurs by detecting falling edge of key input pins (KR0 to KR7).							
Reset			Reset using RESET pin Internal reset by watchdog timer Internal reset by clock monitor Internal reset by power-on-clear Internal reset by low-voltage detector							
ROM correct	tion			_		Provided				
On-chip deb	oug fund	ction			_	•	Provided			
Supply volta	age		V _{DD} = 2.5 to 5 • (A1) grade pro	5.5 V (with into		lock or subsystem clock: $V_{DD} = lock$: $V_{DD} = 2.0$ to $5.5 \text{ V}^{\text{Note 3}}$)	2.0 to 5.5 V ^{Note 2})			
Operating a	mbient	temperature	Standard prod (A1) grade prod		grade products :	$T_A = -40 \text{ to } +85^{\circ}\text{C}$ $T_A = -40 \text{ to } +110^{\circ}\text{C}$				
Package			64-pin plastic64-pin plastic64-pin plastic64-pin plastic	LQFP (14 × TQFP (12 ×	14) 12)					

- **Notes 1.** Select either of the functions of these alternate-function pins.
 - 2. Use the product in a voltage range of 2.2 to 5.5 V because the detection voltage (VPOC) of the power-onclear (POC) circuit is 2.1 V \pm 0.1 V.
 - 3. Use the product in a voltage range of 2.25 to 5.5 V because the detection voltage (VPOC) of the power-onclear (POC) circuit is 2.0 to 2.25 V.
 - **4.** μ PD78F0138HD only

<R>

An outline of the timer is shown below.

		16-Bit Timer/ Event Counters 00 and 01 ^{Note 1}		8-Bit Timer/ Event Counters 50 and 51		8-Bit Timers H0 and H1		Watch Timer	Watchdog Timer
		TM00	TM01 ^{Note 1}	TM50	TM51	TMH0	TMH1		
Operation mode	Interval timer	1 channel	1 channel	1 channel	1 channel	1 channel	1 channel	Note 2 1 channel	_
	External event counter	1 channel	1 channel	1 channel	1 channel	_	_	_	-
	Watchdog timer	-	-	1	-	-	-	_	1 channel
Function	Timer output	1 output	1 output	1 output	1 output	1 output	1 output	_	-
	PPG output	1 output	1 output	ĺ	_	_	_	_	-
	PWM output	_	_	1 output	1 output	1 output	1 output	_	_
	Pulse width measurement	2 inputs	2 inputs	1	_	_	_	_	-
	Square-wave output	1 output	1 output	1 output	1 output	1 output	1 output	_	_
	Interrupt source	2	2	1	1	1	1	1	_

Notes 1. 16-bit timer/event counter 01 is available only in the μ PD78F0133H, 78F0134H, 78F0136H, 78F0138H, and 78F0138HD.

2. In the watch timer, the watch timer function and interval timer function can be used simultaneously.

Remark TM51 and TMH1 can be used in combination as a carrier generator mode.

CHAPTER 2 PIN FUNCTIONS

2.1 Pin Function List

There are three types of pin I/O buffer power supplies: AVREF, EVDD, and VDD. The relationship between these power supplies and the pins is shown below.

Table 2-1. Pin I/O Buffer Power Supplies

Power Supply	Corresponding Pins		
AVREF	P20 to P27		
EV _{DD}	Port pins other than P20 to P27		
V _{DD}	Pins other than port pins		

(1) Port pins (1/2)

Pin Name	I/O	Function	After Reset	Alternate Function
P00	I/O	Port 0.	Input	TI000
P01		7-bit I/O port.		TI010/TO00
P02		Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a		SO11 ^{Note}
P03		software setting.		SI11 ^{Note}
P04				SCK11Note
P05				SSI11Note/TI001Note
P06				TI011 ^{Note} /TO01 ^{Note}
P10	I/O	Port 1.	Input	SCK10/TxD0
P11		8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.		SI10/RxD0
P12				SO10
P13				TxD6
P14				RxD6
P15				ТОН0
P16				TOH1/INTP5
P17				TI50/TO50/FLMD1
P20 to P27	Input	Port 2.	Input	ANI0 to ANI7
		8-bit input-only port.		
P30 to P32	I/O	Port 3.	Input	INTP1 to INTP3
		4-bit I/O port.		
P33		Input/output can be specified in 1-bit units.		INTP4/TI51/TO51
F33		Use of an on-chip pull-up resistor can be specified by a software setting.		11174/1131/1051

Note SO11, SI11, $\overline{\text{SCK11}}$, $\overline{\text{SSI11}}$, TI001, TI011, and TO01 are available only in the μ PD78F0133H, 78F0134H, 78F0136H, 78F0138HD.

(1) Port pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
P40 to P43	1/0	Port 4. 4-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input	_
P50 to P53	I/O	Port 5. 4-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input	_
P60 to P63	I/O	Port 6. 4-bit I/O port (N-ch open drain). Input/output can be specified in 1-bit units.	Input	-
P70 to P77	I/O	Port 7. 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input	KR0 to KR7
P120	I/O	Port 12. 1-bit I/O port. Use of an on-chip pull-up resistor can be specified by a software setting.	Input	INTP0
P130	Output	Port 13. 1-bit output-only port.	Output	-
P140	I/O	Port 14.	Input	PCL/INTP6
P141		2-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.		BUZ/INTP7

(2) Non-port pins (1/2)

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	External interrupt request input for which the valid edge (rising	Input	P120
INTP1 to INTP3		edge, falling edge, or both rising and falling edges) can be		P30 to P32
INTP4		specified		P33/TI51/TO51
INTP5				P16/TOH1
INTP6				P140/PCL
INTP7				P141/BUZ
SI10	Input	Serial data input to serial interface	Input	P11/RxD0
SI11 ^{Note}				P03
SO10	Output	Serial data output from serial interface	Input	P12
SO11 ^{Note}				P02
SCK10	I/O	Clock input/output for serial interface	Input	P10/TxD0
SCK11 ^{Note}				P04
SSI11 Note	Input	Serial interface chip select input	Input	P05/TI001
RxD0	Input	Serial data input to asynchronous serial interface	Input	P11/SI10
RxD6				P14
TxD0	Output	Serial data output from asynchronous serial interface	Input	P10/SCK10
TxD6				P13
T1000	Input	External count clock input to 16-bit timer/event counter 00 Capture trigger input to capture registers (CR000, CR010) of 16-bit timer/event counter 00	Input	P00
TI001 ^{Note}		External count clock input to 16-bit timer/event counter 01 Capture trigger input to capture registers (CR001, CR011) of 16-bit timer/event counter 01		P05/SSI11Note
TI010		Capture trigger input to capture register (CR000) of 16-bit timer/event counter 00		P01/TO00
TI011 ^{Note}		Capture trigger input to capture register (CR001) of 16-bit timer/event counter 01		P06/TO01 ^{Note}
TO00	Output	16-bit timer/event counter 00 output	Input	P01/TI010
TO01 ^{Note}		16-bit timer/event counter 01 output		P06/TI011 ^{Note}
TI50	Input	External count clock input to 8-bit timer/event counter 50	Input	P17/TO50/FLMD1
TI51		External count clock input to 8-bit timer/event counter 51		P33/TO51/INTP4
TO50	Output	8-bit timer/event counter 50 output	Input	P17/TI50/FLMD1
TO51		8-bit timer/event counter 51 output		P33/TI51/INTP4
ТОН0		8-bit timer H0 output		P15
TOH1		8-bit timer H1 output		P16/INTP5
PCL	Output	Clock output (for trimming of high-speed system clock, subsystem clock)	Input	P140/INTP6
BUZ	Output	Buzzer output	Input	P141/INTP7
ANI0 to ANI7	Input	A/D converter analog input	Input	P20 to P27

Note SO11, SI11, $\overline{\text{SCK11}}$, $\overline{\text{SSI11}}$, TI001, TI011, and TO01 are available only in the μ PD78F0133H, 78F0134H, 78F0136H, 78F0138HD.

(2) Non-port pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
AVREF	Input	A/D converter reference voltage input and positive power supply for port 2	_	-
AVss		A/D converter ground potential. Make the same potential as EVss or Vss.	_	-
KR0 to KR7	Input	Key interrupt input	Input	P70 to P77
RESET	Input	System reset input	-	_
X1	Input	Connecting resonator for high-speed system clock	_	_
X2	_		_	-
XT1	Input	Connecting resonator for subsystem clock	-	_
XT2	-		_	-
V _{DD}	_	Positive power supply (except for ports)	-	_
EV _{DD}	_	Positive power supply for ports	_	-
Vss	_	Ground potential (except for ports)	-	-
EVss	-	Ground potential for ports	-	_
FLMD0	_	Flash memory programming mode setting.	-	-
FLMD1			Input	P17/TI50/TO50
NC	_	Not internally connected. Leave open (can also be connected to V _{DD} or V _{SS}).	_	-

2.2 Description of Pin Functions

2.2.1 P00 to P06 (port 0)

P00 to P06 function as a 7-bit I/O port. These pins also function as timer I/O, serial interface data I/O, clock I/O, and chip select input.

The following operation modes can be specified in 1-bit units.

(1) Port mode

P00 to P06 function as a 7-bit I/O port. P00 to P06 can be set to input or output in 1-bit units using port mode register 0 (PM0). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 0 (PU0).

(2) Control mode

P00 to P06 function as timer I/O, serial interface data I/O, clock I/O, and chip select input.

(a) TI000, TI001^{Note}

These are the pins for inputting an external count clock to 16-bit timer/event counters 00 and 01 and are also for inputting a capture trigger signal to the capture registers (CR000, CR010 or CR001, CR011) of 16-bit timer/event counters 00 and 01.

(b) TI010, TI011 Note

These are the pins for inputting a capture trigger signal to the capture register (CR000 or CR001) of 16-bit timer/event counters 00 and 01.

(c) TO00, TO01^{Note}

These are timer output pins.

(d) SI11^{Note}

This is a serial interface serial data input pin.

(e) SO11^{Note}

This is a serial interface serial data output pin.

(f) SCK11 Note

This is the serial interface serial clock I/O pin.

(g) SSI11 Note

This is the serial interface chip select input pin.

Note TI001, TI011, TO01, SI11, SO11, $\overline{\text{SCK11}}$, and $\overline{\text{SSI11}}$ are available only in the μ PD78F0133H, 78F0134H, 78F0136H, 78F0138HD.

2.2.2 P10 to P17 (port 1)

P10 to P17 function as an 8-bit I/O port. These pins also function as pins for external interrupt request input, serial interface data I/O, clock I/O, timer I/O, and flash memory programming mode setting.

The following operation modes can be specified in 1-bit units.

(1) Port mode

P10 to P17 function as an 8-bit I/O port. P10 to P17 can be set to input or output in 1-bit units using port mode register 1 (PM1). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 1 (PU1).

(2) Control mode

P10 to P17 function as external interrupt request input, serial interface data I/O, clock I/O, timer I/O, and flash memory programming mode setting.

(a) SI10

This is a serial interface serial data input pin.

(b) SO10

This is a serial interface serial data output pin.

(c) SCK10

This is a serial interface serial clock I/O pin.

(d) RxD0, RxD6

These are the serial data input pins of the asynchronous serial interface.

(e) TxD0, TxD6

These are the serial data output pins of the asynchronous serial interface.

(f) TI50

This is the pin for inputting an external count clock to 8-bit timer/event counter 50.

(g) TO50, TOH0, and TOH1

These are timer output pins.

(h) INTP5

This is an external interrupt request input pin for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.

(i) FLMD1

This is the pin for setting the flash memory programming mode.

2.2.3 P20 to P27 (port 2)

P20 to P27 function as an 8-bit input-only port. These pins also function as pins for A/D converter analog input. The following operation modes can be specified in 1-bit units.

(1) Port mode

P20 to P27 function as an 8-bit input-only port.

(2) Control mode

P20 to P27 function as A/D converter analog input pins (ANI0 to ANI7). When using these pins as analog input pins, see (5) ANI0/P20 to ANI7/P27 in 12.6 Cautions for A/D Converter.

2.2.4 P30 to P33 (port 3)

P30 to P33 function as a 4-bit I/O port. These pins also function as pins for external interrupt request input and timer I/O.

The following operation modes can be specified in 1-bit units.

(1) Port mode

P30 to P33 function as a 4-bit I/O port. P30 to P33 can be set to input or output in 1-bit units using port mode register 3 (PM3). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 3 (PU3).

(2) Control mode

P30 to P33 function as external interrupt request input pins and timer I/O pins.

(a) INTP1 to INTP4

These are the external interrupt request input pins for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.

(b) TI51

This is an external count clock input pin to 8-bit timer/event counter 51.

(c) TO51

This is a timer output pin.

Caution In the µPD78F0138HD, be sure to pull the P31 pin down after reset to prevent malfunction.

Remark P31/INTP2 and P32/INTP3 of the μ PD78F0138HD can be used as on-chip debug mode setting pins when the on-chip debug function is used. For details, refer to **CHAPTER 27 ON-CHIP DEBUG FUNCTION** (μ PD78F0138HD ONLY).

2.2.5 P40 to P43 (port 4)

P40 to P43 function as a 4-bit I/O port. P40 to P43 can be set to input or output in 1-bit units using port mode register 4 (PM4). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 4 (PU4).

2.2.6 P50 to P53 (port 5)

P50 to P53 function as a 4-bit I/O port. P50 to P53 can be set to input or output in 1-bit units using port mode register 5 (PM5). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 5 (PU5).

2.2.7 P60 to P63 (port 6)

P60 to P63 function as a 4-bit I/O port. P60 to P63 can be set to input port or output port in 1-bit units using port mode register 6 (PM6).

P60 to P63 are N-ch open-drain pins.

2.2.8 P70 to P77 (port 7)

P70 to P77 function as an 8-bit I/O port. These pins also function as key interrupt input pins.

The following operation modes can be specified in 1-bit units.

(1) Port mode

P70 to P77 function as an 8-bit I/O port. P70 to P77 can be set to input or output in 1-bit units using port mode register 7 (PM7). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 7 (PU7).

(2) Control mode

P70 to P77 function as key interrupt input pins.

2.2.9 P120 (port 12)

P120 functions as a 1-bit I/O port. This pin also functions as a pin for external interrupt request input.

The following operation modes can be specified.

(1) Port mode

P120 functions as a 1-bit I/O port. P120 can be set to input or output using port mode register 12 (PM12). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 12 (PU12).

(2) Control mode

P120 functions as an external interrupt request input pin (INTP0) for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.

2.2.10 P130 (port 13)

P130 functions as a 1-bit output-only port.

2.2.11 P140 and P141 (port 14)

P140 and P141 function as a 2-bit I/O port. These pins also function as external interrupt request input, clock output, and buzzer output pins.

The following operation modes can be specified in 1-bit units.

(1) Port mode

P140 and P141 function as a 2-bit I/O port. P140 and P141 can be set to input or output in 1-bit units using port mode register 14 (PM14). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 14 (PU14).

(2) Control mode

P140 and P141 function as external interrupt request input, clock output, and buzzer output pins.

(a) INTP6, INTP7

These are the external interrupt request input pins for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.

(b) PCL

This is a clock output pin.

(c) BUZ

This is a buzzer output pin.

2.2.12 AVREF

This is the A/D converter reference voltage input pin.

When the A/D converter is not used, connect this pin directly to EVDD or VDD Note.

Note Connect port 2 directly to EV_{DD} when it is used as a digital port.

2.2.13 AVss

This is the A/D converter ground potential pin. Even when the A/D converter is not used, always use this pin with the same potential as the EVss pin or Vss pin.

2.2.14 **RESET**

This is the active-low system reset input pin.

2.2.15 X1 and X2

These are the pins for connecting a resonator for high-speed system clock.

When supplying an external clock, input a signal to the X1 pin and input the inverse signal to the X2 pin.

Remark The X1 and X2 pins of the μ PD78F0138HD can be used as on-chip debug mode setting pins when the on-chip debug function is used. For details, refer to **CHAPTER 27 ON-CHIP DEBUG FUNCTION** (μ PD78F0138HD ONLY).

2.2.16 XT1 and XT2

These are the pins for connecting a resonator for subsystem clock.

When supplying an external clock, input a signal to the XT1 pin and input the inverse signal to the XT2 pin.

2.2.17 VDD and EVDD

V_{DD} is the positive power supply pin for other than ports.

EV_{DD} is the positive power supply pin for ports.

2.2.18 Vss and EVss

Vss is the ground potential pin for other than ports.

EVss is the ground potential pin for ports.

2.2.19 FLMD0 and FLMD1

This is a pin for setting flash memory programming mode.

Connect FLMD0 to EVss or Vss in the normal operation mode (FLMD1 is not used in the normal operation mode). In flash memory programming mode, be sure to connect these pins to the flash programmer.

2.3 Pin I/O Circuits and Recommended Connection of Unused Pins

Table 2-2 shows the types of pin I/O circuits and the recommended connections of unused pins. Refer to **Figure 2-1** for the configuration of the I/O circuit of each type.

Table 2-2. Pin I/O Circuit Types (1/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/TI000	8-A	I/O	Input: Independently connect to EV _{DD} or EV _{SS} via a resistor.
P01/TI010/TO00			Output: Leave open.
P02/SO11 ^{Note}			
P03/SI11 ^{Note}	7		
P04/SCK11 ^{Note}	7		
P05/SSI11 Note/TI001 Note	7		
P06/TI011 ^{Note} /TO01 ^{Note}			
P10/SCK10/TxD0	7		
P11/SI10/RxD0			
P12/SO10	5-A		
P13/TxD6			
P14/RxD6	8-A		
P15/TOH0	5-A		
P16/TOH1/INTP5	8-A		
P17/TI50/TO50/FLMD1			
P20/ANI0 to P27/ANI7	9-C	Input	Connect to AVREF or AVss.
P30/INTP1	8-A	I/O	Input: Independently connect to EV _{DD} or EV _{SS} via a resistor.
P31/INTP2			Output: Leave open.
(except µPD78F0138HD)			
P31/INTP2 (μPD78F0138HD)			Connect to EVss via a resistor.
P32/INTP3			Input: Independently connect to EV _{DD} or EVss via a resistor.
P33/TI51/TO51/INTP4			Output: Leave open.
P40 to P43	5-A		
P50 to P53			
P60, P61	13-R		Input: Connect to EVss.
P62, P63	13-W		Output: Leave this pin open at low-level output after clearing the output latch of the port to 0.
P70/KR0 to P77/KR7	8-A		Input: Independently connect to EV _{DD} or EV _{SS} via a resistor.
P120/INTP0			Output: Leave open.
P130	3-C	Output	Leave open.
P140/PCL/INTP6	8-A	I/O	Input: Independently connect to EV _{DD} or EV _{SS} via a resistor.
P141/BUZ/INTP7			Output: Leave open.

Note SO11, SI11, $\overline{\text{SCK11}}$, $\overline{\text{SSI11}}$, TI001, TI011, and TO01 are available only in the μ PD78F0133H, 78F0134H, 78F0136H, 78F0138HD.

Table 2-2. Pin I/O Circuit Types (2/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
RESET	2	Input	Connect to EVDD or VDD.
XT1	16		Connect directly to EVss or Vss ^{Note 1} .
XT2		-	Leave open.
AVREF	-		Connect directly to EV _{DD} or V _{DD} ^{Note 2} .
AVss			Connect directly to EVss or Vss.
FLMD0			Connect to EVss or Vss.

Notes 1. Bit 6 (FRC) of the processor clock control register (PCC) must be set to 1 after reset mode is released.

2. Connect port 2 directly to EVDD when it is used as a digital port.

Figure 2-1. Pin I/O Circuit List (1/2)

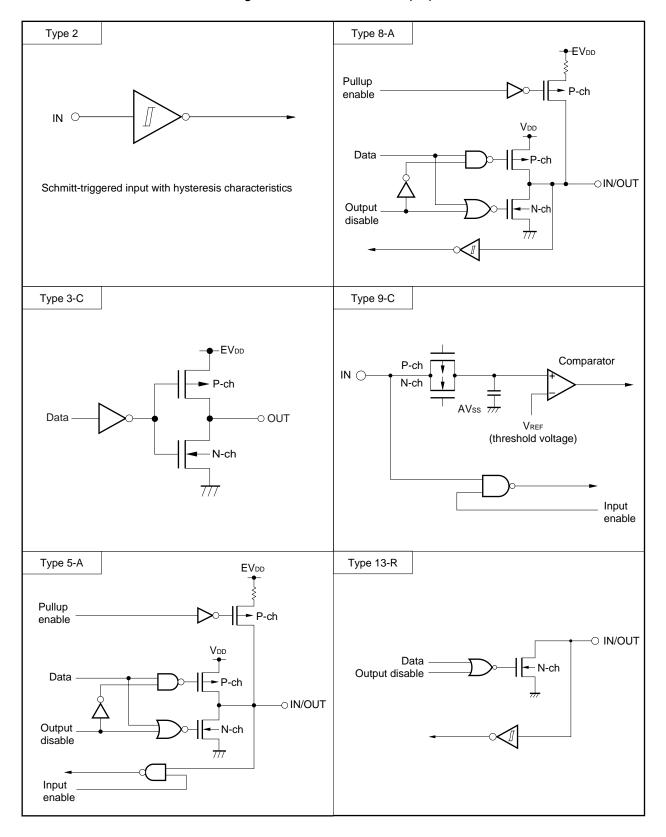
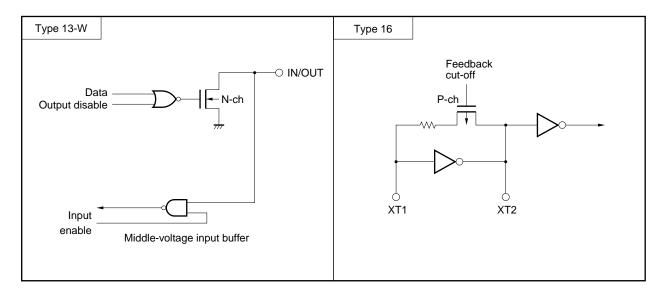



Figure 2-1. Pin I/O Circuit List (2/2)

CHAPTER 3 CPU ARCHITECTURE

3.1 Memory Space

Products in the 78K0/KE1+ can each access a 64 KB memory space. Figures 3-1 to 3-6 show the memory maps.

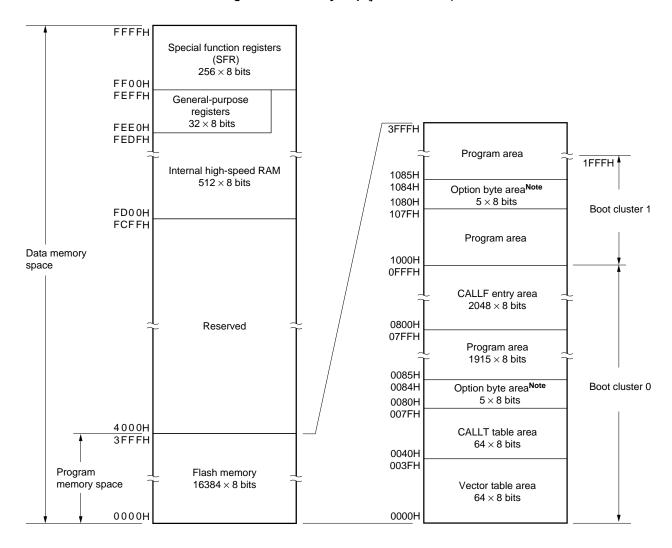

Caution Regardless of the internal memory capacity, the initial values of the internal memory size switching register (IMS) and internal expansion RAM size switching register (IXS) of all products in the 78K0/KE1+ are fixed (IMS = CFH, IXS = 0CH). Therefore, set the value corresponding to each product as indicated below. In addition, set the following values to the IMS and the IXS when using the 78K0/KE1+ to evaluate the program of a mask ROM version of the 78K0/KE1.

Table 3-1. Set Values of Internal Memory Size Switching Register (IMS) and Internal Expansion RAM Size Switching Register (IXS)

Flash Memory Version (78K0/KE1+)	Target Mask ROM Version (78K0/KE1)	IMS	IXS
-	μPD780131	42H	0CH
μPD78F0132H	μPD780132	44H	
μPD78F0133H	μPD780133	С6Н	
μPD78F0134H	μPD780134	С8Н	
μPD78F0136H	μPD780136	ССН	0AH
μPD78F0138H, 78F0138HD	μPD780138	CFH	

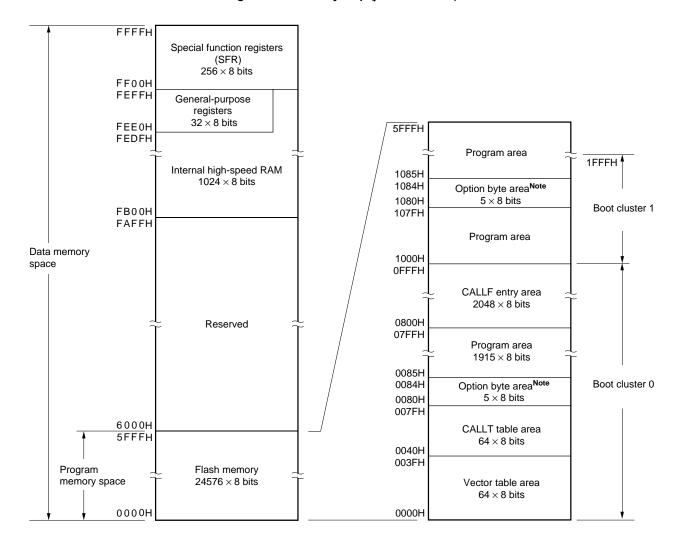
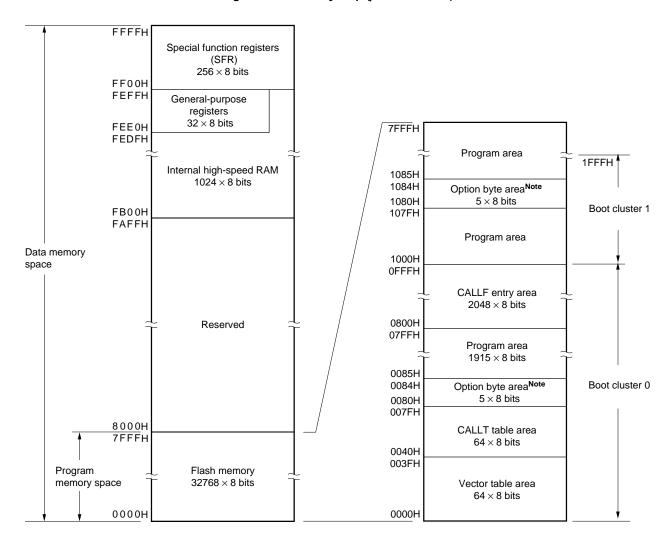

<R>

Figure 3-1. Memory Map (µPD78F0132H)

<R>


Figure 3-2. Memory Map (µPD78F0133H)

Note When boot swap is not used: Set the option bytes to 0080H to 0084H.

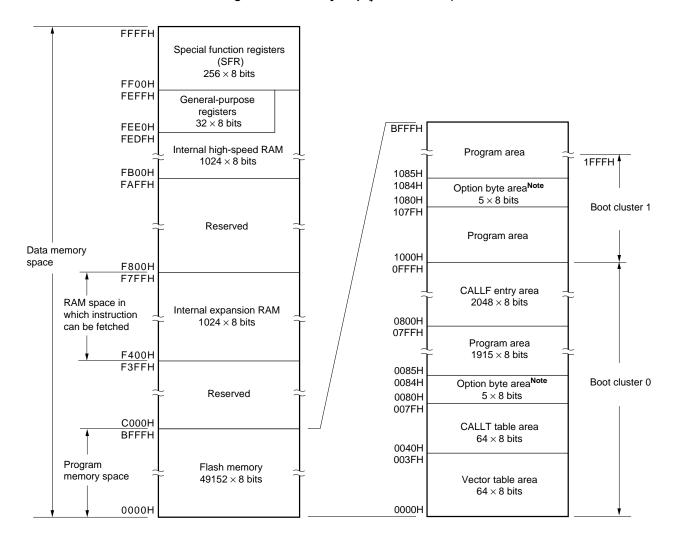

<R>

Figure 3-3. Memory Map (µPD78F0134H)

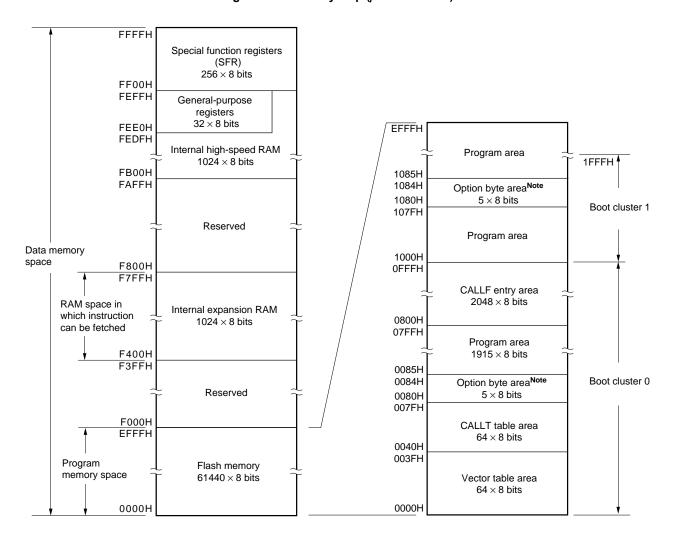

<R>

Figure 3-4. Memory Map (µPD78F0136H)

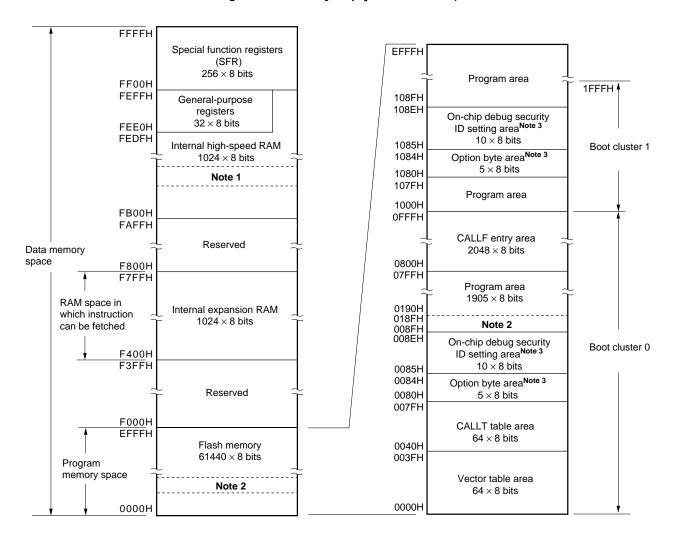

<R>

Figure 3-5. Memory Map (µPD78F0138H)

<R>

Figure 3-6. Memory Map (µPD78F0138HD)

- **Notes 1.** During on-chip debugging, about 7 to 16 bytes of this area are used as the user data backup area for communication.
 - **2.** During on-chip debugging, use of this area is disabled because it is used as the communication command area (008FH to 018FH: debugger's default setting).
 - **3.** When boot swap is not used: Set the option bytes to 0080H to 0084H, and the on-chip debug security IDs to 0085H to 008EH.
 - When boot swap is used: Set the option bytes to 0080H to 0084H and 1080H to 1084H, and the on-chip debug security IDs to 0085H to 008EH and 1085H to 108EH.

3.1.1 Internal program memory space

The internal program memory space stores the program and table data. Normally, it is addressed with the program counter (PC).

78K0/KE1+ products incorporate internal ROM (flash memory), as shown below.

Table 3-2. Internal ROM Capacity

Part Number	Internal ROM			
	Structure	Capacity		
μPD78F0132H	Flash memory	16384 × 8 bits (0000H to 3FFFH)		
μPD78F0133H		24576 × 8 bits (0000H to 5FFFH)		
μPD78F0134H		32768 × 8 bits (0000H to 7FFFH)		
μPD78F0136H		49152 × 8 bits (0000H to BFFFH)		
μPD78F0138H, 78F0138HD		61440 × 8 bits (0000H to EFFFH)		

The internal program memory space is divided into the following areas.

(1) Vector table area

The 64-byte area 0000H to 003FH is reserved as a vector table area. The program start addresses for branch upon reset signal input or generation of each interrupt request are stored in the vector table area.

Of the 16-bit address, the lower 8 bits are stored at even addresses and the higher 8 bits are stored at odd addresses.

Table 3-3. Vector Table

Vector Table Address	Interrupt Source	Vector Table Address	Interrupt Source
0000H	RESET input, POC, LVI,	0020H	INTTM000
	clock monitor, WDT	0022H	INTTM010
0004H	INTLVI	0024H	INTAD
0006H	INTP0	0026H	INTSR0
0008H	INTP1	0028H	INTWTI
000AH	INTP2	002AH	INTTM51
000CH	INTP3	002CH	INTKR
000EH	INTP4	002EH	INTWT
0010H	INTP5	0030H	INTP6
0012H	INTSRE6	0032H	INTP7
0014H	INTSR6	0034H	INTDMU
0016H	INTST6	0036H	INTCSI11 ^{Note}
0018H	INTCSI10/INTST0	0038H	INTTM001 ^{Note}
001AH	INTTMH1	003AH	INTTM011 ^{Note}
001CH	INTTMH0	003EH	BRK
001EH	INTTM50		

Note Available only in the μ PD78F0133H, 78F0134H, 78F0136H, 78F0138HD.

(2) CALLT instruction table area

The 64-byte area 0040H to 007FH can store the subroutine entry address of a 1-byte call instruction (CALLT).

(3) Option byte area

The option byte area is assigned to the 1-byte area of 0080H. Refer to CHAPTER 24 OPTION BYTE for details.

(4) CALLF instruction entry area

The area 0800H to 0FFFH can perform a direct subroutine call with a 2-byte call instruction (CALLF).

3.1.2 Internal data memory space

78K0/KE1+ products incorporate the following RAMs.

(1) Internal high-speed RAM

Table 3-4. Internal High-Speed RAM Capacity

Part Number	Internal High-Speed RAM
μPD78F0132H	512 × 8 bits (FD00H to FEFFH)
μPD78F0133H	1024 × 8 bits (FB00H to FEFFH)
μPD78F0134H	
μPD78F0136H	
μPD78F0138H, 78F0138HD	

The 32-byte area FEE0H to FEFFH is assigned to four general-purpose register banks consisting of eight 8-bit registers per one bank.

This area cannot be used as a program area in which instructions are written and executed.

The internal high-speed RAM can also be used as a stack memory.

(2) Internal expansion RAM

Table 3-5. Internal Expansion RAM Capacity

Part Number	Internal Expansion RAM
μPD78F0132H	-
μPD78F0133H	
μPD78F0134H	
μPD78F0136H	1024 × 8 bits (F400H to F7FFH)
μPD78F0138H, 78F0138HD	

The internal expansion RAM can also be used as a normal data area similar to the internal high-speed RAM, as well as a program area in which instructions can be written and executed.

The internal expansion RAM cannot be used as a stack memory.

3.1.3 Special function register (SFR) area

On-chip peripheral hardware special function registers (SFRs) are allocated in the area FF00H to FFFFH (refer to Table 3-6 Special Function Register List in 3.2.3 Special function registers (SFRs)).

Caution Do not access addresses to which SFRs are not assigned.

3.1.4 Data memory addressing

Addressing refers to the method of specifying the address of the instruction to be executed next or the address of the register or memory relevant to the execution of instructions.

Several addressing modes are provided for addressing the memory relevant to the execution of instructions for the 78K0/KE1+, based on operability and other considerations. For areas containing data memory in particular, special addressing methods designed for the functions of special function registers (SFR) and general-purpose registers are available for use. Figures 3-7 to 3-12 show correspondence between data memory and addressing. For details of each addressing mode, refer to **3.4 Operand Address Addressing**.

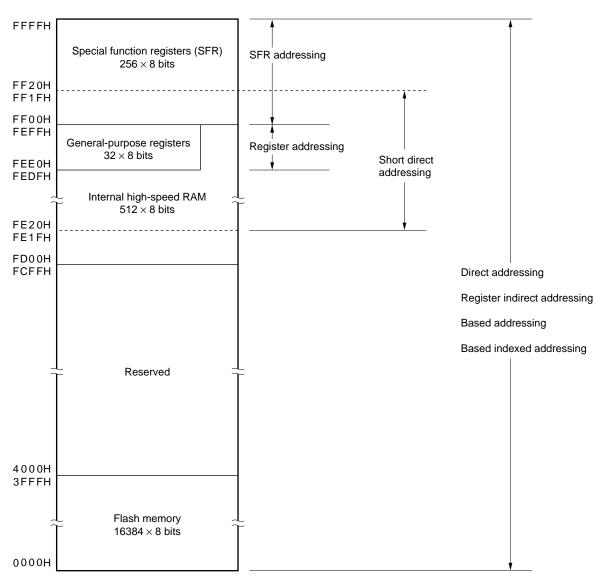


Figure 3-7. Correspondence Between Data Memory and Addressing (μ PD78F0132H)

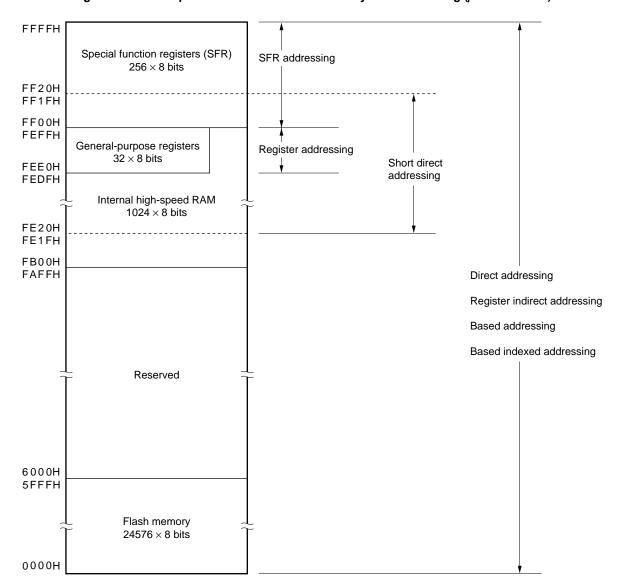


Figure 3-8. Correspondence Between Data Memory and Addressing (µPD78F0133H)

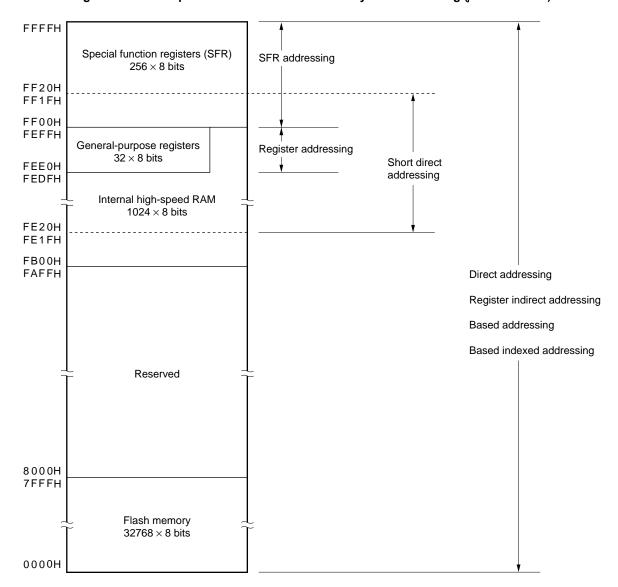


Figure 3-9. Correspondence Between Data Memory and Addressing (µPD78F0134H)

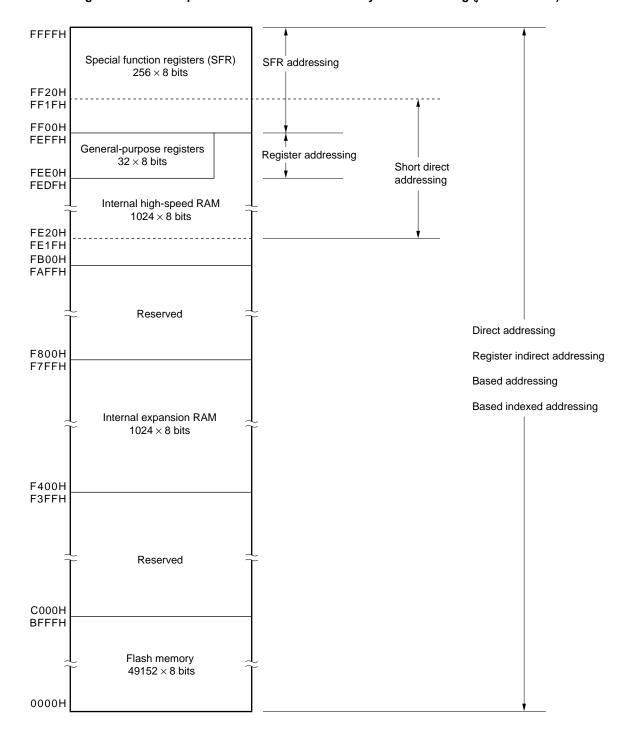


Figure 3-10. Correspondence Between Data Memory and Addressing (μPD78F0136H)

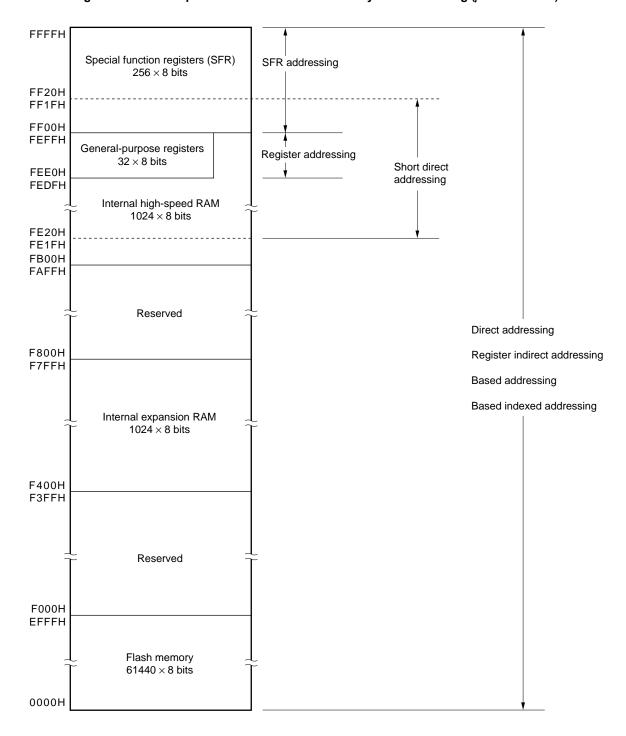


Figure 3-11. Correspondence Between Data Memory and Addressing (μPD78F0138H)

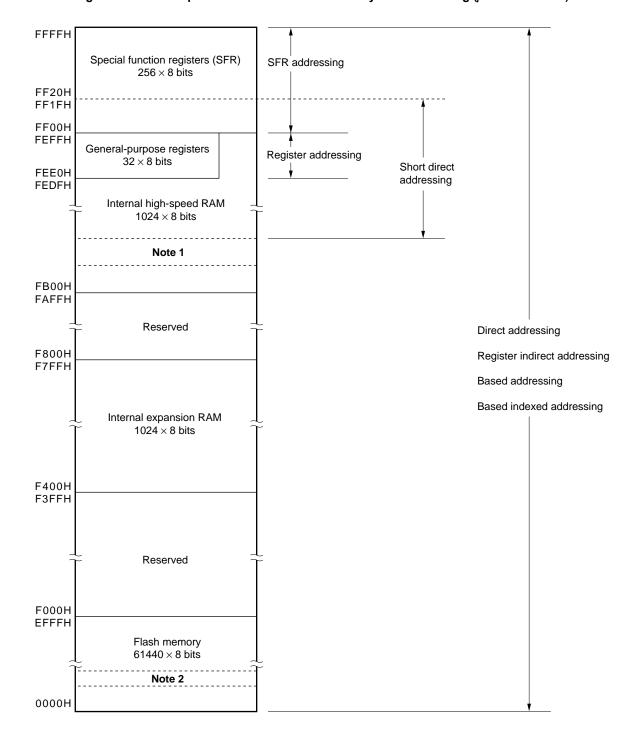


Figure 3-12. Correspondence Between Data Memory and Addressing (μPD78F0138HD)

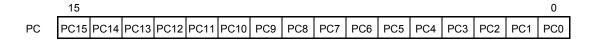
- Notes 1. During on-chip debugging, about 7 to 16 bytes of this area are used as the user data backup area for communication.
 - **2.** During on-chip debugging, use of this area is disabled because it is used as the communication command area (008FH to 018FH: debugger's default setting).

<R>

3.2 Processor Registers

The 78K0/KE1+ products incorporate the following processor registers.

3.2.1 Control registers


The control registers control the program sequence, statuses and stack memory. The control registers consist of a program counter (PC), a program status word (PSW) and a stack pointer (SP).

(1) Program counter (PC)

The program counter is a 16-bit register that holds the address information of the next program to be executed. In normal operation, the PC is automatically incremented according to the number of bytes of the instruction to be fetched. When a branch instruction is executed, immediate data and register contents are set.

RESET input sets the reset vector table values at addresses 0000H and 0001H to the program counter.

Figure 3-13. Format of Program Counter

(2) Program status word (PSW)

The program status word is an 8-bit register consisting of various flags set/reset by instruction execution. Program status word contents are automatically stacked upon interrupt request generation or PUSH PSW instruction execution and are restored upon execution of the RETB, RETI and POP PSW instructions.

RESET input sets the PSW to 02H.

Figure 3-14. Format of Program Status Word

(a) Interrupt enable flag (IE)

This flag controls the interrupt request acknowledge operations of the CPU.

When 0, the IE flag is set to the interrupt disabled (DI) state, and all maskable interrupt requests are disabled. Other interrupt requests are all disabled.

When 1, the IE flag is set to the interrupt enabled (EI) state and interrupt request acknowledgement is controlled with an in-service priority flag (ISP), an interrupt mask flag for various interrupt sources, and a priority specification flag.

The IE flag is reset (0) upon DI instruction execution or interrupt acknowledgement and is set (1) upon EI instruction execution.

(b) Zero flag (Z)

When the operation result is zero, this flag is set (1). It is reset (0) in all other cases.

(c) Register bank select flags (RBS0 and RBS1)

These are 2-bit flags to select one of the four register banks.

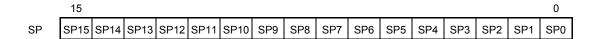
In these flags, the 2-bit information that indicates the register bank selected by SEL RBn instruction execution is stored.

(d) Auxiliary carry flag (AC)

If the operation result has a carry from bit 3 or a borrow at bit 3, this flag is set (1). It is reset (0) in all other cases.

(e) In-service priority flag (ISP)

This flag manages the priority of acknowledgeable maskable vectored interrupts. When this flag is 0, low-level vectored interrupt requests specified by a priority specification flag register (PR0L, PR0H, PR1L, PR1H) (refer to 17.3 (3) Priority specification flag registers (PR0L, PR0H, PR1L, PR1H)) can not be acknowledged. Actual request acknowledgement is controlled by the interrupt enable flag (IE).


(f) Carry flag (CY)

This flag stores overflow and underflow upon add/subtract instruction execution. It stores the shift-out value upon rotate instruction execution and functions as a bit accumulator during bit operation instruction execution.

(3) Stack pointer (SP)

This is a 16-bit register to hold the start address of the memory stack area. Only the internal high-speed RAM area can be set as the stack area.

Figure 3-15. Format of Stack Pointer

The SP is decremented ahead of write (save) to the stack memory and is incremented after read (restored) from the stack memory.

Each stack operation saves/restores data as shown in Figures 3-16 and 3-17.

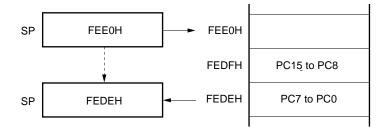

Caution Since RESET input makes the SP contents undefined, be sure to initialize the SP before using the stack.

Figure 3-16. Data to Be Saved to Stack Memory

(a) PUSH rp instruction (when SP = FEE0H)

(b) CALL, CALLF, CALLT instructions (when SP = FEE0H)

(c) Interrupt, BRK instructions (when SP = FEE0H)

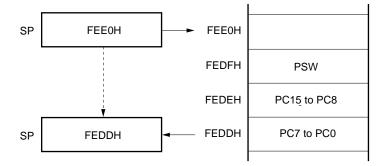
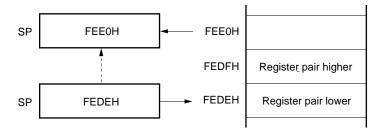
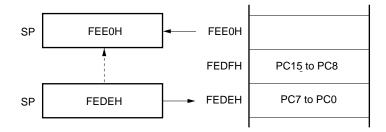
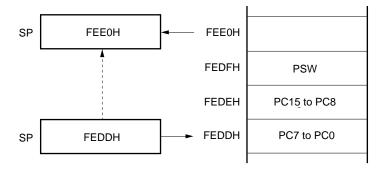




Figure 3-17. Data to Be Restored from Stack Memory


(a) POP rp instruction (when SP = FEDEH)

(b) RET instruction (when SP = FEDEH)

(c) RETI, RETB instructions (when SP = FEDDH)

3.2.2 General-purpose registers

General-purpose registers are mapped at particular addresses (FEE0H to FEFFH) of the data memory. The general-purpose registers consists of 4 banks, each bank consisting of eight 8-bit registers (X, A, C, B, E, D, L, and H).

Each register can be used as an 8-bit register, and two 8-bit registers can also be used in a pair as a 16-bit register (AX, BC, DE, and HL).

These registers can be described in terms of function names (X, A, C, B, E, D, L, H, AX, BC, DE, and HL) and absolute names (R0 to R7 and RP0 to RP3).

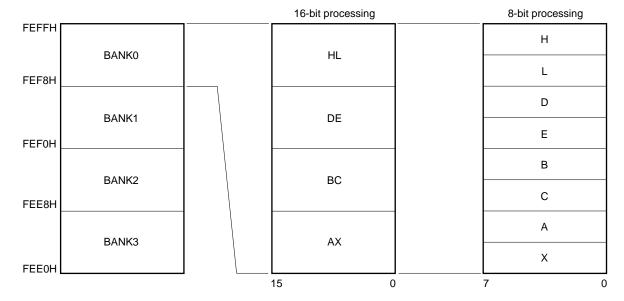

Register banks to be used for instruction execution are set by the CPU control instruction (SEL RBn). Because of the 4-register bank configuration, an efficient program can be created by switching between a register for normal processing and a register for interrupts for each bank.

Figure 3-18. Configuration of General-Purpose Registers

16-bit processing 8-bit processing **FEFFH** R7 BANK0 RP3 R6 FEF8H R5 RP2 BANK1 R4 FEF0H R3 BANK2 RP1 R2 FEE8H R1 RP0 BANK3 R0 FEE0H 7 15 0

(a) Absolute name

(b) Function name

3.2.3 Special function registers (SFRs)

Unlike a general-purpose register, each special function register has a special function.

SFRs are allocated to the FF00H to FFFFH area.

Special function registers can be manipulated like general-purpose registers, using operation, transfer and bit manipulation instructions. The manipulatable bit units, 1, 8, and 16, depend on the special function register type.

Each manipulation bit unit can be specified as follows.

• 1-bit manipulation

Describe the symbol reserved by the assembler for the 1-bit manipulation instruction operand (sfr.bit).

This manipulation can also be specified with an address.

8-bit manipulation

Describe the symbol reserved by the assembler for the 8-bit manipulation instruction operand (sfr).

This manipulation can also be specified with an address.

• 16-bit manipulation

Describe the symbol reserved by the assembler for the 16-bit manipulation instruction operand (sfrp).

When specifying an address, describe an even address.

Table 3-6 gives a list of the special function registers. The meanings of items in the table are as follows.

Symbol

Symbol indicating the address of a special function register. It is a reserved word in the RA78K0, and is defined as an sfr variable using the #pragma sfr directive in the CC78K0. When using the RA78K0, ID78K0-NS, ID78K0, or SM78K0, symbols can be written as an instruction operand.

R/W

Indicates whether the corresponding special function register can be read or written.

R/W: Read/write enable

R: Read only

W: Write only

· Manipulatable bit units

Indicates the manipulatable bit unit (1, 8, or 16). "-" indicates a bit unit for which manipulation is not possible.

After reset

Indicates each register status upon RESET input.

Table 3-6. Special Function Register List (1/4)

Address	Special Function Register (SFR) Name	Symbol	R/W	/ Manipulatable Bit Unit			After
			•	1 Bit	8 Bits	16 Bits	Reset
FF00H	Port register 0	P0	R/W	V	V	-	00H
FF01H	Port register 1	P1	R/W	V	√	-	00H
FF02H	Port register 2	P2	R	V	√	-	Undefined
FF03H	Port register 3	P3	R/W	√	√	_	00H
FF04H	Port register 4	P4	R/W	√	√	-	00H
FF05H	Port register 5	P5	R/W	√	√	_	00H
FF06H	Port register 6	P6	R/W	\checkmark	√	_	00H
FF07H	Port register 7	P7	R/W	$\sqrt{}$	√	_	00H
FF08H	A/D conversion result register	ADCR	R	-	-	\checkmark	Undefined
FF09H							
FF0AH	Receive buffer register 6	RXB6	R	-	√	_	FFH
FF0BH	Transmit buffer register 6	TXB6	R/W	-	√	_	FFH
FF0CH	Port register 12	P12	R/W	\checkmark	√	_	00H
FF0DH	Port register 13	P13	R/W	$\sqrt{}$	√	_	00H
FF0EH	Port register 14	P14	R/W	$\sqrt{}$	√	-	00H
FF0FH	Serial I/O shift register 10	SIO10	R	-	√	-	00H
FF10H	16-bit timer counter 00	TM00	R	_	-	\checkmark	0000H
FF11H							
FF12H	16-bit timer capture/compare register 000	CR000	R/W	_	_	\checkmark	0000H
FF13H							
FF14H	16-bit timer capture/compare register 010	CR010	R/W	_	_	\checkmark	0000H
FF15H							
FF16H	8-bit timer counter 50	TM50	R	-	√	_	00H
FF17H	8-bit timer compare register 50	CR50	R/W	-	V	_	00H
FF18H	8-bit timer H compare register 00	CMP00	R/W	-	√	_	00H
FF19H	8-bit timer H compare register 10	CMP10	R/W	-	V	_	00H
FF1AH	8-bit timer H compare register 01	CMP01	R/W	-	V	_	00H
FF1BH	8-bit timer H compare register 11	CMP11	R/W	-	V	_	00H
FF1FH	8-bit timer counter 51	TM51	R	-	√	_	00H
FF20H	Port mode register 0	PM0	R/W	V	V	_	FFH
FF21H	Port mode register 1	PM1	R/W	V	V	_	FFH
FF23H	Port mode register 3	PM3	R/W	$\sqrt{}$	V	_	FFH
FF24H	Port mode register 4	PM4	R/W	V	V	_	FFH
FF25H	Port mode register 5	PM5	R/W	V	V	_	FFH
FF26H	Port mode register 6	PM6	R/W	V	V	_	FFH
FF27H	Port mode register 7	PM7	R/W	√	√	_	FFH
FF28H	A/D converter mode register	ADM	R/W	$\sqrt{}$	√	_	00H
FF29H	Analog input channel specification register	ADS	R/W	$\sqrt{}$	√	_	00H
FF2AH	Power-fail comparison mode register	PFM	R/W	$\sqrt{}$	√	_	00H
FF2BH	Power-fail comparison threshold register	PFT	R/W	-	√	_	00H
FF2CH	Port mode register 12	PM12	R/W	$\sqrt{}$	√	_	FFH
FF2EH	Port mode register 14	PM14	R/W	\checkmark	$\sqrt{}$	_	FFH

Table 3-6. Special Function Register List (2/4)

Address	Special Function Register (SFR) Name		nbol	R/W	Manipulatable Bit Unit			After
					1 Bit	8 Bits	16 Bits	Reset
FF30H	Pull-up resistor option register 0	PU0		R/W	V	√	-	00H
FF31H	Pull-up resistor option register 1	PU1		R/W	$\sqrt{}$	√	-	00H
FF33H	Pull-up resistor option register 3	PU3		R/W	$\sqrt{}$	√	-	00H
FF34H	Pull-up resistor option register 4	PU4		R/W	V	√	-	00H
FF35H	Pull-up resistor option register 5	PU5		R/W	V	√	-	00H
FF37H	Pull-up resistor option register 7	PU7		R/W	V	√	-	00H
FF38H	Correction address register 0 ^{Note 1}	CORA	D0	R/W	-	-	√	0000H
FF39H								
FF3AH	Correction address register 1 ^{Note 1}	CORA	ND1	R/W	-	-	√	0000H
FF3BH								
FF3CH	Pull-up resistor option register 12	PU12		R/W	V	√	-	00H
FF3EH	Pull-up resistor option register 14	PU14		R/W	$\sqrt{}$	√	-	00H
FF40H	Clock output selection register	CKS		R/W	V	√	-	00H
FF41H	8-bit timer compare register 51	CR51		R/W	-	√	-	00H
FF43H	8-bit timer mode control register 51	TMC5	1	R/W	V	√	-	00H
FF48H	External interrupt rising edge enable register	EGP		R/W	V	√	-	00H
FF49H	External interrupt falling edge enable register	EGN		R/W	V	√	-	00H
FF4AH	Serial I/O shift register 11 ^{Note 2}	SIO11		R	_	√	-	00H
FF4CH	Transmit buffer register 11 ^{Note 2}	SOTB	11	R/W	_	√	-	Undefined
FF4FH	Input switch control register	ISC		R/W	V	√	-	00H
FF50H	Asynchronous serial interface operation mode register 6	ASIM	6	R/W	√	√	_	01H
FF53H	Asynchronous serial interface reception error status register 6	ASIS	3	R	_	√	_	00H
FF55H	Asynchronous serial interface transmission status register 6	ASIF6	i	R	-	√	-	00H
FF56H	Clock selection register 6	CKSR	:6	R/W	-	√	-	00H
FF57H	Baud rate generator control register 6	BRGC	6	R/W	-	√	-	FFH
FF58H	Asynchronous serial interface control register 6	ASICL	.6	R/W	V	√	-	16H
FF60H	Remainder data register 0	SDR0	SDR0L	R	-	√	√	00H
FF61H			SDR0H		-	√		00H
FF62H	Multiplication/division data register A0	MDA0L	MDAOLL	R/W	-	√	√	00H
FF63H			MDAOLH		_	√		00H
FF64H		MDA0H	MDA0HL	R/W	_	√	√	00H
FF65H			MDA0HH		_	√		00H
FF66H	Multiplication/division data register B0	MDB0	MDBOL	R/W	_	√	√	00H
FF67H			MDB0H		_	√		00H
FF68H	Multiplier/divider control register 0	DMUC	00	R/W	V	√	-	00H
FF69H	8-bit timer H mode register 0	TMHN	1D0	R/W	V	√	_	00H
FF6AH	Timer clock selection register 50	TCL50)	R/W	-	√	_	00H
FF6BH	8-bit timer mode control register 50	TMC5	0	R/W	V	√	_	00H

Notes 1. μ PD78F0136H, 78F0138H, and 78F0138HD only.

^{2.} μ PD78F0133H, 78F0134H, 78F0136H, 78F0138H, and 78F0138HD only.

Table 3-6. Special Function Register List (3/4)

Address	Special Function Register (SFR) Name	Symbol	R/W	Man	ipulatable B	it Unit	After
				1 Bit	8 Bits	16 Bits	Reset
FF6CH	8-bit timer H mode register 1	TMHMD1	R/W	√	√	_	00H
FF6DH	8-bit timer H carrier control register 1	TMCYC1	R/W	$\sqrt{}$	√	_	00H
FF6EH	Key return mode register	KRM	R/W	√	V	-	00H
FF6FH	Watch timer operation mode register	WTM	R/W	$\sqrt{}$	√	_	00H
FF70H	Asynchronous serial interface operation mode register 0	ASIM0	R/W	V	V	-	01H
FF71H	Baud rate generator control register 0	BRGC0	R/W	-	V	-	1FH
FF72H	Receive buffer register 0	RXB0	R	-	V	-	FFH
FF73H	Asynchronous serial interface reception error status register 0	ASIS0	R	-	V	-	00H
FF74H	Transmit shift register 0	TXS0	W	=	√	-	FFH
FF80H	Serial operation mode register 10	CSIM10	R/W	√	V	-	00H
FF81H	Serial clock selection register 10	CSIC10	R/W	√	V	-	00H
FF84H	Transmit buffer register 10	SOTB10	R/W	-	V	-	Undefined
FF88H	Serial operation mode register 11 ^{Note 1}	CSIM11	R/W	√	V	-	00H
FF89H	Serial clock selection register 11 ^{Note 1}	CSIC11	R/W	√	V	_	00H
FF8AH	Correction control register ^{Note 2}	CORCN	R/W	√	V	_	00H
FF8CH	Timer clock selection register 51	TCL51	R/W	-	V	-	00H
FF98H	Watchdog timer mode register	WDTM	R/W	_	V	_	67H
FF99H	Watchdog timer enable register	WDTE	R/W	_	V	_	9AH
FFA0H	Internal oscillation mode register	RCM	R/W	√	V	-	00H
FFA1H	Main clock mode register	MCM	R/W	√	V	-	00H
FFA2H	Main OSC control register	MOC	R/W	√	V	-	00H
FFA3H	Oscillation stabilization time counter status register	OSTC	R	√	V	-	00H
FFA4H	Oscillation stabilization time select register	OSTS	R/W	-	V	-	05H
FFA9H	Clock monitor mode register	CLM	R/W	√	V	-	00H
FFACH	Reset control flag register	RESF	R	-	V	-	00H ^{Note 3}
FFB0H	16-bit timer counter 01 ^{Note 1}	TM01	R	-	_	V	0000H
FFB1H							
FFB2H	16-bit timer capture/compare register 001Note 1	CR001	R/W	-	_	√	0000H
FFB3H							
FFB4H	16-bit timer capture/compare register 011Note 1	CR011	R/W	-	_	√	0000H
FFB5H							
FFB6H	16-bit timer mode control register 01 ^{Note 1}	TMC01	R/W	√	V	-	00H
FFB7H	Prescaler mode register 01 ^{Note 1}	PRM01	R/W	√	√	-	00H
FFB8H	Capture/compare control register 01Note 1	CRC01	R/W	√	√	-	00H
FFB9H	16-bit timer output control register 01 ^{Note 1}	TOC01	R/W	√	√	_	00H
FFBAH	16-bit timer mode control register 00	TMC00	R/W	√	√	-	00H
FFBBH	Prescaler mode register 00	PRM00	R/W	V	√	-	00H

Notes 1. μ PD78F0133H, 78F0134H, 78F0136H, 78F0138H, and 78F0138HD only.

^{2.} μ PD78F0136H, 78F0138H, and 78F0138HD only.

³ This value varies depending on the reset source.

Table 3-6. Special Function Register List (4/4)

Address	Special Function Register (SFR) Name	Special Function Register (SFR) Name Symbol		R/W	Manipulatable Bit Unit			After
					1 Bit	8 Bits	16 Bits	Reset
FFBCH	Capture/compare control register 00	CRC0	0	R/W	V	√	_	00H
FFBDH	16-bit timer output control register 00	TOC0	0	R/W	V	√	_	00H
FFBEH	Low-voltage detection register	LVIM		R/W	V	√	_	00H
FFBFH	Low-voltage detection level selection register	LVIS		R/W	-	$\sqrt{}$	_	00H
FFC0H	Flash protect command register	PFCMD		W	-	\checkmark	_	Undefined
FFC2H	Flash status register	PFS		R/W	$\sqrt{}$	\checkmark	_	00H
FFC4H	Flash programming mode control register	FLPMC		R/W	V	$\sqrt{}$	_	0XH ^{Note 1}
FFE0H	Interrupt request flag register 0L	IF0	IF0L	R/W	V	$\sqrt{}$	√	00H
FFE1H	Interrupt request flag register 0H		IF0H	R/W	V	$\sqrt{}$		00H
FFE2H	Interrupt request flag register 1L	IF1	IF1L	R/W	V	$\sqrt{}$	√	00H
FFE3H	Interrupt request flag register 1H		IF1H	R/W	V	$\sqrt{}$		00H
FFE4H	Interrupt mask flag register 0L	MK0	MK0L	R/W	$\sqrt{}$	√		FFH
FFE5H	Interrupt mask flag register 0H		MK0H	R/W	$\sqrt{}$	√		FFH
FFE6H	Interrupt mask flag register 1L	MK1	MK1L	R/W	$\sqrt{}$	√		FFH
FFE7H	Interrupt mask flag register 1H		MK1H	R/W	$\sqrt{}$	√		DFH
FFE8H	Priority specification flag register 0L	PR0	PR0L	R/W	$\sqrt{}$	√		FFH
FFE9H	Priority specification flag register 0H		PR0H	R/W	$\sqrt{}$	√		FFH
FFEAH	Priority specification flag register 1L	PR1	PR1L	R/W	$\sqrt{}$	√		FFH
FFEBH	Priority specification flag register 1H		PR1H	R/W	V	$\sqrt{}$		FFH
FFF0H	Internal memory size switching register Note 2	IMS		R/W	-	\checkmark	_	CFH
FFF4H	Internal expansion RAM size switching register Note 2	IXS		R/W	-	\checkmark	_	0CH
FFFBH	Processor clock control register	PCC		R/W	$\sqrt{}$	\checkmark	_	00H

Notes 1. Varies depending on the operation mode.

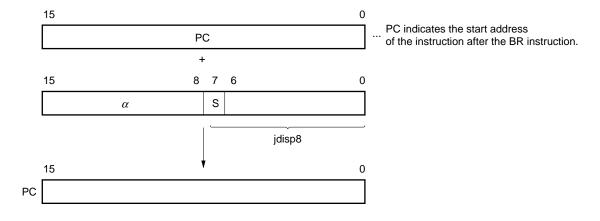
User mode: 08HOn-board mode: 0CH

2. Regardless of the internal memory capacity, the initial values of the internal memory size switching register (IMS) and internal expansion RAM size switching register (IXS) of all products in the 78K0/KE1+ are fixed (IMS = CFH, IXS = 0CH). Therefore, set the value corresponding to each product as indicated below. In addition, set the following values to the IMS and the IXS when using the 78K0/KE1+ to evaluate the program of a mask ROM version of the 78K0/KE1.

Flash Memory Version (78K0/KE1+)	Target Mask ROM Version (78K0/KE1)	IMS	IXS	
_	μPD780131	42H	0CH	
μPD78F0132H	μPD780132	44H		
μPD78F0133H	μPD780133	С6Н		
μPD78F0134H	μPD780134	С8Н		
μPD78F0136H	μPD780136	ССН	0AH	
μPD78F0138H, 78F0138HD	μPD780138	CFH		

3.3 Instruction Address Addressing

An instruction address is determined by program counter (PC) contents and is normally incremented (+1 for each byte) automatically according to the number of bytes of an instruction to be fetched each time another instruction is executed. When a branch instruction is executed, the branch destination information is set to the PC and branched by the following addressing (for details of instructions, refer to **78K/0 Series Instructions User's Manual (U12326E)**.


3.3.1 Relative addressing

[Function]

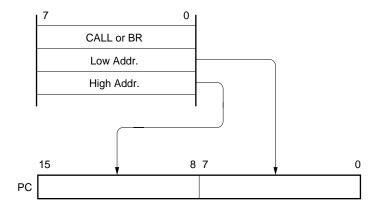
The value obtained by adding 8-bit immediate data (displacement value: jdisp8) of an instruction code to the start address of the following instruction is transferred to the program counter (PC) and branched. The displacement value is treated as signed two's complement data (-128 to +127) and bit 7 becomes a sign bit. In other words, relative addressing consists of relative branching from the start address of the following instruction to the -128 to +127 range.

This function is carried out when the BR \$addr16 instruction or a conditional branch instruction is executed.

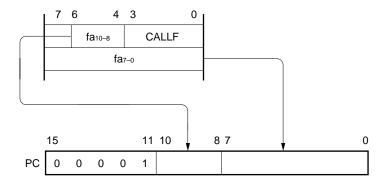
[Illustration]

When S = 0, all bits of α are 0. When S = 1, all bits of α are 1.

3.3.2 Immediate addressing


[Function]

Immediate data in the instruction word is transferred to the program counter (PC) and branched.


This function is carried out when the CALL !addr16 or BR !addr16 or CALLF !addr11 instruction is executed. CALL !addr16 and BR !addr16 instructions can be branched to the entire memory space. The CALLF !addr11 instruction is branched to the 0800H to 0FFFH area.

[Illustration]

In the case of CALL !addr16 and BR !addr16 instructions

In the case of CALLF !addr11 instruction

3.3.3 Table indirect addressing

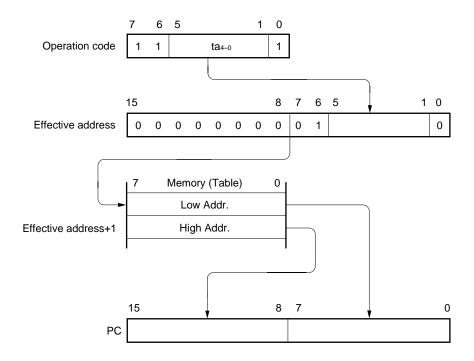
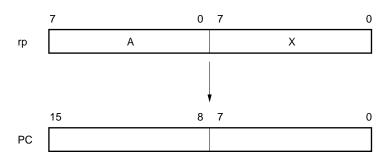

[Function]

Table contents (branch destination address) of the particular location to be addressed by bits 1 to 5 of the immediate data of an operation code are transferred to the program counter (PC) and branched.

This function is carried out when the CALLT [addr5] instruction is executed.

This instruction references the address stored in the memory table from 40H to 7FH, and allows branching to the entire memory space.

[Illustration]



3.3.4 Register addressing

[Function]

Register pair (AX) contents to be specified with an instruction word are transferred to the program counter (PC) and branched.

This function is carried out when the BR AX instruction is executed.

3.4 Operand Address Addressing

The following methods are available to specify the register and memory (addressing) to undergo manipulation during instruction execution.

3.4.1 Implied addressing

[Function]

The register that functions as an accumulator (A and AX) among the general-purpose registers is automatically (implicitly) addressed.

Of the 78K0/KE1+ instruction words, the following instructions employ implied addressing.

Instruction	Register to Be Specified by Implied Addressing	
MULU	A register for multiplicand and AX register for product storage	
DIVUW	AX register for dividend and quotient storage	
ADJBA/ADJBS	A register for storage of numeric values that become decimal correction targets	
ROR4/ROL4	A register for storage of digit data that undergoes digit rotation	

[Operand format]

Because implied addressing can be automatically employed with an instruction, no particular operand format is necessary.

[Description example]

In the case of MULU X

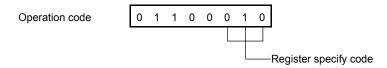
With an 8-bit \times 8-bit multiply instruction, the product of A register and X register is stored in AX. In this example, the A and AX registers are specified by implied addressing.

3.4.2 Register addressing

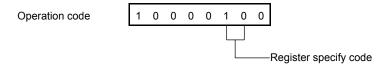
[Function]

The general-purpose register to be specified is accessed as an operand with the register bank select flags (RBS0 to RBS1) and the register specify codes (Rn and RPn) of an operation code.

Register addressing is carried out when an instruction with the following operand format is executed. When an 8-bit register is specified, one of the eight registers is specified with 3 bits in the operation code.


[Operand format]

Identifier	Description
r	X, A, C, B, E, D, L, H
rp	AX, BC, DE, HL


'r' and 'rp' can be described by absolute names (R0 to R7 and RP0 to RP3) as well as function names (X, A, C, B, E, D, L, H, AX, BC, DE, and HL).

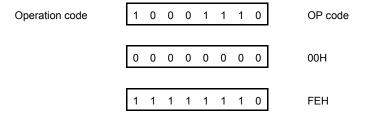
[Description example]

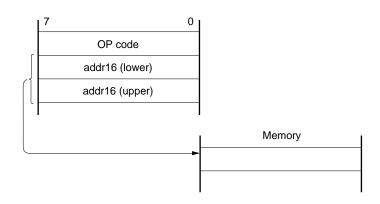
MOV A, C; when selecting C register as r

INCW DE; when selecting DE register pair as rp

3.4.3 Direct addressing

[Function]


The memory to be manipulated is directly addressed with immediate data in an instruction word becoming an operand address.


[Operand format]

Identifier	Description
addr16	Label or 16-bit immediate data

[Description example]

MOV A, !0FE00H; when setting !addr16 to FE00H

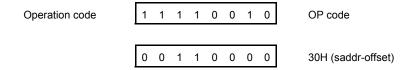
3.4.4 Short direct addressing

[Function]

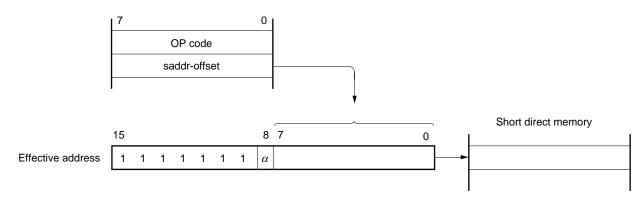
The memory to be manipulated in the fixed space is directly addressed with 8-bit data in an instruction word.

This addressing is applied to the 256-byte space FE20H to FF1FH. Internal RAM and special function registers (SFRs) are mapped at FE20H to FEFFH and FF00H to FF1FH, respectively.

The SFR area (FF00H to FF1FH) where short direct addressing is applied is a part of the overall SFR area. Ports that are frequently accessed in a program and compare and capture registers of the timer/event counter are mapped in this area, allowing SFRs to be manipulated with a small number of bytes and clocks.


When 8-bit immediate data is at 20H to FFH, bit 8 of an effective address is set to 0. When it is at 00H to 1FH, bit 8 is set to 1. Refer to the [Illustration] shown below.

[Operand format]


Identifier	Description	
saddr	mmediate data that indicate label or FE20H to FF1FH	
saddrp	Immediate data that indicate label or FE20H to FF1FH (even address only)	

[Description example]

MOV 0FE30H, A; when transferring value of A register to saddr (FE30H)

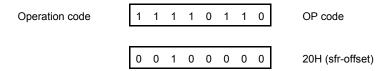
[Illustration]

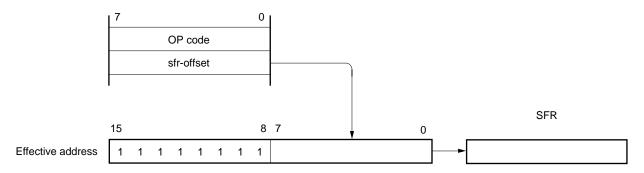
When 8-bit immediate data is 20H to FFH, α = 0

When 8-bit immediate data is 00H to 1FH, α = 1

3.4.5 Special function register (SFR) addressing

[Function]


A memory-mapped special function register (SFR) is addressed with 8-bit immediate data in an instruction word. This addressing is applied to the 240-byte spaces FF00H to FFCFH and FFE0H to FFFFH. However, the SFRs mapped at FF00H to FF1FH can be accessed with short direct addressing.


[Operand format]

Identifier	Description	
sfr	Special function register name	
sfrp	16-bit manipulatable special function register name (even address only)	

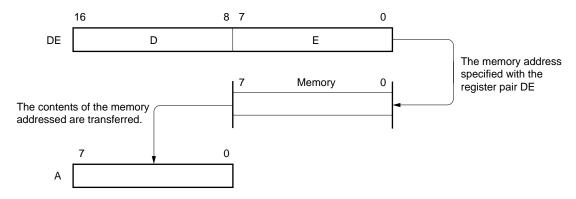
[Description example]

MOV PM0, A; when selecting PM0 (FF20H) as sfr

3.4.6 Register indirect addressing

[Function]

Register pair contents specified by a register pair specify code in an instruction word and by a register bank select flag (RBS0 and RBS1) serve as an operand address for addressing the memory. This addressing can be carried out for all the memory spaces.


[Operand format]

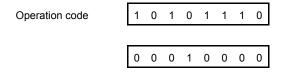
Identifier	Description
_	[DE], [HL]

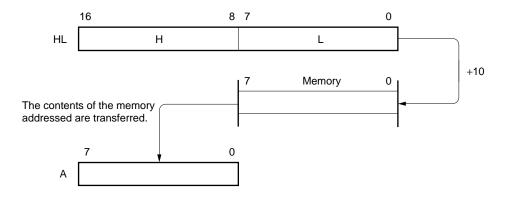
[Description example]

MOV A, [DE]; when selecting [DE] as register pair

3.4.7 Based addressing

[Function]


8-bit immediate data is added as offset data to the contents of the base register, that is, the HL register pair in the register bank specified by the register bank select flag (RBS0 and RBS1), and the sum is used to address the memory. Addition is performed by expanding the offset data as a positive number to 16 bits. A carry from the 16th bit is ignored. This addressing can be carried out for all the memory spaces.


[Operand format]

Identifier	Description	
1	[HL + byte]	

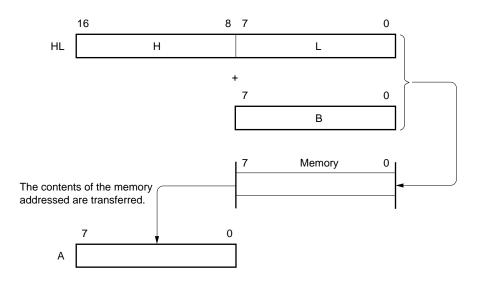
[Description example]

MOV A, [HL + 10H]; when setting byte to 10H

3.4.8 Based indexed addressing

[Function]

The B or C register contents specified in an instruction word are added to the contents of the base register, that is, the HL register pair in the register bank specified by the register bank select flag (RBS0 and RBS1), and the sum is used to address the memory. Addition is performed by expanding the B or C register contents as a positive number to 16 bits. A carry from the 16th bit is ignored. This addressing can be carried out for all the memory spaces.


[Operand format]

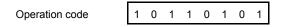
Identifier	Description	
_	[HL + B], [HL + C]	

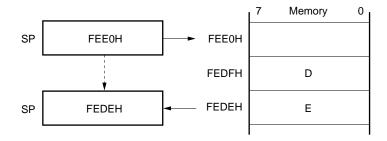
[Description example]

In the case of MOV A, [HL + B] (selecting B register)

3.4.9 Stack addressing

[Function]


The stack area is indirectly addressed with the stack pointer (SP) contents.


This addressing method is automatically employed when the PUSH, POP, subroutine call and return instructions are executed or the register is saved/reset upon generation of an interrupt request.

With stack addressing, only the internal high-speed RAM area can be accessed.

[Description example]

In the case of PUSH DE (saving DE register)

CHAPTER 4 PORT FUNCTIONS

4.1 Port Functions

There are two types of pin I/O buffer power supplies: AV_{REF} and EV_{DD}. The relationship between these power supplies and the pins is shown below.

Table 4-1. Pin I/O Buffer Power Supplies

Power Supply	Corresponding Pins
AVREF	P20 to P27
EV _{DD}	Port pins other than P20 to P27

78K0/KE1+ products are provided with the ports shown in Figure 4-1, which enable variety of control operations. The functions of each port are shown in Table 4-2.

In addition to the function as digital I/O ports, these ports have several alternate functions. For details of the alternate functions, refer to **CHAPTER 2 PIN FUNCTIONS**.

P50 P00 P53 Port 0 P60 P06 P10 P63 P70 Port 1 Port 7 P17 P77 P20 Port 12 P120 Port 2 Port 13 P130 P140 Port 14 P141 P27 P30 Port 3 P33 P40 P43

Figure 4-1. Port Types

Table 4-2. Port Functions (1/2)

Pin Name	I/O	Function	After Reset	Alternate Function
P00	I/O	Port 0.	Input	TI000
P01		7-bit I/O port.		TI010/TO00
P02		Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a		SO11 ^{Note}
P03		software setting.		SI11 ^{Note}
P04				SCK11 ^{Note}
P05				SSI11 Note/TI001 Note
P06				TI011 ^{Note} /TO01 ^{Note}
P10	I/O	Port 1.	Input	SCK10/TxD0
P11		8-bit I/O port.		SI10/RxD0
P12		Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a		SO10
P13		software setting.		TxD6
P14				RxD6
P15				тоно
P16				TOH1/INTP5
P17				TI50/TO50/FLMD1
P20 to P27	Input	Port 2. 8-bit input-only port.	Input	ANI0 to ANI7
P30 to P32	I/O	Port 3. 4-bit I/O port. Input/output can be specified in 1-bit units.	Input	INTP1 to INTP3
P33		Use of an on-chip pull-up resistor can be specified by a software setting.		INTP4/TI51/TO51
P40 to P43	1/0	Port 4. 4-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input	_
P50 to P53	I/O	Port 5. 4-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input	_
P60 to P63	I/O	Port 6. 4-bit I/O port (N-ch open drain). Input/output can be specified in 1-bit units.	Input	-
P70 to P77	I/O	Port 7. 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input	KR0 to KR7

Note SO11, SI11, $\overline{\text{SCK11}}$, $\overline{\text{SSI11}}$, TI001, TI011, and TO01 are available only in the μ PD78F0133H, 78F0134H, 78F0136H, 78F0138HD.

Table 4-2. Port Functions (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
P120	1/0	Port 12. 1-bit I/O port. Use of an on-chip pull-up resistor can be specified by a software setting.	Input	INTP0
P130	Output	Port 13. 1-bit output-only port.	Output	-
P140	I/O	Port 14.	Input	PCL/INTP6
P141		2-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.		BUZ/INTP7

4.2 Port Configuration

Ports include the following hardware.

Table 4-3. Port Configuration

Item	Configuration
Control registers	Port mode register (PM0, PM1, PM3 to PM7, PM12, PM14) Port register (P0 to P7, P12 to P14) Pull-up resistor option register (PU0, PU1, PU3 to PU5, PU7, PU12, PU14)
Port	Total: 51 (CMOS I/O: 38, CMOS input: 8, CMOS output: 1, N-ch open drain I/O: 4)
Pull-up resistor	Total: 38

4.2.1 Port 0

Port 0 is a 7-bit I/O port with an output latch. Port 0 can be set to the input mode or output mode in 1-bit units using port mode register 0 (PM0). When the P00 to P06 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 0 (PU0).

This port can also be used for timer I/O, serial interface data I/O, and clock I/O.

RESET input sets port 0 to input mode.

Figures 4-2 to 4-5 show block diagrams of port 0.

<R> Caution When P02/SO11^{Note}, P03/SI11^{Note}, and P04/SCK11^{Note} are used as general-purpose ports, set serial operation mode register 11 (CSIM11) and serial clock selection register 11 (CSIC11) to the default status (00H).

WRPU PU0
PU0, PU03, PU05
Alternate function

WRPORT

Output latch
(P00, P03, P05)
P00/T1000,
P03/Sl11 Note.

P05/SSI11 Note/TI001 Note

Figure 4-2. Block Diagram of P00, P03, and P05

Note Available only in the μ PD78F0133H, 78F0134H, 78F0136H, 78F0138H, and 78F0138HD.

PU0: Pull-up resistor option register 0

PM0 PM00. PM03. PM05

PM0: Port mode register 0

RD: Read signal WRxx: Write signal

WRPM

 EV_{DD} WR_{PU} PU0 PU01, PU06 Alternate function RD Selector Internal bus WR_{PORT} Output latch P01/TI010/TO00, P06/TI011^{Note}/TO01^{Note} (P01, P06) WRPM PM0 PM01, PM06 Alternate function

Figure 4-3. Block Diagram of P01 and P06

Note Available only in the μ PD78F0133H, 78F0134H, 78F0136H, 78F0138HD.

PU0: Pull-up resistor option register 0

PM0: Port mode register 0

 EV_DD WR_{PU} PU0 PU02 RD Selector Internal bus WRPORT Output latch - P02/SO11^{Note} (P02) WR_{PM} PM0 PM02 Alternate function

Figure 4-4. Block Diagram of P02

Note Available only in the μ PD78F0133H, 78F0134H, 78F0136H, 78F0138HD.

PU0: Pull-up resistor option register 0

PM0: Port mode register 0

EVDD WR_{PU} PU0 PU04 P-ch Alternate function RD Selector Internal bus WRPORT Output latch - P04/SCK11 Note (P04) **WR**_{PM} PM0 PM04 Alternate function

Figure 4-5. Block Diagram of P04

 $\textbf{Note} \quad \text{Available only in the } \mu \text{PD78F0133H, 78F0134H, 78F0136H, 78F0138HD}.$

PU0: Pull-up resistor option register 0

PM0: Port mode register 0

4.2.2 Port 1

Port 1 is an 8-bit I/O port with an output latch. Port 1 can be set to the input mode or output mode in 1-bit units using port mode register 1 (PM1). When the P10 to P17 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 1 (PU1).

This port can also be used for external interrupt request input, serial interface data I/O, clock I/O, timer I/O, and flash memory programming mode setting.

RESET input sets port 1 to input mode.

Figures 4-6 to 4-10 show block diagrams of port 1.

<R> Caution When P10/SCK10/TxD0, P11/SI10/RxD0, and P12/SO10 are used as general-purpose ports, set serial operation mode register 10 (CSIM10) and serial clock selection register 10 (CSIC10) to the default status (00H).

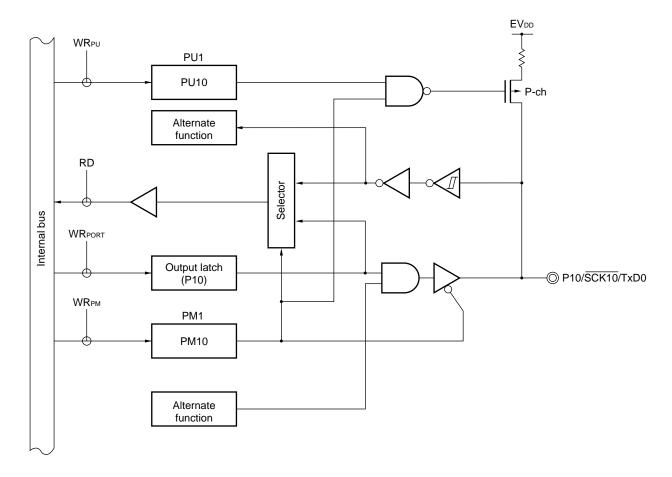


Figure 4-6. Block Diagram of P10

PU1: Pull-up resistor option register 1

PM1: Port mode register 1

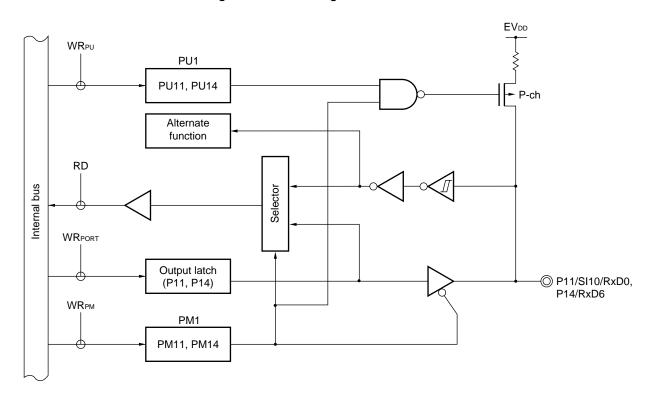


Figure 4-7. Block Diagram of P11 and P14

PM1: Port mode register 1

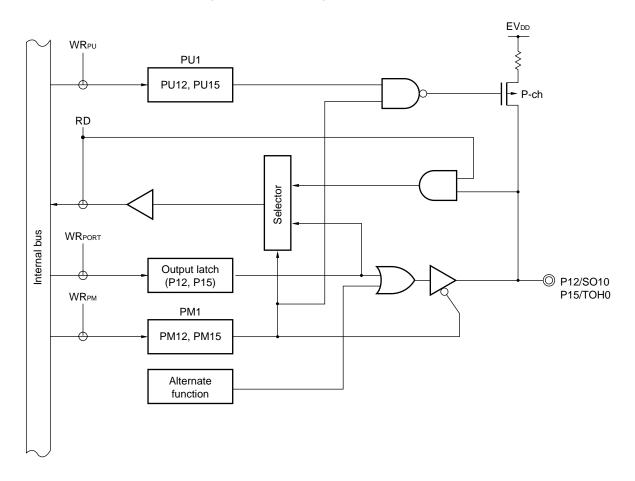


Figure 4-8. Block Diagram of P12 and P15

PM1: Port mode register 1

EVDD WR_{PU} PU1 PU13 P-ch RD Selector Internal bus WRPORT Output latch (P13) WR_{PM} PM1 PM13 Alternate function

Figure 4-9. Block Diagram of P13

PM1: Port mode register 1

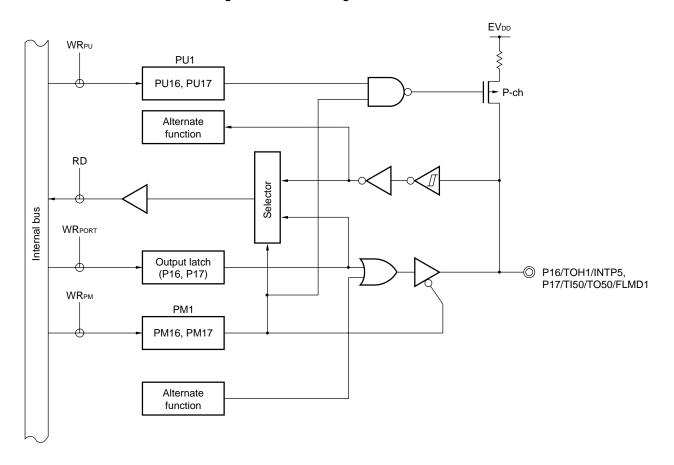
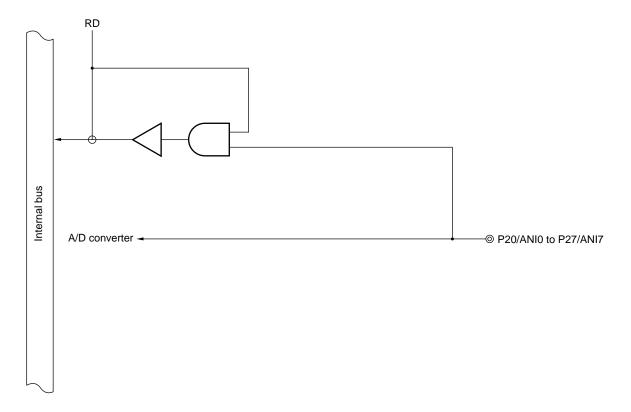


Figure 4-10. Block Diagram of P16 and P17

PM1: Port mode register 1


4.2.3 Port 2

Port 2 is an 8-bit input-only port.

This port can also be used for A/D converter analog input.

Figure 4-11 shows a block diagram of port 2.

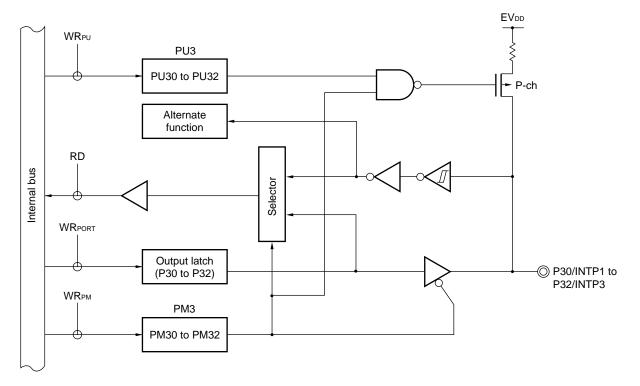
Figure 4-11. Block Diagram of P20 to P27

RD: Read signal

4.2.4 Port 3

Port 3 is a 4-bit I/O port with an output latch. Port 3 can be set to the input mode or output mode in 1-bit units using port mode register 3 (PM3). When used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 3 (PU3).

This port can also be used for external interrupt request input and timer I/O.


RESET input sets port 3 to input mode.

Figures 4-12 and 4-13 show block diagrams of port 3.

Caution In the µPD78F0138HD, be sure to pull the P31 pin down after reset to prevent malfunction.

Remark P31/INTP2 and P32/INTP3 of the μ PD78F0138HD can be used for on-chip debug mode setting when the on-chip debug function is used. For details, refer to **CHAPTER 27 ON-CHIP DEBUG FUNCTION** (μ PD78F0138HD ONLY).

Figure 4-12. Block Diagram of P30 to P32

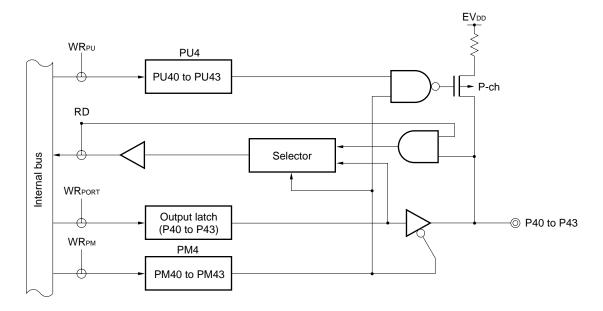
PU3: Pull-up resistor option register 3

PM3: Port mode register 3

EV_{DD} WR_{PU} PU3 PU33 Alternate function RD Selector Internal bus WRPORT Output latch (P33) © P33/INTP4/TI51/TO51 WR_{PM} РМ3 PM33 Alternate function

Figure 4-13. Block Diagram of P33

PM3: Port mode register 3


4.2.5 Port 4

Port 4 is a 4-bit I/O port with an output latch. Port 4 can be set to the input mode or output mode in 1-bit units using port mode register 4 (PM4). Use of an on-chip pull-up resistor can be specified in 1-bit units with pull-up resistor option register 4 (PU4).

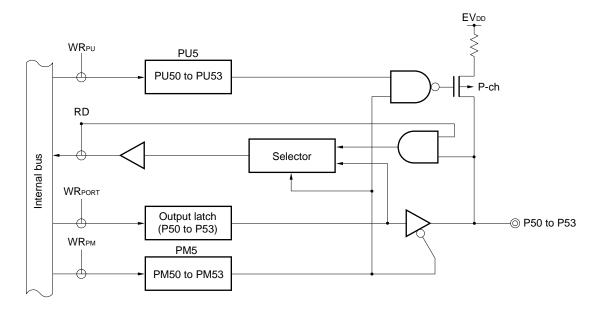
RESET input sets port 4 to input mode.

Figure 4-14 shows a block diagram of port 4.

Figure 4-14. Block Diagram of P40 to P43

PU4: Pull-up resistor option register 4

PM4: Port mode register 4


4.2.6 Port 5

Port 5 is a 4-bit I/O port with an output latch. Port 5 can be set to the input mode or output mode in 1-bit units using port mode register 5 (PM5). Use of an on-chip pull-up resistor can be specified in 1-bit units using pull-up resistor option register 5 (PU5).

RESET input sets port 5 to input mode.

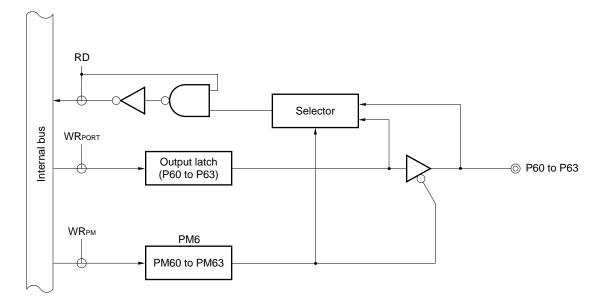
Figure 4-15 shows a block diagram of port 5.

Figure 4-15. Block Diagram of P50 to P53

PU5: Pull-up resistor option register 5

PM5: Port mode register 5

4.2.7 Port 6


Port 6 is a 4-bit I/O port with an output latch. Port 6 can be set to the input mode or output mode in 1-bit units using port mode register 6 (PM6).

The P60 to P63 pins are N-ch open-drain pins.

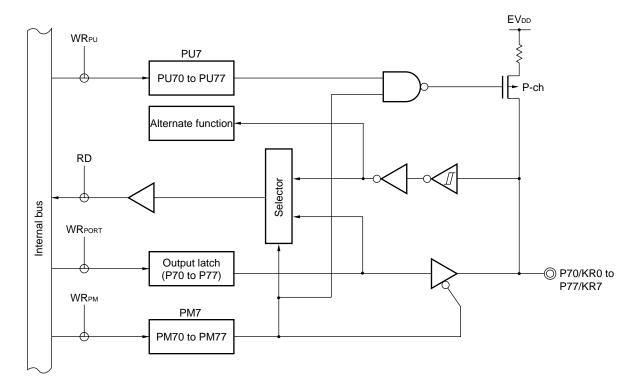
RESET input sets port 6 to input mode.

Figure 4-16 shows a block diagram of port 6.

Figure 4-16. Block Diagram of P60 to P63

PM6: Port mode register 6

4.2.8 Port 7


Port 7 is an 8-bit I/O port with an output latch. Port 7 can be set to the input mode or output mode in 1-bit units using port mode register 7 (PM7). When the P70 to P77 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 7 (PU7).

This port can also be used for key return input.

RESET input sets port 7 to input mode.

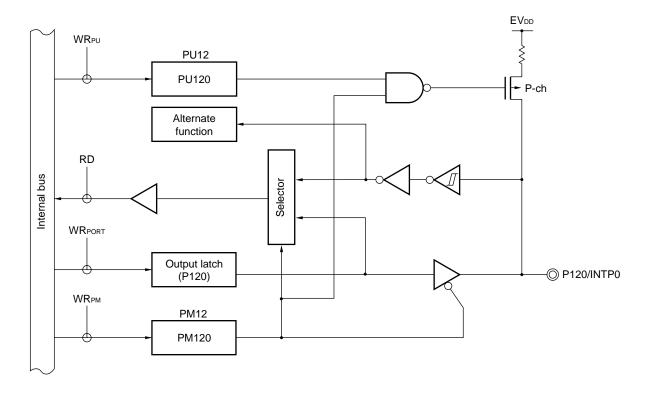
Figure 4-17 shows a block diagram of port 7.

Figure 4-17. Block Diagram of P70 to P77

PU7: Pull-up resistor option register 7

PM7: Port mode register 7

4.2.9 Port 12


Port 12 is a 1-bit I/O port with an output latch. Port 12 can be set to the input mode or output mode in 1-bit units using port mode register 12 (PM12). When used as an input port, use of an on-chip pull-up resistor can be specified by pull-up resistor option register 12 (PU12).

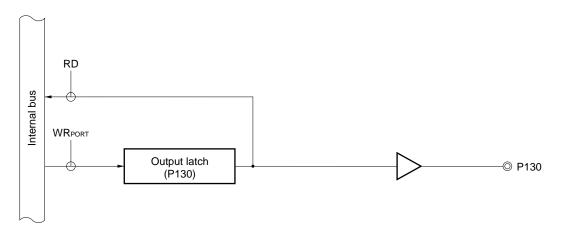
This port can also be used for external interrupt request input.

RESET input sets port 12 to input mode.

Figure 4-18 shows a block diagram of port 12.

Figure 4-18. Block Diagram of P120

PU12: Pull-up resistor option register 12


PM12: Port mode register 12

4.2.10 Port 13

Port 13 is a 1-bit output-only port.

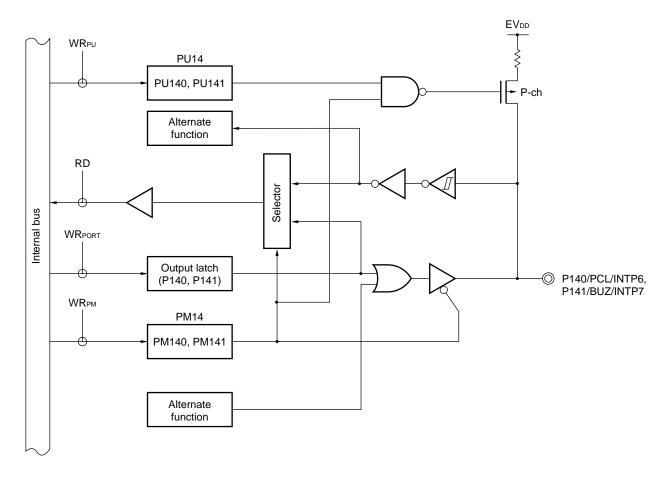
Figure 4-19 shows a block diagram of port 13.

Figure 4-19. Block Diagram of P130

RD: Read signal WRxx: Write signal

Remark When reset is effected, P130 outputs a low level. If P130 is set to output a high level before reset is effected, the output signal of P130 can be dummy-output as the CPU reset signal.

4.2.11 Port 14


Port 14 is a 2-bit I/O port with an output latch. Port 14 can be set to the input mode or output mode in 1-bit units using port mode register 14 (PM14). When the P140 and P141 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 14 (PU14).

This port can also be used for external interrupt request input, buzzer output, and clock output.

RESET input sets port 14 to input mode.

Figure 4-20 shows a block diagram of port 14.

Figure 4-20. Block Diagram of P140 and P141

PU14: Pull-up resistor option register 14

PM14: Port mode register 14

4.3 Registers Controlling Port Function

Port functions are controlled by the following three types of registers.

- Port mode registers (PM0, PM1, PM3 to PM7, PM12, PM14)
- Port registers (P0 to P7, P12 to P14)
- Pull-up resistor option registers (PU0, PU1, PU3 to PU5, PU7, PU12, PU14)

(1) Port mode registers (PM0, PM1, PM3 to PM7, PM12, and PM14)

These registers specify input or output mode for the port in 1-bit units.

These registers can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets these registers to FFH.

When port pins are used as alternate-function pins, set the port mode register and output latch as shown in Table 4-4.

Figure 4-21. Format of Port Mode Register

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PM0	1	PM06	PM05	PM04	PM03	PM02	PM01	PM00	FF20H	FFH	R/W
									•		
	7	6	5	4	3	2	1	0	•		
PM1	PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10	FF21H	FFH	R/W
	7	6	5	4	3	2	1	0			
PM3	1	1	1	1	PM33	PM32	PM31	PM30	FF23H	FFH	R/W
	7	6	5	4	3	2	1	0	1		
PM4	1	1	1	1	PM43	PM42	PM41	PM40	FF24H	FFH	R/W
	7	6	5	4	3	2	1	0	•		
PM5	1	1	1	1	PM53	PM52	PM51	PM50	FF25H	FFH	R/W
	7	6	5	4	3	2	1	0			
PM6	1	1	1	1	PM63	PM62	PM61	PM60	FF26H	FFH	R/W
	7	6	5	4	3	2	1	0	•		
PM7	PM77	PM76	PM75	PM74	PM73	PM72	PM71	PM70	FF27H	FFH	R/W
	7	6	5	4	3	2	1	0			
PM12	1	1	1	1	1	1	1	PM120	FF2CH	FFH	R/W
	7	6	5	4	3	2	1	0	1		
PM14	1	1	1	1	1	1	PM141	PM140	FF2EH	FFH	R/W

PMmn	Pmn pin I/O mode selection						
	(m = 0, 1, 3 to 7, 12, 14; n = 0 to 7)						
0	Output mode (output buffer on)						
1	Input mode (output buffer off)						

 Table 4-4. Settings of Port Mode Register and Output Latch When Using Alternate Function

Pin Name	Alternate Function	PM××	Pxx	
	Function Name	I/O		
P00	TI000	Input	1	×
P01	TI010	Input	1	×
	TO00	Output	0	0
P02	SO11 ^{Note}	Output	0	0
P03	SI11 ^{Note}	Input	1	×
P04	SCK11 Note	Input	1	×
		Output	0	1
P05	SSI11 ^{Note}	Input	1	×
	TI001 ^{Note}	Input	1	×
P06	TI011 ^{Note}	Input	1	×
	TO01 ^{Note}	Output	0	0
P10	SCK10	Input	1	×
		Output	0	1
	TxD0	Output	0	1
P11	SI10	Input	1	×
	RxD0	Input	1	×
P12	SO10	Output	0	0
P13	TxD6	Output	0	1
P14	RxD6	Input	1	×
P15	ТОН0	Output	0	0
P16	ТОН1	Output	0	0
	INTP5	Input	1	×
P17	TI50	Input	1	×
	TO50	Output	0	0
P30 to P32	INTP1 to INTP3	Input	1	×
P33	INTP4	Input	1	×
	TI51	Input	1	×
	TO51	Output	0	0
P70 to P77	KR0 to KR7	Input	1	×
P120	INTP0	Input	1	×
P140	PCL	Output	0	0
	INTP6	Input	1	×
P141	BUZ	Output	0	0
	INTP7	Input	1	×

Note SO11, SI11, $\overline{\text{SCK11}}$, $\overline{\text{SSI11}}$, TI001, TI011, and TO01 are available only in the μ PD78F0133H, 78F0134H, 78F0136H, 78F0138HD.

Remark x: Don't care

PMxx: Port mode register Pxx: Port output latch

(2) Port registers (P0 to P7, P12 to P14)

These registers write the data that is output from the chip when data is output from a port.

If the data is read in the input mode, the pin level is read. If it is read in the output mode, the value of the output latch is read.

These registers can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears these registers to 00H (but P2 is undefined).

Figure 4-22. Format of Port Register

Symbol	7	6	5	4	3	2	1	()	Address	After reset	R/W
P0	0	P06	P05	P04	P03	P02	P0	1 P(00	FF00H	00H (output latch)	R/W
	_	•	_		•			,				
P1	7	6	5	4	3	2	1		-	FF01H	0011 (autaut latab)	D 44/
PI	P17	P16	P15	P14	P13	P12	P1	1 P	10	FFUTH	00H (output latch)	R/W
	7	6	5	4	3	2	1	()			
P2	P27	P26	P25	P24	P23	P22	P2	1 P2	20	FF02H	Undefined	R
	_	•	_					,				
Do	7	6	5	4	3	2	1	(\neg			544
P3	0	0	0	0	P33	P32	P3	1 P	30	FF03H	00H (output latch)	R/W
	7	6	5	4	3	2	1	()			
P4	0	0	0	0	P43	P42	P4	1 P4	40	FF04H	00H (output latch)	R/W
	7	6	5	4	3	2	1	()			
P5	0	0	0	0	P53	P52	P5	1 P	50	FF05H	00H (output latch)	R/W
	_	_	_						_			
Do	7	6	5	4	3	2	1	(544
P6	0	0	0	0	P63	P62	P6	1 P6	60	FF06H	00H (output latch)	R/W
	7	6	5	4	3	2	1	()			
P7	P77	P76	P75	P74	P73	P72	P7		70	FF07H	00H (output latch)	R/W
											(***, *********************************	
	7	6	5	4	3	2	1	()			
P12	0	0	0	0	0	0	0	P1	20	FF0CH	00H (output latch)	R/W
	7	6	5	4	3	2	1	($\overline{}$			
P13	0	0	0	0	0	0	0	P1	30	FF0DH	00H (output latch)	R/W
	7	6	5	4	3	2	1	()			
P14	0	0	0	0	0	0	P14			FF0EH	00H (output latch)	R/W
											oo (output latell)	
	Pmn					m = 0 to 7	. 12 to	14: n = 0	to 7			
			Output da	ta control				Input data read (in input mode)				
	0	Output			(/	-	Input low level				
	1	Output										
	<u> </u>	Output	1					Input high level				

(3) Pull-up resistor option registers (PU0, PU1, PU3 to PU5, PU7, PU12, and PU14)

These registers specify whether the on-chip pull-up resistors of P00 to P06, P10 to P17, P30 to P33, P40 to P43, P50 to P53, P70 to P77, P120, or P140 and P141 are to be used or not. On-chip pull-up resistors can be used in 1-bit units only for the bits set to input mode of the pins to which the use of an on-chip pull-up resistor has been specified in PU0, PU1, PU3 to PU5, PU7, PU12, and PU14. On-chip pull-up resistors cannot be connected to bits set to output mode and bits used as alternate-function output pins, regardless of the settings of PU0, PU1, PU3 to PU5, PU7, PU12, and PU14.

These registers can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears these registers to 00H.

Figure 4-23. Format of Pull-up Resistor Option Register

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PU0	0	PU06	PU05	PU04	PU03	PU02	PU01	PU00	FF30H	00H	R/W
	7	6	5	4	3	2	1	0			
PU1	PU17	PU16	PU15	PU14	PU13	PU12	PU11	PU10	FF31H	00H	R/W
	7	6	5	4	3	2	1	0			
PU3	0	0	0	0	PU33	PU32	PU31	PU30	FF33H	00H	R/W
	7	6	5	4	3	2	1	0			
PU4	0	0	0	0	PU43	PU42	PU41	PU40	FF34H	00H	R/W
	7	6	5	4	3	2	1	0			
PU5	0	0	0	0	PU53	PU52	PU51	PU50	FF35H	00H	R/W
	7	6	5	4	3	2	1	0			
PU7	PU77	PU76	PU75	PU74	PU73	PU72	PU71	PU70	FF37H	00H	R/W
	7	6	5	4	3	2	1	0			
PU12	0	0	0	0	0	0	0	PU120	FF3CH	00H	R/W
	7	6	5	4	3	2	1	0			
PU14	0	0	0	0	0	0	PU141	PU140	FF3EH	00H	R/W

PUmn	Pmn pin on-chip pull-up resistor selection
	(m = 0, 1, 3 to 5, 7, 12, 14; n = 0 to 7)
0	On-chip pull-up resistor not connected
1	On-chip pull-up resistor connected

4.4 Port Function Operations

Port operations differ depending on whether the input or output mode is set, as shown below.

Caution In the case of 1-bit memory manipulation instruction, although a single bit is manipulated, the port is accessed as an 8-bit unit. Therefore, on a port with a mixture of input and output pins, the output latch contents for pins specified as input are undefined, even for bits other than the manipulated bit.

4.4.1 Writing to I/O port

(1) Output mode

A value is written to the output latch by a transfer instruction, and the output latch contents are output from the pin.

Once data is written to the output latch, it is retained until data is written to the output latch again.

The data of the output latch is cleared by reset.

(2) Input mode

A value is written to the output latch by a transfer instruction, but since the output buffer is off, the pin status does not change.

Once data is written to the output latch, it is retained until data is written to the output latch again.

4.4.2 Reading from I/O port

(1) Output mode

The output latch contents are read by a transfer instruction. The output latch contents do not change.

(2) Input mode

The pin status is read by a transfer instruction. The output latch contents do not change.

4.4.3 Operations on I/O port

(1) Output mode

An operation is performed on the output latch contents, and the result is written to the output latch. The output latch contents are output from the pins.

Once data is written to the output latch, it is retained until data is written to the output latch again.

The data of the output latch is cleared by reset.

(2) Input mode

The pin level is read and an operation is performed on its contents. The result of the operation is written to the output latch, but since the output buffer is off, the pin status does not change.

CHAPTER 5 CLOCK GENERATOR

5.1 Functions of Clock Generator

The clock generator generates the clock to be supplied to the CPU and peripheral hardware.

The following three system clock oscillators are available.

• High-speed system clock oscillator

The high-speed system clock oscillator oscillates a clock of $f_{XP} = 2.0$ to 16.0 MHz. Oscillation can be stopped by executing the STOP instruction or setting the main OSC control register (MOC) and processor clock control register (PCC).

· Internal oscillator

The Internal oscillator oscillates a clock of f_R = 240 kHz (TYP.). Oscillation can be stopped by setting the internal oscillation mode register (RCM) when "Can be stopped by software" is set by the option byte and the high-speed system clock is used as the CPU clock.

Subsystem clock oscillator

The subsystem clock oscillator oscillates a clock of f_{XT} = 32.768 kHz. Oscillation cannot be stopped. When subsystem clock oscillator is not used, setting not to use the on-chip feedback resistor is possible using the processor clock control register (PCC), and the operating current can be reduced in the STOP mode.

Remarks 1. fxp: High-speed system clock oscillation frequency

2. fr.: Internal oscillation clock oscillation frequency

3. fxT: Subsystem clock oscillation frequency

5.2 Configuration of Clock Generator

The clock generator includes the following hardware.

Table 5-1. Configuration of Clock Generator

Item	Configuration					
Control registers	Processor clock control register (PCC)					
	Internal oscillation mode register (RCM)					
	Main clock mode register (MCM)					
	Main OSC control register (MOC)					
	Oscillation stabilization time counter status register (OSTC)					
	Oscillation stabilization time select register (OSTS)					
Oscillators	High-speed system clock oscillator					
	Internal oscillator					
	Subsystem clock oscillator					

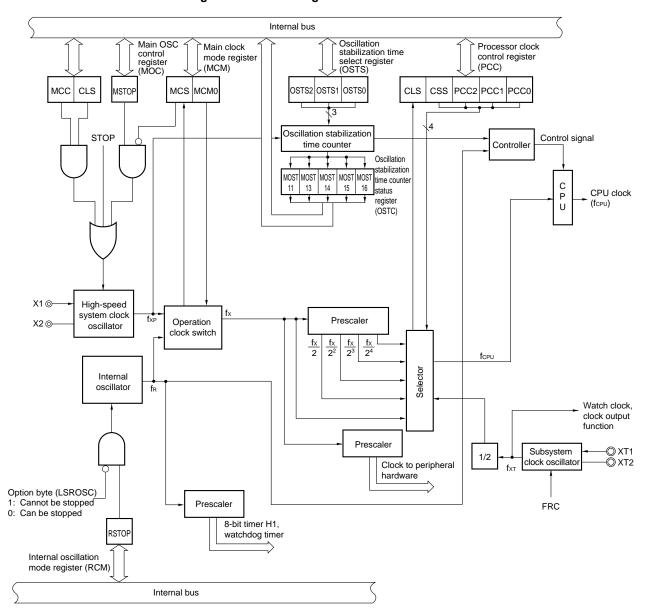


Figure 5-1. Block Diagram of Clock Generator

5.3 Registers Controlling Clock Generator

The following six registers are used to control the clock generator.

- Processor clock control register (PCC)
- Internal oscillation mode register (RCM)
- Main clock mode register (MCM)
- Main OSC control register (MOC)
- Oscillation stabilization time counter status register (OSTC)
- Oscillation stabilization time select register (OSTS)

(1) Processor clock control register (PCC)

The PCC register is used to select the CPU clock, the division ratio, main system clock oscillator operation/stop and whether to use the on-chip feedback resistor^{Note} of the subsystem clock oscillator.

The PCC is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears PCC to 00H.

Note The feedback resistor is required to control the bias point of the oscillation waveform so that the bias point is in the middle of the power supply voltage (see **Figure 5-11 Subsystem Clock Feedback Resistor**).

Figure 5-2. Format of Processor Clock Control Register (PCC)

R/W^{Note 1} Address: FFFBH After reset: 00H Symbol <7> <6> <5> <4> 3 0 PCC 0 PCC2 PCC1 PCC0 MCC FRC CLS CSS

MCC	Control of high-speed system clock oscillator oper	ation ^{Note 2}
0	Oscillation possible	
1	Oscillation stopped	

FRC	Subsystem clock feedback resistor selection Note 3
0	On-chip feedback resistor used
1	On-chip feedback resistor not used

	CLS	CPU clock status					
ſ	0	ligh-speed system clock or internal oscillation clock					
	1	Subsystem clock					

CSS ^{Note 4}	PCC2	PCC1	PCC0	CPU clock (fcpu) selection		
					MCM0 = 0	MCM0 = 1
0	0	0	0	fx	fR	fxp
	0	0	1	fx/2	f _R /2 Note 5	fxp/2
	0	1	0	fx/2 ²	Setting prohibited	f _{XP} /2 ²
	0	1	1	fx/2 ³	Setting prohibited	f _{XP} /2 ³
	1	0	0	fx/2 ⁴	Setting prohibited	f _{XP} /2 ⁴
1	0	0	0	fхт/2		
	0	0	1			
	0	1	0			
	0	1	1			
	1	0	0			
	Other that	an above		Setting prohibited	d	

Notes 1. Bit 5 is read-only.

- 2. When the CPU is operating on the subsystem clock, MCC should be used to stop the high-speed system clock oscillator operation. When the CPU is operating on the internal oscillation clock, use bit 7 (MSTOP) of the main OSC control register (MOC) to stop the high-speed system clock oscillator operation (this cannot be set by MCC). A STOP instruction should not be used.
- **3.** Clear this bit to 0 when the subsystem clock is used, and set it to 1 when the subsystem clock is not used.
- **4.** Be sure to switch CSS from 1 to 0 when bits 1 (MCS) and 0 (MCM0) of the main clock mode register (MCM) are 1.
- **5.** Setting is prohibited for the (A1) grade products.

Caution Be sure to clear bit 3 to 0.

<R>

113

- **Remarks 1.** MCM0: Bit 0 of the main clock mode register (MCM)
 - **2.** fx: Main system clock oscillation frequency (high-speed system clock oscillation frequency or internal oscillation clock oscillation frequency)
 - 3. fr.: Internal oscillation clock oscillation frequency
 - 4. fxp: High-speed system clock oscillation frequency
 - 5. fxT: Subsystem clock oscillation frequency

The fastest instruction can be executed in 2 clocks of the CPU clock in the 78K0/KE1+. Therefore, the relationship between the CPU clock (fcpu) and minimum instruction execution time is as shown in the Table 5-2.

Table 5-2. Relationship Between CPU Clock and Minimum Instruction Execution Time

CPU Clock (fcpu)	Minimum Instruction Execution Time: 2/fcpu							
	High-Speed Sys	stem Clock Note 1	Internal Oscillation Clock ^{Note 1}	Subsystem Clock				
	At 10 MHz Operation	At 16 MHz Operation	At 240 kHz (TYP.) Operation	At 32.768 kHz Operation				
fx	0.2 <i>μ</i> s	0.125 <i>μ</i> s	8.3 μs (TYP.)	-				
fx/2	0.4 μs	0.25 <i>μ</i> s	16.6 <i>μ</i> s (TYP.) Note 2	-				
fx/2 ²	0.8 µs	0.5 <i>μ</i> s	Setting prohibited	-				
fx/2 ³	1.6 <i>μ</i> s	1.0 <i>μ</i> s	Setting prohibited	-				
fx/2 ⁴	3.2 <i>μ</i> s	2.0 <i>μ</i> s	Setting prohibited	_				
fxт/2	_	-	_	122.1 μs				

Notes 1. The main clock mode register (MCM) is used to set the CPU clock (high-speed system clock/internal oscillation clock) (see **Figure 5-4**).

2. Setting is prohibited for the (A1) grade products.

(2) Internal oscillation mode register (RCM)

This register sets the operation mode of internal oscillator.

This register is valid when "Can be stopped by software" is set for internal oscillator by the option byte, and the high-speed system clock or subsystem clock is selected as the CPU clock. If "Cannot be stopped" is selected for internal oscillator by the option byte, settings for this register are invalid.

RCM can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Figure 5-3. Format of Internal Oscillation Mode Register (RCM)

Address: FFA0H After reset: 00H		R/W						
Symbol	7	6	5	4	3	2	1	<0>
RCM	0	0	0	0	0	0	0	RSTOP

RSTOP	Internal oscillator oscillating/stopped
0	Internal oscillator oscillating
1	Internal oscillator stopped

Caution Make sure that the bit 1 (MCS) of the main clock mode register (MCM) is 1 before setting RSTOP.

<R>

(3) Main clock mode register (MCM)

This register sets the CPU clock (high-speed system clock/internal oscillation clock). MCM can be set by a 1-bit or 8-bit memory manipulation instruction. RESET input clears this register to 00H.

Figure 5-4. Format of Main Clock Mode Register (MCM)

Address: FFA1H After reset: 00H		R/W ^{Note}						
Symbol	7	6	5	4	3	2	<1>	<0>
MCM	0	0	0	0	0	0	MCS	мсм0

MCS	CPU clock status				
0	Operates with internal oscillation clock				
1	Operates with high-speed system clock				

MCM0	Selection of clock supplied to CPU
0	Internal oscillation clock
1	High-speed system clock

Note Bit 1 is read-only.

Cautions 1. When internal oscillation clock is selected as the clock to be supplied to the CPU, the divided clock of the internal oscillator output (fx) is supplied to the peripheral hardware (fx = 240 kHz (TYP.)).

Operation of the peripheral hardware with internal oscillation clock cannot be guaranteed. Therefore, when internal oscillation clock is selected as the clock supplied to the CPU, do not use peripheral hardware. In addition, stop the peripheral hardware before switching the clock supplied to the CPU from the high-speed system clock to the internal oscillation clock. Note, however, that the following peripheral hardware can be used when the CPU operates on the internal oscillation clock.

- Watchdog timer
- Clock monitor
- 8-bit timer H1 when fR/27 is selected as count clock
- Peripheral hardware selecting external clock as the clock source (Except when external count clock of TM0n (n = 0, 1) is selected (Tl00n valid edge))
- 2. Set MCS = 1 and MCM0 = 1 before switching subsystem clock operation to high-speed system clock operation (bit 4 (CSS) of the processor clock control register (PCC) is changed from 1 to 0).

(4) Main OSC control register (MOC)

This register selects the operation mode of the high-speed system clock.

This register is used to stop the high-speed system clock oscillator operation when the CPU is operating with the internal oscillation clock. Therefore, this register is valid only when the CPU is operating with the internal oscillation clock.

MOC can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Figure 5-5. Format of Main OSC Control Register (MOC)

Address: FFA2H After reset: 00H R/W Symbol <7> 6 5 0 3 2 1 MOC **MSTOP** 0 0 0 0 0 0 0

MS	STOP	Control of high-speed system clock oscillator operation
	0	High-speed system clock oscillator operating
	1	High-speed system clock oscillator stopped

Cautions 1. Make sure that bit 1 (MCS) of the main clock mode register (MCM) is 0 before setting MSTOP.

2. To stop high-speed system clock oscillation when the CPU is operating on the subsystem clock, set bit 7 (MCC) of the processor clock control register (PCC) to 1 (setting by MSTOP is not possible).

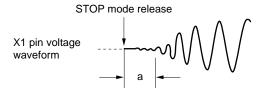
(5) Oscillation stabilization time counter status register (OSTC)

This is the status register of the high-speed system clock oscillation stabilization time counter. If the internal oscillation clock is used as the CPU clock, the high-speed system clock oscillation stabilization time can be checked.

OSTC can be read by a 1-bit or 8-bit memory manipulation instruction.

When reset is released (reset by \overline{RESET} input, POC, LVI, clock monitor, and WDT), the STOP instruction, MSTOP = 1, and MCC = 1 clear OSTC to 00H.

Figure 5-6. Format of Oscillation Stabilization Time Counter Status Register (OSTC)


Address: FF	Address: FFA3H After reset: 00H R									
Symbol	7	6	5	4	3	2	1	0		
OSTC	0	0	0	MOST11	MOST13	MOST14	MOST15	MOST16		
	MOST11	MOST13	MOST14	MOST15	MOST16	Oscillation stabilization time status				
							f _{XP} = 10 MHz	fxp = 16 MHz		
	1	0	0	0	0	2 ¹¹ /f _{XP} min.	204.8 μs min.	128 <i>μ</i> s min.		
	1	1	0	0	0	2 ¹³ /f _{XP} min.	819.2 μs min.	512 <i>μ</i> s min.		
	1	1	1	0	0	2 ¹⁴ /f _{XP} min.	1.64 ms min.	1.02 ms min.		
	1	1	1	1	0	2 ¹⁵ /f _{XP} min.	3.27 ms min.	2.04 ms min.		
	1	1	1	1	1	2 ¹⁶ /f _{XP} min.	6.55 ms min.	4.09 ms min.		

Cautions 1. After the above time has elapsed, the bits are set to 1 in order from MOST11 and remain 1.

- 2. If the STOP mode is entered and then released while the internal oscillation is being used as the CPU clock, set the oscillation stabilization time as follows.
 - Desired OSTC oscillation stabilization time ≤ Oscillation stabilization time set by OSTS

The oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS. Note, therefore, that only the status up to the oscillation stabilization time set by OSTS is set to OSTC after STOP mode is released.

3. The wait time when STOP mode is released does not include the time after STOP mode release until clock oscillation starts ("a" below) regardless of whether STOP mode is released by RESET input or interrupt generation.

Remark fxp: High-speed system clock oscillation frequency

(6) Oscillation stabilization time select register (OSTS)

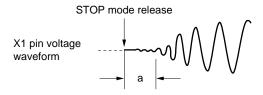
This register is used to select the high-speed system clock oscillation stabilization wait time when STOP mode is released.

The wait time set by OSTS is valid only after STOP mode is released with the high-speed system clock selected as CPU clock. After STOP mode is released with internal oscillation clock selected as CPU clock, the oscillation stabilization time must be confirmed by OSTC.

OSTS can be set by an 8-bit memory manipulation instruction.

RESET input sets OSTS to 05H.

Figure 5-7. Format of Oscillation Stabilization Time Select Register (OSTS)


Address: FF	A4H After	reset: 05H	R/W					
Symbol	7	6	5	4	3	2	1	0
OSTS	0	0	0	0	0	OSTS2	OSTS1	OSTS0

OSTS2	OSTS1	OSTS0	Oscillation stabilization time selection				
				f _{XP} = 10 MHz	f _{XP} = 16 MHz		
0	0	1	2 ¹¹ /fxP	204.8 μs	128 <i>μ</i> s		
0	1	0	2 ¹³ /f _{XP}	819.2 <i>μ</i> s	512 <i>μ</i> s		
0	1	1	2 ¹⁴ /f _{XP}	1.64 ms	1.02 ms		
1	0	0	2 ¹⁵ /f _{XP}	3.27 ms	2.04 ms		
1	0	1	2 ¹⁶ /f _{XP}	6.55 ms	4.09 ms		
Other than above			Setting prohibited		_		

- Cautions 1. To set the STOP mode when the high-speed system clock is used as the CPU clock, set OSTS before executing a STOP instruction.
 - 2. Before setting OSTS, confirm with OSTC that the desired oscillation stabilization time has elapsed.
 - If the STOP mode is entered and then released while the internal oscillation clock is being used as the CPU clock, set the oscillation stabilization time as follows.
 - Desired OSTC oscillation stabilization time ≤ Oscillation stabilization time set by OSTS

The oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS. Note, therefore, that only the status up to the oscillation stabilization time set by OSTS is set to OSTC after STOP mode is released.

4. The wait time when STOP mode is released does not include the time after STOP mode release until clock oscillation starts ("a" below) regardless of whether STOP mode is released by RESET input or interrupt generation.

Remark fxp: High-speed system clock oscillation frequency

5.4 System Clock Oscillator

5.4.1 High-speed system clock oscillator

The high-speed system clock oscillator oscillates with a crystal resonator or ceramic resonator connected to the X1 and X2 pins.

An external clock can be input to the high-speed system clock oscillator. In this case, input the clock signal to the X1 pin and input the inverse signal to the X2 pin.

Figure 5-8 shows examples of the external circuit of the high-speed system clock oscillator.

Figure 5-8. Examples of External Circuit of High-Speed System Clock Oscillator

(a) Crystal, ceramic oscillation (b) External clock External clock Crystal resonator or ceramic resonator

Caution is provided on the next page.

5.4.2 Subsystem clock oscillator

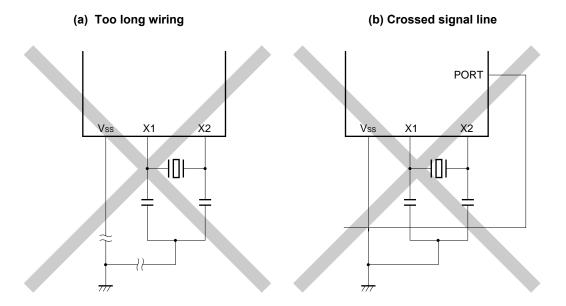
The subsystem clock oscillator oscillates with a crystal resonator (Standard: 32.768 kHz) connected to the XT1 and XT2 pins.

External clocks can be input to the subsystem clock oscillator. In this case, input the clock signal to the XT1 pin and the inverse signal to the XT2 pin.

Figure 5-9 shows examples of an external circuit of the subsystem clock oscillator.

Figure 5-9. Examples of External Circuit of Subsystem Clock Oscillator

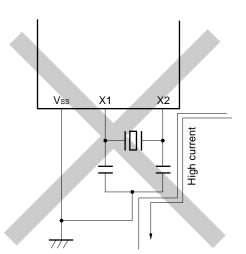
Caution is provided on the next page.


Caution When using the high-speed system clock oscillator and subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the Figures 5-8 and 5-9 to avoid an adverse effect from wiring capacitance.

- · Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- · Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

Note that the subsystem clock oscillator is designed as a low-amplitude circuit for reducing power consumption.

Figure 5-10 shows examples of incorrect resonator connection.


Figure 5-10. Examples of Incorrect Resonator Connection (1/2)

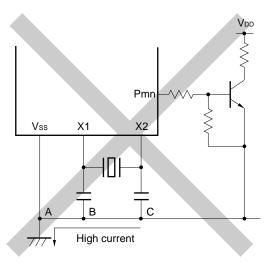
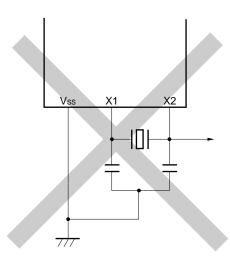

Remark When using the subsystem clock, replace X1 and X2 with XT1 and XT2, respectively. Also, insert resistors in series on the XT2 side.

Figure 5-10. Examples of Incorrect Resonator Connection (2/2)

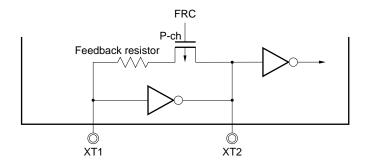

(c) Wiring near high alternating current

(d) Current flowing through ground line of oscillator (potential at points A, B, and C fluctuates)

(e) Signals are fetched

Remark When using the subsystem clock, replace X1 and X2 with XT1 and XT2, respectively. Also, insert resistors in series on the XT2 side.

5.4.3 When subsystem clock is not used


If it is not necessary to use the subsystem clock for low power consumption operations and watch operations, connect the XT1 and XT2 pins as follows.

XT1: Connect directly to EVss or Vss Note

XT2: Leave open

Note When the subsystem clock is not used, the on-chip feedback resistor must be set after a reset is released so that it is not used (bit 6 (FRC) of processor clock control register (PCC) = 1).

Figure 5-11. Subsystem Clock Feedback Resistor

Remark The feedback resistor is required to control the bias point of the oscillation waveform so that the bias point is in the middle of the power supply voltage.

5.4.4 Internal oscillator

Internal oscillator is incorporated in the 78K0/KE1+.

"Can be stopped by software" or "Cannot be stopped" can be selected using the option byte. The internal oscillation clock always oscillates after $\overline{\text{RESET}}$ release (240 kHz (TYP.)).

5.4.5 Prescaler

The prescaler generates various clocks by dividing the high-speed system clock oscillator output when the high-speed system clock is selected as the clock to be supplied to the CPU.

Caution When the internal oscillation clock is selected as the clock supplied to the CPU, the prescaler generates various clocks by dividing the internal oscillator output (fx = 240 kHz (TYP.)).

5.5 Clock Generator Operation

The clock generator generates the following clocks and controls the operation modes of the CPU, such as standby mode.

- High-speed system clock fxp
- · Internal oscillation clock fR
- Subsystem clock fxT
- CPU clock fcpu
- · Clock to peripheral hardware

The CPU starts operation when the on-chip internal oscillator starts outputting after reset release in the 78K0/KE1+, thus enabling the following.

(1) Enhancement of security function

When the high-speed system clock is set as the CPU clock by the default setting, the device cannot operate if the high-speed system clock is damaged or badly connected and therefore does not operate after reset is released. However, the start clock of the CPU is the on-chip internal oscillation clock, so the device can be started by the internal oscillation clock after reset release by the clock monitor (detection of high-speed system clock stop). Consequently, the system can be safely shut down by performing a minimum operation, such as acknowledging a reset source by software or performing safety processing when there is a malfunction.

(2) Improvement of performance

Because the CPU can be started without waiting for the high-speed system clock oscillation stabilization time, the total performance can be improved.

A timing diagram of the CPU default start using internal oscillator is shown in Figure 5-12.

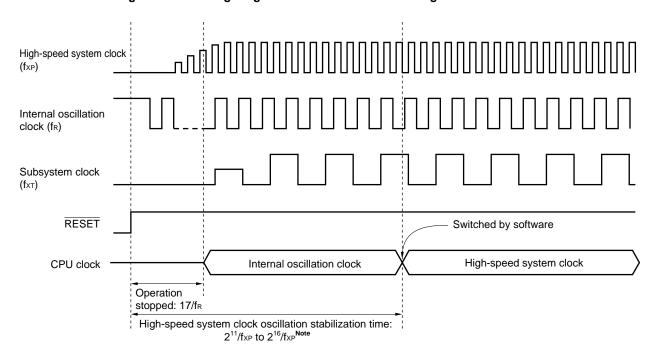
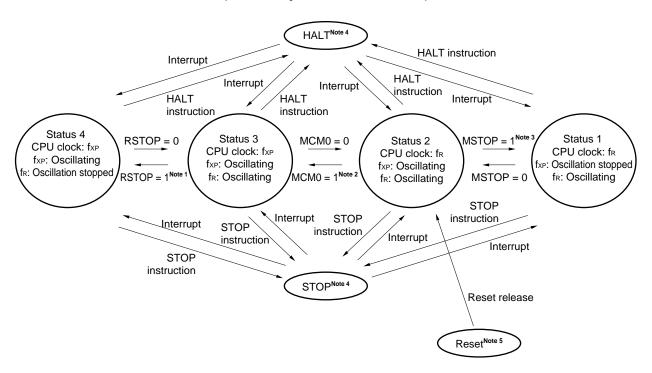


Figure 5-12. Timing Diagram of CPU Default Start Using Internal Oscillator


Note Check using the oscillation stabilization time counter status register (OSTC).

- (a) When the RESET signal is generated, bit 0 of the main clock mode register (MCM) is cleared to 0 and the internal oscillation clock is set as the CPU clock. However, a clock is supplied to the CPU after 17 clocks of the internal oscillation clock have elapsed after RESET release (or clock supply to the CPU stops for 17 clocks). During the RESET period, oscillation of the high-speed system clock and internal oscillation clock is stopped.
- (b) After RESET release, the CPU clock can be switched from the internal oscillation clock to the high-speed system clock using bit 0 (MCM0) of the main clock mode register (MCM) after the high-speed system clock oscillation stabilization time has elapsed. At this time, check the oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) before switching the CPU clock. The CPU clock status can be checked using bit 1 (MCS) of MCM.
- (c) Internal oscillator can be set to stopped/oscillating using the internal oscillation mode register (RCM) when "Can be stopped by software" is selected for the internal oscillator by the option byte, if the high-speed system or subsystem clock is used as the CPU clock. Make sure that MCS is 1 at this time.
- (d) When internal oscillation clock is used as the CPU clock, the high-speed system clock can be set to stopped/oscillating using the main OSC control register (MOC). Make sure that MCS is 0 at this time. When the subsystem clock is used as the CPU clock, whether the high-speed system clock stops or oscillates can be set by the processor clock control register (PCC). In addition, HALT mode can be used during operation with the subsystem clock, but STOP mode cannot be used (subsystem clock oscillation cannot be stopped by the STOP instruction).
- (e) Select the high-speed system clock oscillation stabilization time (2¹¹/f_{XP}, 2¹³/f_{XP}, 2¹⁴/f_{XP}, 2¹⁵/f_{XP}, 2¹⁶/f_{XP}) using the oscillation stabilization time select register (OSTS) when releasing STOP mode while high-speed system clock is being used as the CPU clock. In addition, when releasing STOP mode while RESET is released and internal oscillation clock is being used as the CPU clock, check the high-speed system clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC).

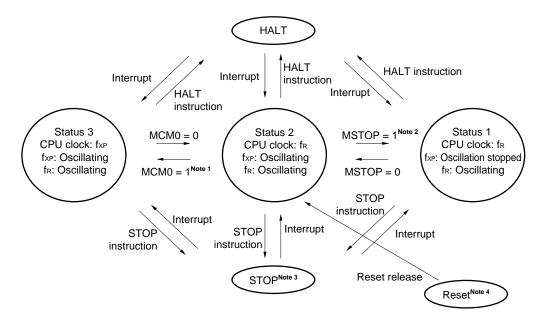
A status transition diagram of this product is shown in Figure 5-13, and the relationship between the operation clocks in each operation status and between the oscillation control flag and oscillation status of each clock are shown in Tables 5-3 and 5-4, respectively.

Figure 5-13. Status Transition Diagram (1/4)


(1) When "internal oscillator can be stopped by software" is selected by option byte (when subsystem clock is not used)

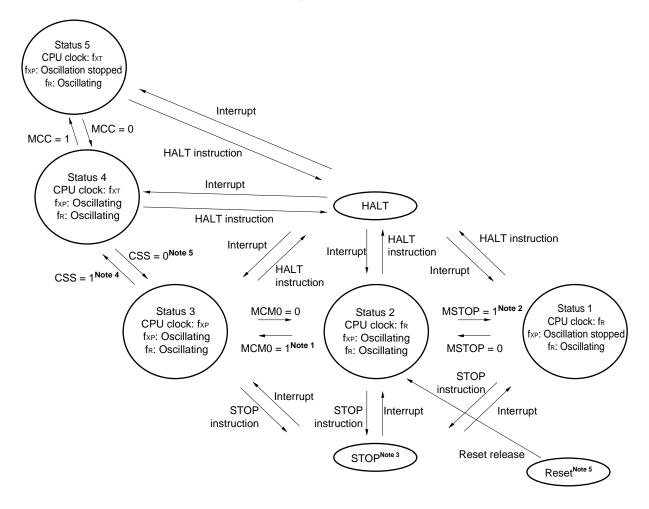
- **Notes 1.** When shifting from status 3 to status 4, make sure that bit 1 (MCS) of the main clock mode register (MCM) is 1.
 - Before shifting from status 2 to status 3 after reset and STOP are released, check the high-speed system clock oscillation stabilization time status using the oscillation stabilization time counter status register (OSTC).
 - 3. When shifting from status 2 to status 1, make sure that MCS is 0.
 - **4.** When "internal oscillator can be stopped by software" is selected by the option byte, the watchdog timer stops operating in the HALT and STOP modes, regardless of the source clock of the watchdog timer. However, oscillation of internal oscillator does not stop even in the HALT and STOP modes if RSTOP = 0.
 - **5.** All reset sources (RESET input, POC, LVI, clock monitor, and WDT)

Figure 5-13. Status Transition Diagram (2/4)


(2) When "internal oscillator can be stopped by software" is selected by option byte (when subsystem clock is used)

- **Notes 1.** When shifting from status 3 to status 4, make sure that bit 1 (MCS) of the main clock mode register (MCM) is 1.
 - 2. Before shifting from status 2 to status 3 after reset and STOP are released, check the high-speed system clock oscillation stabilization time status using the oscillation stabilization time counter status register (OSTC).
 - 3. When shifting from status 2 to status 1, make sure that MCS is 0.
 - 4. When "internal oscillator can be stopped by software" is selected by the option byte, the clock supply to the watchdog timer is stopped after the HALT or STOP instruction has been executed, regardless of the setting of bit 0 (RSTOP) of the internal oscillation mode register (RCM) and bit 0 (MCM0) of the main clock mode register (MCM).
 - **5.** The operation cannot be shifted between subsystem clock operation and internal oscillation clock operation.
 - **6.** All reset sources (RESET input, POC, LVI, clock monitor, and WDT)

Figure 5-13. Status Transition Diagram (3/4)


(3) When "internal oscillator cannot be stopped" is selected by option byte (when subsystem clock is not used)

- **Notes 1.** Before shifting from status 2 to status 3 after reset and STOP are released, check the high-speed system clock oscillation stabilization time status using the oscillation stabilization time counter status register (OSTC).
 - 2. When shifting from status 2 to status 1, make sure that MCS is 0.
 - 3. The watchdog timer operates using internal oscillator even in STOP mode if "internal oscillator cannot be stopped" is selected by the option byte. Internal oscillation clock division can be selected as the count source of 8-bit timer H1 (TMH1), so clear the watchdog timer using the TMH1 interrupt request before watchdog timer overflow. If this processing is not performed, an internal reset signal is generated at watchdog timer overflow after STOP instruction execution.
 - **4.** All reset sources (RESET input, POC, LVI, clock monitor, and WDT)

Figure 5-13. Status Transition Diagram (4/4)

(4) When "internal oscillator cannot be stopped" is selected by option byte (when subsystem clock is used)

- **Notes 1.** Before shifting from status 2 to status 3 after reset and STOP are released, check the high-speed system clock oscillation stabilization time status using the oscillation stabilization time counter status register (OSTC).
 - 2. When shifting from status 2 to status 1, make sure that MCS is 0.
 - 3. The watchdog timer operates using internal oscillator even in STOP mode if "internal oscillator cannot be stopped" is selected by the option byte. Internal oscillation clock division can be selected as the count source of 8-bit timer H1 (TMH1), so clear the watchdog timer using the TMH1 interrupt request before watchdog timer overflow. If this processing is not performed, an internal reset signal is generated at watchdog timer overflow after STOP instruction execution.
 - **4.** The operation cannot be shifted between subsystem clock operation and internal oscillation clock operation.
 - 5. All reset sources (RESET input, POC, LVI, clock monitor, and WDT)

Table 5-3. Relationship Between Operation Clocks in Each Operation Status

Status		ed System escillator	Internal Oscillator		Subsystem Clock	CPU Clock After	Prescaler Clock Supplied to Peripheral		
opo.auo		MSTOP = 1	Note 1	Not	te 2	Oscillator	Release		T
Mode	MCC = 0	MCC = 1		RSTOP = 0	RSTOP = 1			MCM0 = 0	MCM0 = 1
Reset	Stopped		Stopped			Oscillating	Internal oscillation clock	Stopped	
STOP			Oscillating	Oscillating	Stopped		Note 3	Stopped	
HALT	Oscillating	Stopped					Note 4	Internal oscillation clock	High- speed system clock

- Notes 1. When "Cannot be stopped" is selected for internal oscillator by the option byte.
 - 2. When "Can be stopped by software" is selected for internal oscillator by the option byte.
 - 3. Operates using the CPU clock at STOP instruction execution.
 - 4. Operates using the CPU clock at HALT instruction execution.

Caution The RSTOP setting is valid only when "Can be stopped by software" is set for internal oscillator by the option byte.

Remark MSTOP: Bit 7 of the main OSC control register (MOC)

MCC: Bit 7 of the processor clock control register (PCC)
RSTOP: Bit 0 of the internal oscillation mode register (RCM)
MCM0: Bit 0 of the main clock mode register (MCM)

Table 5-4. Oscillation Control Flags and Clock Oscillation Status

		High-Speed System Clock Oscillator	Internal Oscillator
MSTOP = 1 ^{Note}	RSTOP = 0	Stopped	Oscillating
	RSTOP = 1	Setting prohibited	
MSTOP = 0 ^{Note}	RSTOP = 0	Oscillating	Oscillating
	RSTOP = 1		Stopped
MCC = 1 ^{Note}	RSTOP = 0	Stopped	Oscillating
	RSTOP = 1		Stopped
MCC = 0 ^{Note}	RSTOP = 0	Oscillating	Oscillating
	RSTOP = 1		Stopped

Note Setting high-speed system clock oscillator oscillating/stopped differs depending on the CPU clock used.

- When the internal oscillation clock is used as the CPU clock: Set using the MSTOP bit
- When the subsystem clock is used as the CPU clock: Set using the MCC bit

Caution The RSTOP setting is valid only when "Can be stopped by software" is set for internal oscillator by the option byte.

Remark MSTOP: Bit 7 of the main OSC control register (MOC)

MCC: Bit 7 of the processor clock control register (PCC)
RSTOP: Bit 0 of the internal oscillation mode register (RCM)

5.6 Time Required to Switch Between Internal Oscillation Clock and High-Speed System Clock

Bit 0 (MCM0) of the main clock mode register (MCM) is used to switch between the internal oscillation clock and high-speed system clock.

In the actual switching operation, switching does not occur immediately after MCM0 rewrite; several instructions are executed using the pre-switch clock after switching MCM0 (see **Table 5-5**).

Bit 1 (MCS) of MCM is used to judge that operation is performed using either the internal oscillation clock or high-speed system clock.

To stop the original clock after switching the clock, wait for the number of clocks shown in Table 5-5 before stopping.

Table 5-5. Maximum Time Required to Switch

Between Internal Oscillation Clock and High-Speed System Clock

	PCC		Time Required for Switching				
PCC2	PCC1	PCC0	High-Speed System Clock → Internal Oscillation	Internal Oscillation → High-Speed System Clock			
0	0	0	fxp/fR + 1 clock	2 clocks			
0	0	1	f _{XP} /2f _R + 1 clock ^{Note}	2 clocks ^{Note}			

Note Setting is prohibited for the (A1) grade products.

Caution To calculate the maximum time, set $f_R = 120 \text{ kHz}$.

Remarks 1. PCC: Processor clock control register

2. fxp: High-speed system clock oscillation frequency

3. fr: Internal oscillation clock frequency

4. The maximum time is the number of clocks of the CPU clock before switching.

<R>

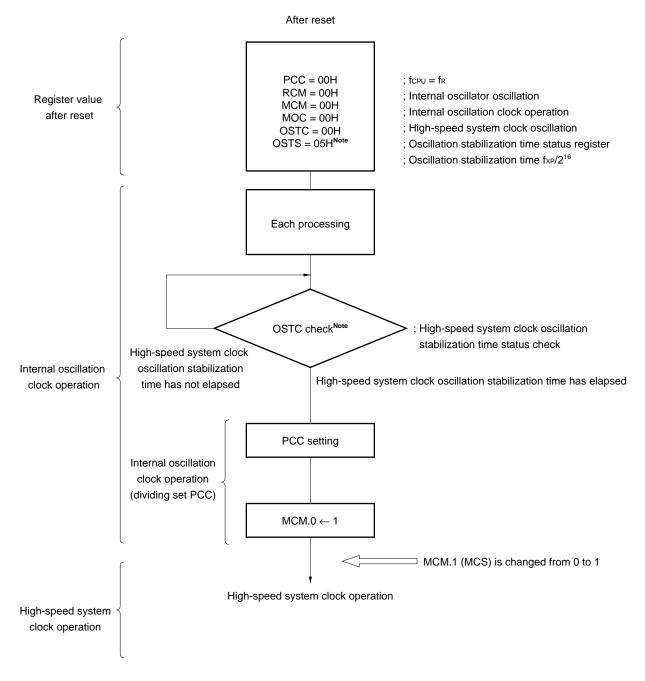
5.7 Time Required for CPU Clock Switchover

The CPU clock can be switched using bits 0 to 2 (PCC0 to PCC2) and bit 4 (CSS) of the processor clock control register (PCC).

The actual switchover operation is not performed immediately after rewriting to the PCC; operation continues on the pre-switchover clock for several instructions (see **Table 5-6**).

Whether the system is operating on the high-speed system clock (or internal oscillation clock) or the subsystem clock can be ascertained using bit 5 (CLS) of the PCC register.

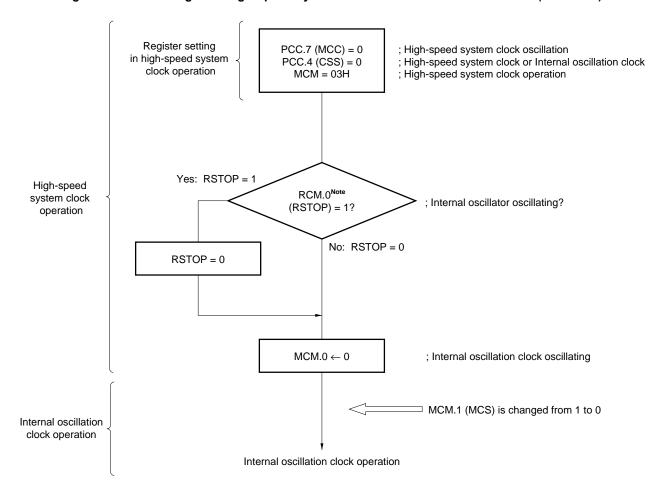
Set Value Before Set Value After Switchover Switchover CSS PCC2 PCC1 PCC0 CSS PCC2 PCC1 PCC0 CSS PCC2 PCC1 PCC0 CSS PCC2 PCC1 PCC0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 16 clocks 16 clocks 16 clocks 16 clocks 2fxp/fxt clocks (977 clocks) 0 8 clocks 8 clocks 8 clocks 8 clocks 1 fxp/fxt clocks (489 clocks) 0 1 n 4 clocks 4 clocks 4 clocks 4 clocks fxp/2fxt clocks (245 clocks) 0 1 1 2 clocks 2 clocks 2 clocks 2 clocks fxp/4fxt clocks (123 clocks) fxp/8fxt clocks 0 0 1 clock 1 clock 1 1 clock 1 clock (62 clocks) 1 × × 1 clock 1 clock 1 clock 1 clock 1 clock


Table 5-6. Maximum Time Required for CPU Clock Switchover

- Cautions 1. Selection of the CPU clock cycle division factor (PCC0 to PCC2) and switchover from the high-speed system clock to the subsystem clock (changing CSS from 0 to 1) should not be set simultaneously.
 - Simultaneous setting is possible, however, for selection of the CPU clock cycle division factor (PCC0 to PCC2) and switchover from the subsystem clock to the high-speed system clock (changing CSS from 1 to 0).
 - 2. Setting the following values is prohibited when the CPU operates on the internal oscillation clock.
 - CSS, PCC2, PCC1, PCC0 = 0, 0, 1, 0
 - CSS, PCC2, PCC1, PCC0 = 0, 0, 1, 1
 - CSS, PCC2, PCC1, PCC0 = 0, 1, 0, 0
- Remarks 1. The maximum time is the number of clocks of the pre-switchover CPU clock.
 - **2.** Figures in parentheses apply to operation with f_{XP} = 16 MHz and f_{XT} = 32.768 kHz.

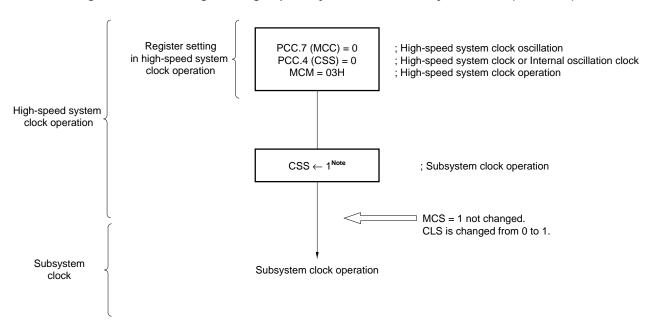
5.8 Clock Switching Flowchart and Register Setting

5.8.1 Switching from internal oscillation clock to high-speed system clock


Figure 5-14. Switching from internal oscillation Clock to High-Speed System Clock (Flowchart)

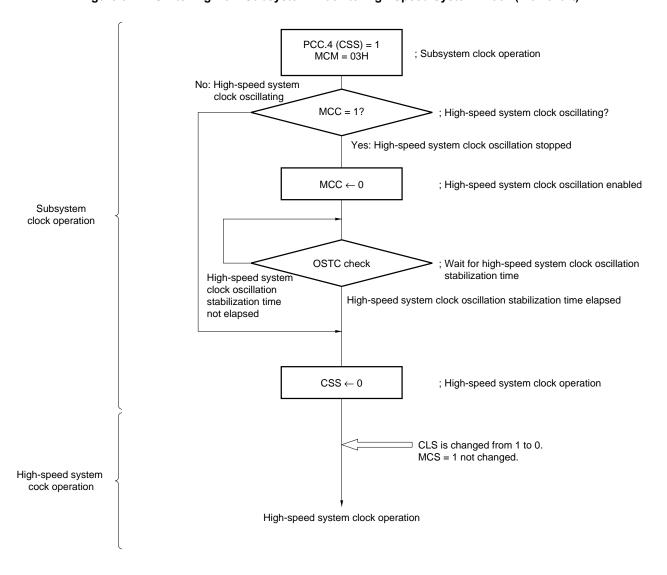
Note Check the oscillation stabilization wait time of the high-speed system clock oscillator after reset release using the OSTC register and then switch to the high-speed system clock operation after the oscillation stabilization wait time has elapsed. The OSTS register setting is valid only after STOP mode is released by interrupt during high-speed system clock operation.

5.8.2 Switching from high-speed system clock to internal oscillation clock


Figure 5-15. Switching from High-Speed System Clock to internal oscillation Clock (Flowchart)

Note Required only when "can be stopped by software" is selected for internal oscillator by the option byte.

5.8.3 Switching from high-speed system clock to subsystem clock


Figure 5-16. Switching from High-Speed System Clock to Subsystem Clock (Flowchart)

Note Set CSS to 1 after confirming that oscillation of the subsystem clock is stabilized.

5.8.4 Switching from subsystem clock to high-speed system clock

Figure 5-17. Switching from Subsystem Clock to High-Speed System Clock (Flowchart)

5.8.5 Register settings

The table below shows the statuses of the setting flags and status flags when each mode is set.

Table 5-7. Clock and Register Setting

fcpu	Mode			Status Flag				
		PCC R	legister	MCM Register	MOC Register	RCM Register	PCC Register	MCM Register
		MCC	CSS	мсм0	MSTOP	RSTOP ^{Note 1}	CLS	MCS
High-speed system clock Note 2	Internal oscillator oscillating	0	0	1	0	0	0	1
	Internal oscillator stopped	0	0	1	0	1	0	1
Internal oscillation clock	High-speed system clock oscillating	0	0	0	0	0	0	0
	High-speed system clock stopped	O ^{Note 3}	0	0	1	0	0	0
Subsystem clock Note 4	High-speed system clock oscillating, internal oscillator oscillating	0	1	1 Note 5	O ^{Note 6}	0	1	1
	High-speed system clock stopped, internal oscillator oscillating	1	1	1 Note 5	O ^{Note 6}	0	1	1
	High-speed system clock oscillating, internal oscillator stopped	0	1	1 Note 5	O ^{Note 6}	1	1	1
	High-speed system clock stopped, internal oscillator stopped	1	1	1 Note 5	O ^{Note 6}	1	1	1

Notes 1. Valid only when "can be stopped by software" is selected for internal oscillator by the option byte.

- **2.** Do not set MCC = 1 or MSTOP = 1 during high-speed system clock operation (even if MCC = 1 or MSTOP = 1 is set, the high-speed system clock oscillation does not stop).
- **3.** Do not set MCC = 1 during internal oscillation clock operation (even if MCC = 1 is set, the high-speed system clock oscillation does not stop). To stop high-speed system clock oscillation during internal oscillation clock operation, use MSTOP.
- **4.** Shifting to subsystem clock operation mode must be performed from the high-speed system clock operation mode. From subsystem clock operation mode, only high-speed system clock operation mode can be shifted to.
- **5.** Do not set MCM0 = 0 (shifting to internal oscillation clock operation) during subsystem clock operation.
- **6.** Do not set MSTOP = 1 during subsystem clock operation (even if MSTOP = 1 is set, high-speed system clock oscillation does not stop). To stop high-speed system clock oscillation during subsystem clock operation, use MCC.

CHAPTER 6 16-BIT TIMER/EVENT COUNTERS 00 AND 01

The μ PD78F0132H incorporates 16-bit timer/event counter 00, and the μ PD78F0133H, 78F0134H, 78F0136H, 78F0138H, and 78F0138HD incorporate 16-bit timer/event counters 00 and 01.

6.1 Functions of 16-Bit Timer/Event Counters 00 and 01

16-bit timer/event counters 00 and 01 Note have the following functions.

- Interval timer
- PPG output
- Pulse width measurement
- · External event counter
- Square-wave output
- · One-shot pulse output

(1) Interval timer

16-bit timer/event counters 00 and 01 generate an interrupt request at the preset time interval.

(2) PPG output

16-bit timer/event counters 00 and 01 can output a rectangular wave whose frequency and output pulse width can be set freely.

(3) Pulse width measurement

16-bit timer/event counters 00 and 01 can measure the pulse width of an externally input signal.

(4) External event counter

16-bit timer/event counters 00 and 01 can measure the number of pulses of an externally input signal.

(5) Square-wave output

16-bit timer/event counters 00 and 01 can output a square wave with any selected frequency.

(6) One-shot pulse output

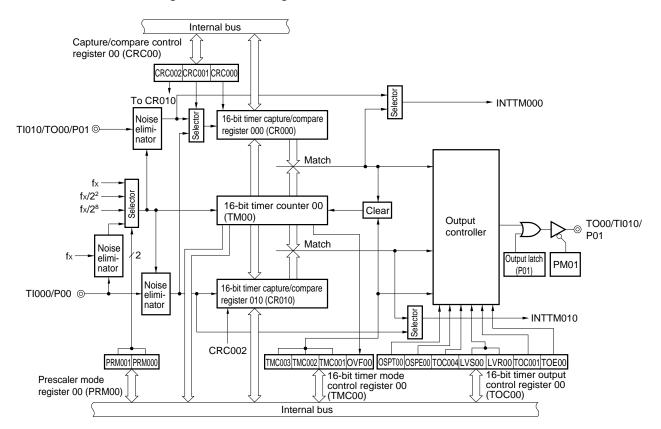
16-bit timer event counters 00 and 01 can output a one-shot pulse whose output pulse width can be set freely.

Note Available only for the μ PD78F0133H, 78F0134H, 78F0136H, 78F0138H, and 78F0138HD.

6.2 Configuration of 16-Bit Timer/Event Counters 00 and 01

16-bit timer/event counters 00 and 01 include the following hardware.

Table 6-1. Configuration of 16-Bit Timer/Event Counters 00 and 01

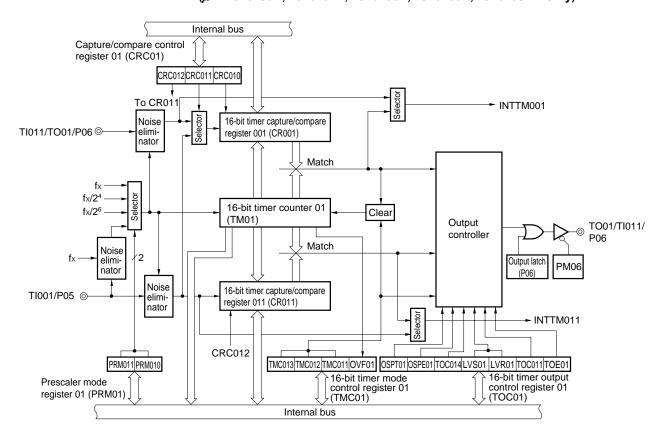

Item	Configuration
Timer counter	16 bits (TM0n)
Register	16-bit timer capture/compare register: 16 bits (CR00n, CR01n)
Timer input	Ti00n, Ti01n
Timer output	TO0n, output controller
Control registers	16-bit timer mode control register 0n (TMC0n) 16-bit timer capture/compare control register 0n (CRC0n) 16-bit timer output control register 0n (TOC0n) Prescaler mode register 0n (PRM0n) Port mode register 0 (PM0) Port register 0 (P0)

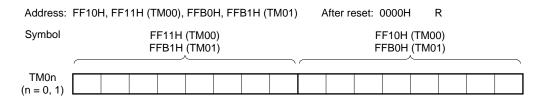
Remark n = 0: μ PD78F0132H

n = 0, 1: μ PD78F0133H, 78F0134H, 78F0136H, 78F0138HD

Figures 6-1 and 6-2 show the block diagrams.

Figure 6-1. Block Diagram of 16-Bit Timer/Event Counter 00




Figure 6-2. Block Diagram of 16-Bit Timer/Event Counter 01 (μPD78F0133H, 78F0134H, 78F0136H, 78F0138HD Only)

(1) 16-bit timer counter 0n (TM0n)

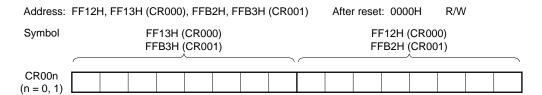
TM0n is a 16-bit read-only register that counts count pulses.

The counter is incremented in synchronization with the rising edge of the input clock.

Figure 6-3. Format of 16-Bit Timer Counter 0n (TM0n)

The count value is reset to 0000H in the following cases.

- <1> At RESET input
- <2> If TMC0n3 and TMC0n2 are cleared
- <3> If the valid edge of the Tl00n pin is input in the mode in which clear & start occurs when inputting the valid edge of the Tl00n pin
- <4> If TM0n and CR00n match in the mode in which clear & start occurs on a match of TM0n and CR00n
- <5> If OSPT0n is set to 1 in one-shot pulse output mode


(2) 16-bit timer capture/compare register 00n (CR00n)

CR00n is a 16-bit register that has the functions of both a capture register and a compare register. Whether it is used as a capture register or as a compare register is set by bit 0 (CRC0n0) of capture/compare control register 0n (CRC0n).

CR00n can be set by a 16-bit memory manipulation instruction.

RESET input clears this register to 0000H.

Figure 6-4. Format of 16-Bit Timer Capture/Compare Register 00n (CR00n)

• When CR00n is used as a compare register

The value set in CR00n is constantly compared with 16-bit timer counter 0n (TM0n) count value, and an interrupt request (INTTM00n) is generated if they match. The set value is held until CR00n is rewritten.

• When CR00n is used as a capture register

It is possible to select the valid edge of the TI00n pin or the TI01n pin as the capture trigger. The TI00n or TI01n pin valid edge is set using prescaler mode register 0n (PRM0n) (see **Table 6-2**).

Table 6-2. CR00n Capture Trigger and Valid Edges of Tl00n and Tl01n Pins

(1) Tl00n pin valid edge selected as capture trigger (CRC0n1 = 1, CRC0n0 = 1)

CR00n Capture Trigger	TI00n Pin Valid Edge				
		ES0n1	ES0n0		
Falling edge	Rising edge	0	1		
Rising edge	Falling edge	0	0		
No capture operation	Both rising and falling edges	1	1		

(2) Tl01n pin valid edge selected as capture trigger (CRC0n1 = 0, CRC0n0 = 1)

CR00n Capture Trigger	TI01n Pin Valid Edge		
		ES1n1	ES1n0
Falling edge	Falling edge	0	0
Rising edge	Rising edge	0	1
Both rising and falling edges	Both rising and falling edges	1	1

Remarks 1. Setting ES0n1, ES0n0 = 1, 0 and ES1n1, ES1n0 = 1, 0 is prohibited.

2. ES0n1, ES0n0: Bits 5 and 4 of prescaler mode register 0n (PRM0n)

ES1n1, ES1n0: Bits 7 and 6 of prescaler mode register 0n (PRM0n)

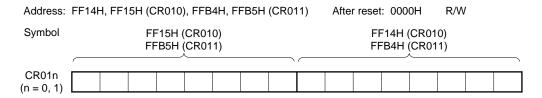
CRC0n1, CRC0n0: Bits 1 and 0 of capture/compare control register 0n (CRC0n)

3. n = 0: μ PD78F0132H

n = 0, 1: μ PD78F0133H, 78F0134H, 78F0136H, 78F0138HD

Cautions 1. Set a value other than 0000H in CR00n in the mode in which clear & start occurs on a match of TM0n and CR00n.

- 2. If CR00n is cleared to 0000H in the free-running mode and in the clear mode using the valid edge of the Tl00n pin, an interrupt request (INTTM00n) is generated when the value of CR00n changes from 0000H to 0001H following TM0n overflow (FFFFH). In addition, INTTM00n is generated after a match between TM0n and CR00n, after detecting the valid edge of the Tl01n pin, or the timer is cleared by a one-shot trigger.
- 3. When the valid edge of the TI01n pin is used, P01 or P06 cannot be used as the timer output pin (TO0n). When P01 or P06 is used as the TO0n pin, the valid edge of the TI01n pin cannot be used.
- 4. When CR00n is used as a capture register, read data is undefined if the register read time and capture trigger input conflict (the capture data itself is the correct value). If a timer count stop and a capture trigger input conflict, the captured data is undefined.
- 5. Do not rewrite CR00n during TM0n operation.


(3) 16-bit timer capture/compare register 01n (CR01n)

CR01n is a 16-bit register that has the functions of both a capture register and a compare register. Whether it is used as a capture register or a compare register is set by bit 2 (CRC0n2) of capture/compare control register 0n (CRC0n).

CR01n can be set by a 16-bit memory manipulation instruction.

RESET input clears this register to 0000H.

Figure 6-5. Format of 16-Bit Timer Capture/Compare Register 01n (CR01n)

• When CR01n is used as a compare register

The value set in the CR01n is constantly compared with 16-bit timer counter 0n (TM0n) count value, and an interrupt request (INTTM01n) is generated if they match. The set value is held until CR01n is rewritten.

• When CR01n is used as a capture register

It is possible to select the valid edge of the Tl00n pin as the capture trigger. The Tl00n pin valid edge is set by prescaler mode register 0n (PRM0n) (see **Table 6-3**).

Table 6-3. CR01n Capture Trigger and Valid Edge of Tl00n Pin (CRC0n2 = 1)

CR01n Capture Trigger	TI00n Pin Valid Edge		
		ES0n1	ES0n0
Falling edge	Falling edge	0	0
Rising edge	Rising edge	0	1
Both rising and falling edges	Both rising and falling edges	1	1

Remarks 1. Setting ES0n1, ES0n0 = 1, 0 is prohibited.

2. ES0n1, ES0n0: Bits 5 and 4 of prescaler mode register 0n (PRM0n)

CRC0n2: Bit 2 of capture/compare control register 0n (CRC0n)

3. n = 0: μ PD78F0132H

n = 0, 1: μ PD78F0133H, 78F0134H, 78F0136H, 78F0138HD

- Cautions 1. If the CR01n register is cleared to 0000H, an interrupt request (INTTM01n) is generated when the value of CR01n changes from 0000H to 0001H following TM0n overflow (FFFFH). In addition, INTTM01n is generated after a match between TM0n and CR01n, after detecting the valid edge of the Tl00n pin, or the timer is cleared by a one-shot trigger.
 - When CR01n is used as a capture register, read data is undefined if the register read time and capture trigger input conflict (the capture data itself is the correct value).
 If count stop input and capture trigger input conflict, the captured data is undefined.
 - 3. CR01n can be rewritten during TM0n operation. For details, see Caution 2 in Figure 6-20.

6.3 Registers Controlling 16-Bit Timer/Event Counters 00 and 01

The following six registers are used to control 16-bit timer/event counters 00 and 01.

- 16-bit timer mode control register 0n (TMC0n)
- Capture/compare control register 0n (CRC0n)
- 16-bit timer output control register 0n (TOC0n)
- Prescaler mode register 0n (PRM0n)
- Port mode register 0 (PM0)
- Port register 0 (P0)

(1) 16-bit timer mode control register 0n (TMC0n)

This register sets the 16-bit timer operating mode, the 16-bit timer counter 0n (TM0n) clear mode, and output timing, and detects an overflow.

TMC0n can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears TMC0n to 00H.

Caution 16-bit timer counter 0n (TM0n) starts operation at the moment TMC0n2 and TMC0n3 are set to values other than 0, 0 (operation stop mode), respectively. Set TMC0n2 and TMC0n3 to 0, 0 to stop the operation.

Remark n = 0: μ PD78F0132H

Figure 6-6. Format of 16-Bit Timer Mode Control Register 00 (TMC00)

Address	FFBA	H Af	ter rese	t: 00H	R/W			
Symbol	7	6	5	4	3	2	1	<0>
TMC00	0	0	0	0	TMC003	TMC002	TMC001	OVF00

TMC003	TMC002	TMC001	Operating mode and clear mode selection	TO00 inversion timing selection	Interrupt request generation
0	0	0	Operation stop	No change	Not generated
0	0	1	(TM00 cleared to 0)		
0	1	0	Free-running mode	Match between TM00 and CR000 or match between TM00 and CR010	<when as="" compare="" register="" used=""> Generated on match between</when>
0	1	1		Match between TM00 and CR000, match between TM00 and CR010 or Tl000 pin valid edge	TM00 and CR000, or match between TM00 and CR010 <when as="" capture<br="" used="">register></when>
1	0	0	Clear & start occurs on TI000	-	Generated by inputting CR000 capture trigger
1	0	1	pin valid edge		ouplais angger
1	1	0	Clear & start occurs on match between TM00 and CR000	Match between TM00 and CR000 or match between TM00 and CR010	
1	1	1		Match between TM00 and CR000, match between TM00 and CR010 or Tl000 pin valid edge	

OVF00	16-bit timer counter 00 (TM00) overflow detection
0	Overflow not detected
1	Overflow detected

Cautions 1. Timer operation must be stopped before writing to bits other than the OVF00 flag.

- 2. Set the valid edge of the TI000/P00 pin using prescaler mode register 00 (PRM00).
- 3. If any the following modes: the mode in which clear & start occurs on match between TM00 and CR000, the mode in which clear & start occurs at the Tl000 pin valid edge, or free-running mode is selected, when the set value of CR000 is FFFFH and the TM00 value changes from FFFFH to 0000H, the OVF00 flag is set to 1.

Remark TO00: 16-bit timer/event counter 00 output pin

TI000: 16-bit timer/event counter 00 input pin

TM00: 16-bit timer counter 00

CR000: 16-bit timer capture/compare register 000 CR010: 16-bit timer capture/compare register 010

Figure 6-7. Format of 16-Bit Timer Mode Control Register 01 (TMC01)

Address	FFB6H	H Aft	er rese	t: 00H	R/W			
Symbol	7	6	5	4	3	2	1	<0>
TMC01	0	0	0	0	TMC013	TMC012	TMC011	OVF01

TMC013	TMC012	TMC011	Operating mode and clear mode selection	TO01 inversion timing selection	Interrupt request generation
0	0	0	Operation stop	No change	Not generated
0	0	1	(TM01 cleared to 0)		
0	1	0	Free-running mode	Match between TM01 and CR001 or match between TM01 and CR011	<when as="" compare="" register="" used=""> Generated on match between</when>
0	1	1		Match between TM01 and CR001, match between TM01 and CR011 or Tl001 pin valid edge	TM01 and CR001, or match between TM01 and CR011 <when as="" capture<br="" used="">register></when>
1	0	0	Clear & start occurs on TI001	-	Generated by inputting CR001 capture trigger
1	0	1	pin valid edge		Suprairo aliggo
1	1	0	Clear & start occurs on match between TM01 and CR001	Match between TM01 and CR001 or match between TM01 and CR011	
1	1	1		Match between TM01 and CR001, match between TM01 and CR011 or Tl001 pin valid edge	

OVF01	16-bit timer counter 01 (TM01) overflow detection
0	Overflow not detected
1	Overflow detected

Cautions 1. Timer operation must be stopped before writing to bits other than the OVF01 flag.

- 2. Set the valid edge of the TI001/P05 pin using prescaler mode register 01 (PRM01).
- 3. If any the following modes: the mode in which clear & start occurs on match between TM01 and CR001, the mode in which clear & start occurs at the Tl001 pin valid edge, or free-running mode is selected, when the set value of CR001 is FFFFH and the TM01 value changes from FFFFH to 0000H, the OVF01 flag is set to 1.

Remark TO01: 16-bit timer/event counter 01 output pin

TI001: 16-bit timer/event counter 01 input pin

TM01: 16-bit timer counter 01

CR001: 16-bit timer capture/compare register 001 CR011: 16-bit timer capture/compare register 011

(2) Capture/compare control register 0n (CRC0n)

This register controls the operation of the 16-bit timer capture/compare registers (CR00n, CR01n).

CRC0n can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears CRC0n to 00H.

Remark n = 0: μ PD78F0132H

n = 0, 1: μ PD78F0133H, 78F0134H, 78F0136H, 78F0138HD

Figure 6-8. Format of Capture/Compare Control Register 00 (CRC00)

Address: FFBCH After reset: 00H			R/W					
Symbol	7	6	5	4	3	2	1	0
CRC00	0	0	0	0	0	CRC002	CRC001	CRC000

CRC002	CR010 operating mode selection
0	Operates as compare register
1	Operates as capture register

CRC001	CR000 capture trigger selection
0	Captures on valid edge of Tl010 pin
1	Captures on valid edge of Tl000 pin by reverse phase ^{Note}

CRC000	CR000 operating mode selection
0	Operates as compare register
1	Operates as capture register

Note The capture operation is not performed if both the rising and falling edges are specified as the valid edge of the Tl000 pin.

Cautions 1. Timer operation must be stopped before setting CRC00.

- 2. When the mode in which clear & start occurs on a match between TM00 and CR000 is selected with 16-bit timer mode control register 00 (TMC00), CR000 should not be specified as a capture register.
- To ensure that the capture operation is performed properly, the capture trigger requires a pulse longer than two cycles of the count clock selected by prescaler mode register 00 (PRM00).

Figure 6-9. Format of Capture/Compare Control Register 01 (CRC01)

Address: FF	B8H After	reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
CRC01	0	0	0	0	0	CRC012	CRC011	CRC010

CRC012	CR011 operating mode selection
0	Operates as compare register
1	Operates as capture register

CRC011	CR001 capture trigger selection	
0	Captures on valid edge of Tl011 pin	
1	Captures on valid edge of TI001 pin by reverse phase ^{Note}	

CRC010	CR001 operating mode selection Operates as compare register Operates as capture register	
0		
1		

Note The capture operation is not performed if both the rising and falling edges are specified as the valid edge of the TI001 pin.

Cautions 1. Timer operation must be stopped before setting CRC01.

- When the mode in which clear & start occurs on a match between TM01 and CR001 is selected with 16-bit timer mode control register 01 (TMC01), CR001 should not be specified as a capture register.
- 3. To ensure that the capture operation is performed properly, the capture trigger requires a pulse longer than two cycles of the count clock selected by prescaler mode register 01 (PRM01).

(3) 16-bit timer output control register 0n (TOC0n)

This register controls the operation of the 16-bit timer/event counter 0n output controller. It sets/resets the timer output F/F (LV0n), enables/disables output inversion and 16-bit timer/event counter 0n timer output, enables/disables the one-shot pulse output operation, and sets the one-shot pulse output trigger via software.

TOC0n can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears TOC0n to 00H.

Remark n = 0: μ PD78F0132H

Figure 6-10. Format of 16-Bit Timer Output Control Register 00 (TOC00)

Address: FFBDH After reset: 00H R/W Symbol <6> <5> <3> <2> <0> TOC00 OSPT00 OSPE00 TOC004 LVS00 LVR00 TOC001 TOE00

	OSPT00	One-shot pulse output trigger control via software	
	0	No one-shot pulse output trigger	
One-shot pulse output trigger			

OSPE00	One-shot pulse output operation control	
0	Successive pulse output mode	
1	One-shot pulse output mode ^{Note}	

TOC004	Timer output F/F control using match of CR010 and TM00	
0	Disables inversion operation	
1	Enables inversion operation	

LVS00	LVR00	Timer output F/F status setting
0	0	No change
0	1	Timer output F/F reset (0)
1	0	Timer output F/F set (1)
1	1	Setting prohibited

TOC001	Timer output F/F control using match of CR000 and TM00	
0	visables inversion operation	
1	Enables inversion operation	

TOE00 Timer output control		Timer output control
	0 Disables output (output fixed to level 0)	
	1 Enables output	

Note The one-shot pulse output mode operates correctly only in the free-running mode and the mode in which clear & start occurs at the Tl000 pin valid edge. In the mode in which clear & start occurs on a match between the TM00 register and CR000 register, one-shot pulse output is not possible because an overflow does not occur.

Cautions 1. Timer operation must be stopped before setting other than TOC004.

- 2. If LVS00 and LVR00 are read, 0 is read.
- 3. OSPT00 is automatically cleared after data is set, so 0 is read.
- 4. Do not set OSPT00 to 1 other than in one-shot pulse output mode.
- 5. A write interval of two cycles or more of the count clock selected by prescaler mode register 00 (PRM00) is required to write to OSPT00 successively.
- 6. Do not set LVS00 to 1 before TOE00, and do not set LVS00 and TOE00 to 1 simultaneously.
- 7. Perform <1> and <2> below in the following order, not at the same time.
 - <1> Set TOC001, TOC004, TOE00, OSPE00: Timer output operation setting
 - <2> Set LVS00, LVR00: Timer output F/F setting

Figure 6-11. Format of 16-Bit Timer Output Control Register 01 (TOC01)

Address: FFB9H After reset: 00H R/W Symbol <6> <5> <3> <2> 1 <0> TOC01 0 OSPT01 OSPE01 TOC014 LVS01 LVR01 TOC011 TOE01

OSPT01	One-shot pulse output trigger control via software	
0	No one-shot pulse output trigger	
1	One-shot pulse output trigger	

OSPE01	One-shot pulse output operation control	
0	uccessive pulse output mode	
1	One-shot pulse output mode ^{Note}	

TOC014 Timer output F/F control using match of CR011 and TM01		
0	Disables inversion operation	
1	Enables inversion operation	

LVS01	LVR01	Timer output F/F status setting
0	0	No change
0	1	Timer output F/F reset (0)
1	0	Timer output F/F set (1)
1	1	Setting prohibited

TOC011	Timer output F/F control using match of CR001 and TM01	
0	Disables inversion operation	
1	Enables inversion operation	

L	TOE01	Timer output control		
Ī	0	Disables output (output fixed to level 0)		
Ī	1	Enables output		

Note The one-shot pulse output mode operates correctly only in the free-running mode and the mode in which clear & start occurs at the Tl001 pin valid edge. In the mode in which clear & start occurs on a match between the TM01 register and CR001 register, one-shot pulse output is not possible because an overflow does not occur.

Cautions 1. Timer operation must be stopped before setting other than TOC014.

- 2. If LVS01 and LVR01 are read, 0 is read.
- 3. OSPT01 is automatically cleared after data is set, so 0 is read.
- 4. Do not set OSPT01 to 1 other than in one-shot pulse output mode.
- 5. A write interval of two cycles or more of the count clock selected by prescaler mode register 01 (PRM01) is required to write to OSPT01 successively.
- 6. Do not set LVS01 to 1 before TOE01, and do not set LVS01 and TOE01 to 1 simultaneously.
- 7. Perform <1> and <2> below in the following order, not at the same time.
 - <1> Set TOC011, TOC014, TOE01, OSPE01: Timer output operation setting
 - <2> Set LVS01, LVR01: Timer output F/F setting

(4) Prescaler mode register 0n (PRM0n)

This register is used to set the 16-bit timer counter 0n (TM0n) count clock and Tl00n and Tl01n pin input valid edges.

PRM0n can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears PRM0n to 00H.

Remark n = 0: μ PD78F0132H

n = 0, 1: μ PD78F0133H, 78F0134H, 78F0136H, 78F0138HD

Figure 6-12. Format of Prescaler Mode Register 00 (PRM00)

Address: FFBBH After reset: 00H R/W Symbol 7 6 5 4 3 0 PRM00 ES101 ES100 ES001 ES000 0 0 PRM001 PRM000

ES101	ES100	TI010 pin valid edge selection
0	0	Falling edge
0	1	Rising edge
1	0	Setting prohibited
1	1	Both falling and rising edges

ES001	ES000	TI000 pin valid edge selection
0	0	Falling edge
0	1	Rising edge
1	0	Setting prohibited
1	1	Both falling and rising edges

PRM001	PRM000	Count clock selection Note 1
0	0	fx (10 MHz)
0	1	fx/2 ² (2.5 MHz)
1	0	fx/2 ⁸ (39.06 kHz)
1	1	TI000 valid edge ^{Note 2}

Notes 1. Be sure to set the count clock so that the following condition is satisfied.

- V_{DD} = 4.0 to 5.5 V: Count clock \leq 10 MHz
- V_{DD} = 3.3 to 4.0 V: Count clock \leq 8.38 MHz
- V_{DD} = 2.7 to 3.3 V: Count clock \leq 5 MHz
- V_{DD} = 2.5 to 2.7 V: Count clock \leq 2.5 MHz (standard products, (A) grade products only)
- 2. The external clock requires a pulse longer than two cycles of the internal count clock (fx).

<R>

- Cautions 1. When the internal oscillation clock is selected as the clock to be supplied to the CPU, the clock of the internal oscillator is divided and supplied as the count clock. If the count clock is the internal oscillation clock, the operation of 16-bit timer/event counter 00 is not guaranteed. When an external clock is used and when the internal oscillation clock is selected and supplied to the CPU, the operation of 16-bit timer/event counter 00 is not guaranteed, either, because the internal oscillation clock is supplied as the sampling clock to eliminate noise.
 - 2. Always set data to PRM00 after stopping the timer operation.
 - 3. If the valid edge of the Tl000 pin is to be set for the count clock, do not set the clear & start mode using the valid edge of the Tl000 pin and the capture trigger.
 - 4. If the TI000 or TI010 pin is high level immediately after system reset, the rising edge is immediately detected after the rising edge or both the rising and falling edges are set as the valid edge(s) of the TI000 pin or TI010 pin to enable the operation of 16-bit timer counter 00 (TM00). Care is therefore required when pulling up the TI000 or TI010 pin. However, if the TI000 or TI010 pin is high level when re-enabling operation after the operation has been stopped, the rising edge is not detected.
 - 5. When the valid edge of the TI010 pin is used, P01 cannot be used as the timer output pin (TO00). When P01 is used as the TO00 pin, the valid edge of the TI010 pin cannot be used.
- **Remarks 1**. fx: High-speed system clock oscillation frequency
 - **2.** Figures in parentheses are for operation with fx = 10 MHz.

Figure 6-13. Format of Prescaler Mode Register 01 (PRM01)

Address: FFB7H After reset: 00H R/W
Symbol 7 6 5 4 3 2 1

Rising edge

Setting prohibited

Both falling and rising edges

0

ES011	ES010	TI001 pin valid edge selection
0	0	Falling edge
0	1	Rising edge
1	0	Setting prohibited
1	1	Both falling and rising edges

PRM011	PRM010	Count clock selection Note 1
0	0	fx (10 MHz)
0	1	fx/2 ⁴ (625 kHz)
1	0	fx/2 ⁶ (156.25 kHz)
1	1	TI001 valid edge ^{Note 2}

Notes 1. Be sure to set the count clock so that the following condition is satisfied.

• V_{DD} = 4.0 to 5.5 V: Count clock \leq 10 MHz

0

1

1

0

1

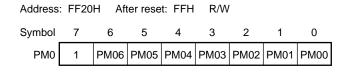
- V_{DD} = 3.3 to 4.0 V: Count clock \leq 8.38 MHz
- V_{DD} = 2.7 to 3.3 V: Count clock \leq 5 MHz
- V_{DD} = 2.5 to 2.7 V: Count clock ≤ 2.5 MHz (standard products, (A) grade products only)
- 2. The external clock requires a pulse longer than two cycles of the internal count clock (fx).

<R>

- Cautions 1. When the internal oscillation clock is selected as the clock to be supplied to the CPU, the clock of the internal oscillator is divided and supplied as the count clock. If the count clock is the internal oscillation clock, the operation of 16-bit timer/event counter 00 is not guaranteed. When an external clock is used and when the internal oscillation clock is selected and supplied to the CPU, the operation of 16-bit timer/event counter 00 is not guaranteed, either, because the internal oscillation clock is supplied as the sampling clock to eliminate noise.
 - 2. Always set data to PRM01 after stopping the timer operation.
 - 3. If the valid edge of the Tl001 pin is to be set for the count clock, do not set the clear & start mode using the valid edge of the Tl001 pin and the capture trigger.
 - 4. If the TI001 or TI011 pin is high level immediately after system reset, the rising edge is immediately detected after the rising edge or both the rising and falling edges are set as the valid edge(s) of the TI001 pin or TI011 pin to enable the operation of 16-bit timer counter 01 (TM01). Care is therefore required when pulling up the TI001 or TI011 pin. However, if the TI001 or TI011 pin is high level when re-enabling operation after the operation has been stopped, the rising edge is not detected.
 - 5. When the valid edge of the TI011 pin is used, P06 cannot be used as the timer output pin (T001). When P06 is used as the T001 pin, the valid edge of the TI011 pin cannot be used.
- Remarks 1. fx: High-speed system clock oscillation frequency
 - **2.** Figures in parentheses are for operation with fx = 10 MHz.

(5) Port mode register 0 (PM0)

This register sets port 0 input/output in 1-bit units.


When using the P01/T000/TI010 and P06/T001^{Note}/TI011^{Note} pins for timer output, set PM01 and PM06 and the output latch of P01 and P06 to 0.

When using the P01/T000/TI010 and P06/T001^{Note}/TI011^{Note} pins for timer input, set PM01 and PM06 to 1. At this time, the output latch of P01 and P06 may be 0 or 1.

PM0 can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets PM0 to FFH.

Figure 6-14. Format of Port Mode Register 0 (PM0)

PM0n	P0n pin I/O mode selection (n = 0 to 6)
0	Output mode (output buffer on)
1	Input mode (output buffer off)

Note Available only for the *μ*PD78F0133H, 78F0134H, 78F0136H, 78F0138H, and 78F0138HD.

6.4 Operation of 16-Bit Timer/Event Counters 00 and 01

6.4.1 Interval timer operation

Setting 16-bit timer mode control register 0n (TMC0n) and capture/compare control register 0n (CRC0n) as shown in Figure 6-15 allows operation as an interval timer.

Setting

The basic operation setting procedure is as follows.

- <1> Set the CRC0n register (see Figure 6-15 for the set value).
- <2> Set any value to the CR00n register.
- <3> Set the count clock by using the PRM0n register.
- <4> Set the TMC0n register to start the operation (see Figure 6-15 for the set value).

Caution Do not rewrite CR00n during TM0n operation.

Remark For how to enable the INTTM00n interrupt, see CHAPTER 17 INTERRUPT FUNCTIONS.

Interrupt requests are generated repeatedly using the count value preset in 16-bit timer capture/compare register 00n (CR00n) as the interval.

When the count value of 16-bit timer counter 0n (TM0n) matches the value set in CR00n, counting continues with the TM0n value cleared to 0 and the interrupt request signal (INTTM00n) is generated.

The count clock of 16-bit timer/event counter 0n can be selected with bits 0 and 1 (PRM0n0, PRM0n1) of prescaler mode register 0n (PRM0n).

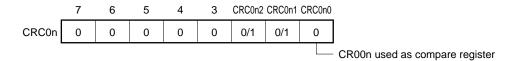
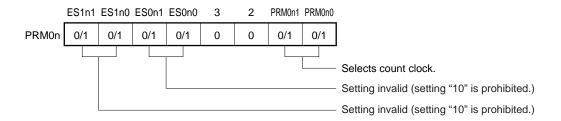

Remark n = 0: μ PD78F0132H

Figure 6-15. Control Register Settings for Interval Timer Operation


(a) 16-bit timer mode control register 0n (TMC0n)

(b) Capture/compare control register 0n (CRC0n)

(c) Prescaler mode register 0n (PRM0n)

Remarks 1. 0/1: Setting 0 or 1 allows another function to be used simultaneously with the interval timer. See the description of the respective control registers for details.

2. n = 0: μ PD78F0132H n = 0, 1: μ PD78F0133H, 78F0134H, 78F0136H, 78F0138HD

16-bit timer capture/compare register 00n (CR00n) ► INTTM00n fx (fx)Note 1 $fx/2^2 (fx/2^4)^{Note 1}$ 16-bit timer counter 0n Note 2 OVF0n $fx/2^8 (fx/2^6)^{Note 1}$ (TM0n) Noise TI000/P00 ⊚ eliminator (TI001/P05)Note 1 Clear circuit fx

Figure 6-16. Interval Timer Configuration Diagram

- **Notes 1.** Frequencies and pin names without parentheses are for 16-bit timer/event counter 00, and those in parentheses are for 16-bit timer/event counter 01.
 - 2. OVF0n is set to 1 only when 16-bit timer capture/compare register 00n is set to FFFFH.

Count clock TM0n count value **X**0001H Ν 0000H **X**0000H**X**0001H Ν Timer operation enabled Clear Clear CR00n Ν Ν Ν INTTM00n Interrupt acknowledged Interrupt acknowledged

Figure 6-17. Timing of Interval Timer Operation

Remark Interval time = $(N + 1) \times t$

N = 0001H to FFFFH (settable range)

n = 0: μ PD78F0132H

6.4.2 PPG output operations

Setting 16-bit timer mode control register 0n (TMC0n) and capture/compare control register 0n (CRC0n) as shown in Figure 6-18 allows operation as PPG (Programmable Pulse Generator) output.

Setting

The basic operation setting procedure is as follows.

- <1> Set the CRC0n register (see Figure 6-18 for the set value).
- <2> Set any value to the CR00n register as the cycle.
- <3> Set any value to the CR01n register as the duty factor.
- <4> Set the TOC0n register (see Figure 6-18 for the set value).
- <5> Set the count clock by using the PRM0n register.
- <6> Set the TMC0n register to start the operation (see Figure 6-18 for the set value).

Caution To change the value of the duty factor (the value of the CR01n register) during operation, see Caution 2 in Figure 6-20 PPG Output Operation Timing.

- Remarks 1. For the setting of the TO0n pin, see 6.3 (5) Port mode register 0 (PM0).
 - 2. For how to enable the INTTM00n interrupt, see CHAPTER 17 INTERRUPT FUNCTIONS.

In the PPG output operation, rectangular waves are output from the TO0n pin with the pulse width and the cycle that correspond to the count values preset in 16-bit timer capture/compare register 01n (CR01n) and in 16-bit timer capture/compare register 00n (CR00n), respectively.

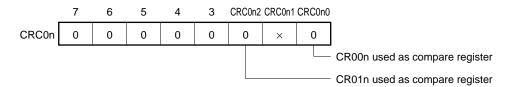
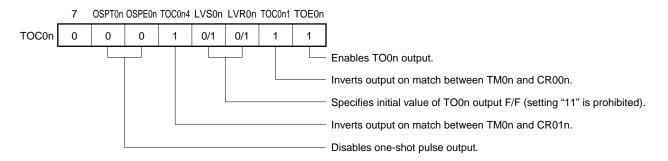
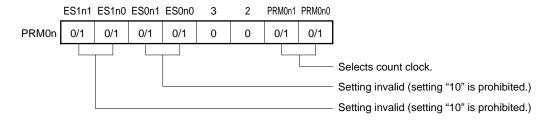

Remark n = 0: μ PD78F0132H

Figure 6-18. Control Register Settings for PPG Output Operation


(a) 16-bit timer mode control register 0n (TMC0n)


(b) Capture/compare control register 0n (CRC0n)

(c) 16-bit timer output control register 0n (TOC0n)

(d) Prescaler mode register 0n (PRM0n)

Cautions 1. Values in the following range should be set in CR00n and CR01n: $0000H \le CR01n < CR00n \le FFFFH$

2. The pulse generated through PPG output has a cycle of [CR00n setting value + 1], and a duty of [(CR01n setting value + 1)/(CR00n setting value + 1)].

Remark x: Don't care

n = 0: μ PD78F0132H

16-bit timer capture/compare register 00n (CR00n) fx (fx)Note Selector $fx/2^2 (fx/2^4)^{Note}$ 16-bit timer counter 0n Clear $fx/2^8 (fx/2^6)^{Note}$ circuit (TM0n) TI000/P00_© Noise Output controller (TI001/P05)Note eliminator TO00/TI010/P01 (TO01/TI011/P06) fx 16-bit timer capture/compare register 01n (CR01n)

Figure 6-19. Configuration Diagram of PPG Output

Note Frequencies and pin names without parentheses are for 16-bit timer/event counter 00, and those in parentheses are for 16-bit timer/event counter 01.

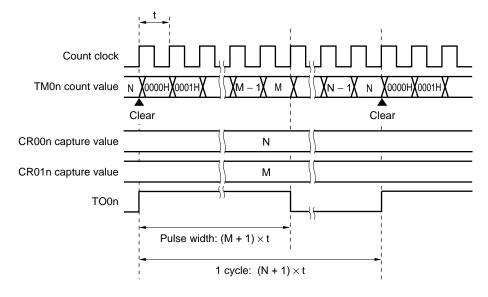


Figure 6-20. PPG Output Operation Timing

- Cautions 1. Do not rewrite CR00n during TM0n operation.
 - 2. In the PPG output operation, change the pulse width (rewrite CR01n) during TM0n operation using the following procedure.
 - <1> Disable the timer output inversion operation by match of TM0n and CR01n (TOC0n4 = 0)
 - <2> Disable the INTTM01n interrupt (TMMK01n = 1)
 - <3> Rewrite CR01n
 - <4> Wait for 1 cycle of the TM0n count clock
 - <5> Enable the timer output inversion operation by match of TM0n and CR01n (TOC0n4 = 1)
 - <6> Clear the interrupt request flag of INTTM01n (TMIF01n = 0)
 - <7> Enable the INTTM01n interrupt (TMMK01n = 0)

Remarks 1. $0000H \le M < N \le FFFFH$

2. n = 0: μ PD78F0132H

6.4.3 Pulse width measurement operations

It is possible to measure the pulse width of the signals input to the TI00n pin and TI01n pin using 16-bit timer counter 0n (TM0n).

There are two measurement methods: measuring with TM0n used in free-running mode, and measuring by restarting the timer in synchronization with the edge of the signal input to the Tl00n pin.

When an interrupt occurs, read the valid value of the capture register, check the overflow flag, and then calculate the necessary pulse width. Clear the overflow flag after checking it.

The capture operation is not performed until the signal pulse width is sampled in the count clock cycle selected by prescaler mode register 0n (PRM0n) and the valid level of the Tl00n or Tl01n pin is detected twice, thus eliminating noise with a short pulse width.

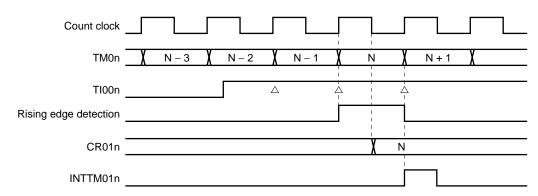


Figure 6-21. CR01n Capture Operation with Rising Edge Specified

Setting

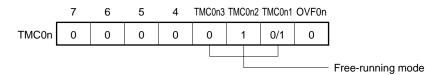
The basic operation setting procedure is as follows.

- <1> Set the CRC0n register (see Figures 6-22, 6-25, 6-27, and 6-29 for the set value).
- <2> Set the count clock by using the PRM0n register.
- <3> Set the TMC0n register to start the operation (see Figures 6-22, 6-25, 6-27, and 6-29 for the set value).

Caution To use two capture registers, set the Tl00n and Tl01n pins.

Remarks 1. For the setting of the TI00n (or TI01n) pin, see 6.3 (5) Port mode register 0 (PM0).

- 2. For how to enable the INTTM00n (or INTTM01n) interrupt, see CHAPTER 17 INTERRUPT FUNCTIONS.
- **3.** n = 0: μ PD78F0132H


(1) Pulse width measurement with free-running counter and one capture register

When 16-bit timer counter 0n (TM0n) is operated in free-running mode, and the edge specified by prescaler mode register 0n (PRM0n) is input to the TI00n pin, the value of TM0n is taken into 16-bit timer capture/compare register 01n (CR01n) and an external interrupt request signal (INTTM01n) is set.

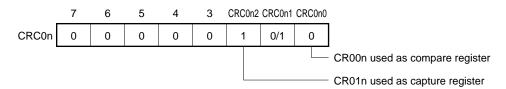
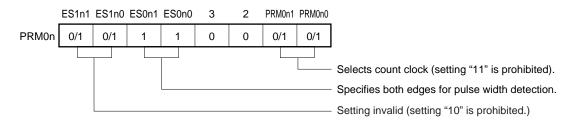
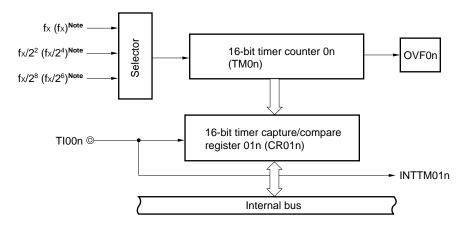

Specify both the rising and falling edges of the TI00n pin by using bits 4 and 5 (ES0n0 and ES0n1) of PRM0n. Sampling is performed using the count clock selected by PRM0n, and a capture operation is only performed when a valid level of the TI00n pin is detected twice, thus eliminating noise with a short pulse width.

Figure 6-22. Control Register Settings for Pulse Width Measurement with Free-Running Counter and One Capture Register (When TI00n and CR01n Are Used)


(a) 16-bit timer mode control register 0n (TMC0n)

(b) Capture/compare control register 0n (CRC0n)


(c) Prescaler mode register 0n (PRM0n)

Remark 0/1: Setting 0 or 1 allows another function to be used simultaneously with pulse width measurement. See the description of the respective control registers for details.

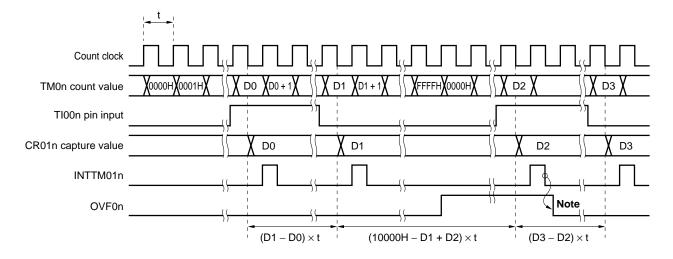

n = 0: μ PD78F0132H

Figure 6-23. Configuration Diagram for Pulse Width Measurement with Free-Running Counter

Note Frequencies without parentheses are for 16-bit timer/event counter 00, and those in parentheses are for 16-bit timer/event counter 01.

Figure 6-24. Timing of Pulse Width Measurement Operation with Free-Running Counter and One Capture Register (with Both Edges Specified)

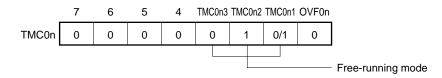
Note Clear OVF0n by software.

Remark n = 0: μ PD78F0132H

(2) Measurement of two pulse widths with free-running counter

When 16-bit timer counter 0n (TM0n) is operated in free-running mode, it is possible to simultaneously measure the pulse widths of the two signals input to the Tl00n pin and the Tl01n pin.

When the edge specified by bits 4 and 5 (ES0n0 and ES0n1) of prescaler mode register 0n (PRM0n) is input to the TI00n pin, the value of TM0n is taken into 16-bit timer capture/compare register 01n (CR01n) and an interrupt request signal (INTTM01n) is set.


Also, when the edge specified by bits 6 and 7 (ES1n0 and ES1n1) of PRM0n is input to the TI01n pin, the value of TM0n is taken into 16-bit timer capture/compare register 00n (CR00n) and an interrupt request signal (INTTM00n) is set.

Specify both the rising and falling edges as the edges of the TI00n and TI01n pins, by using bits 4 and 5 (ES0n0 and ES0n1) and bits 6 and 7 (ES1n0 and ES1n1) of PRM0n.

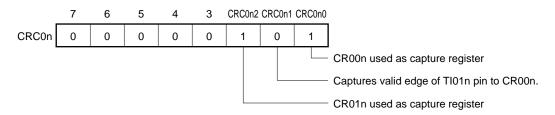
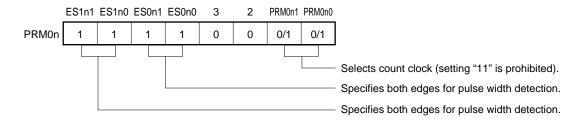

Sampling is performed using the count clock cycle selected by prescaler mode register 0n (PRM0n), and a capture operation is only performed when a valid level of the Tl00n or Tl01n pin is detected twice, thus eliminating noise with a short pulse width.

Figure 6-25. Control Register Settings for Measurement of Two Pulse Widths with Free-Running Counter


(a) 16-bit timer mode control register 0n (TMC0n)

(b) Capture/compare control register 0n (CRC0n)

(c) Prescaler mode register 0n (PRM0n)

Remark 0/1: Setting 0 or 1 allows another function to be used simultaneously with pulse width measurement. See the description of the respective control registers for details.

n = 0: μ PD78F0132H

Count clock TM0n count value TI00n pin input D0 D1 D2 CR01n capture value INTTM01n TI01n pin input CR00n capture value D1 D2 + 1 INTTM00n Note OVF0n $(D3 - D2) \times t$ $(D1 - D0) \times t$ $(10000H - D1 + D2) \times t$ $(10000H - D1 + (D2 + 1)) \times t$

Figure 6-26. Timing of Pulse Width Measurement Operation with Free-Running Counter (with Both Edges Specified)

Note Clear OVF0n by software.

Remark n = 0: μ PD78F0132H

(3) Pulse width measurement with free-running counter and two capture registers

When 16-bit timer counter 0n (TM0n) is operated in free-running mode, it is possible to measure the pulse width of the signal input to the Tl00n pin.


When the rising or falling edge specified by bits 4 and 5 (ES0n0 and ES0n1) of prescaler mode register 0n (PRM0n) is input to the Tl00n pin, the value of TM0n is taken into 16-bit timer capture/compare register 01n (CR01n) and an interrupt request signal (INTTM01n) is set.

Also, when the inverse edge to that of the capture operation is input into CR01n, the value of TM0n is taken into 16-bit timer capture/compare register 00n (CR00n).

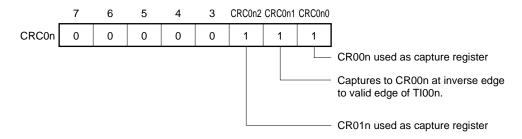
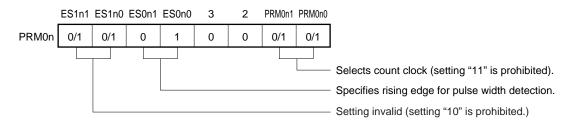

Sampling is performed using the count clock cycle selected by prescaler mode register 0n (PRM0n), and a capture operation is only performed when a valid level of the TI00n pin is detected twice, thus eliminating noise with a short pulse width.

Figure 6-27. Control Register Settings for Pulse Width Measurement with Free-Running Counter and Two Capture Registers (with Rising Edge Specified)


(a) 16-bit timer mode control register 0n (TMC0n)

(b) Capture/compare control register 0n (CRC0n)

(c) Prescaler mode register 0n (PRM0n)

Remark 0/1: Setting 0 or 1 allows another function to be used simultaneously with pulse width measurement. See the description of the respective control registers for details.

n = 0: μ PD78F0132H

Count clock оооон**Х**ооо1н D0 D0 + 1 TM0n count value TI00n pin input CR01n capture value D0 D2 CR00n capture value D1 D3 INTTM01n OVF0n Note $(D1 - D0) \times t$ $(10000H - D1 + D2) \times t$ $(D3 - D2) \times t$

Figure 6-28. Timing of Pulse Width Measurement Operation with Free-Running Counter and Two Capture Registers (with Rising Edge Specified)

Note Clear OVF0n by software.

(4) Pulse width measurement by means of restart

When input of a valid edge to the TI00n pin is detected, the count value of 16-bit timer counter 0n (TM0n) is taken into 16-bit timer capture/compare register 01n (CR01n), and then the pulse width of the signal input to the TI00n pin is measured by clearing TM0n and restarting the count operation.

Either of two edges—rising or falling—can be selected using bits 4 and 5 (ES0n0 and ES0n1) of prescaler mode register 0n (PRM0n).

Sampling is performed using the count clock cycle selected by prescaler mode register 0n (PRM0n) and a capture operation is only performed when a valid level of the TI00n pin is detected twice, thus eliminating noise with a short pulse width.

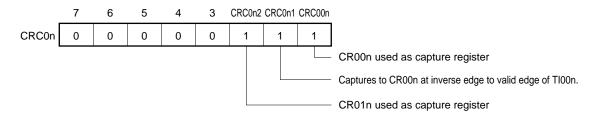

Remark n = 0: μ PD78F0132H

Figure 6-29. Control Register Settings for Pulse Width Measurement by Means of Restart (with Rising Edge Specified)

(a) 16-bit timer mode control register 0n (TMC0n)

(b) Capture/compare control register 0n (CRC0n)

(c) Prescaler mode register 0n (PRM0n)

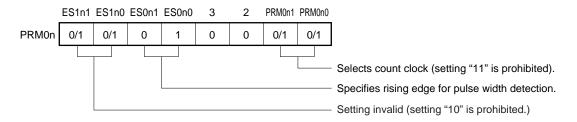



Figure 6-30. Timing of Pulse Width Measurement Operation by Means of Restart (with Rising Edge Specified)

Remark n = 0: μ PD78F0132H

6.4.4 External event counter operation

Setting

The basic operation setting procedure is as follows.

- <1> Set the CRC0n register (see **Figure 6-31** for the set value).
- <2> Set the count clock by using the PRM0n register.
- <3> Set any value to the CR00n register (0000H cannot be set).
- <4> Set the TMC0n register to start the operation (see Figure 6-31 for the set value).

Remarks 1. For the setting of the TI00n pin, see 6.3 (5) Port mode register 0 (PM0).

2. For how to enable the INTTM00n interrupt, see CHAPTER 17 INTERRUPT FUNCTIONS.

The external event counter counts the number of external clock pulses input to the TI00n pin using 16-bit timer counter 0n (TM0n).

TM0n is incremented each time the valid edge specified by prescaler mode register 0n (PRM0n) is input.

When the TM0n count value matches the 16-bit timer capture/compare register 00n (CR00n) value, TM0n is cleared to 0 and the interrupt request signal (INTTM00n) is generated.

Input a value other than 0000H to CR00n (a count operation with 1-bit pulse cannot be carried out).

Any of three edges—rising, falling, or both edges—can be selected using bits 4 and 5 (ES0n0 and ES0n1) of prescaler mode register 0n (PRM0n).

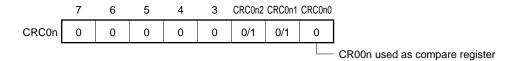
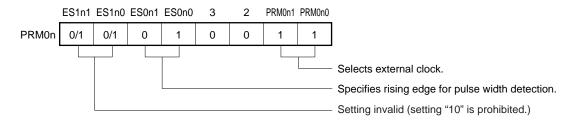
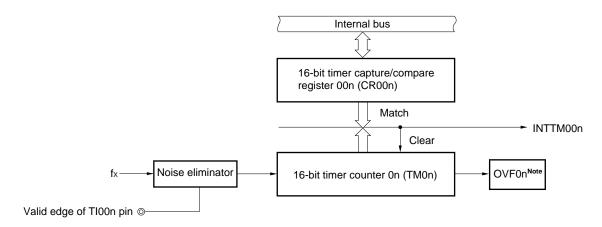

Sampling is performed using the internal clock (fx) and an operation is only performed when a valid level of the Tl00n pin is detected twice, thus eliminating noise with a short pulse width.

Figure 6-31. Control Register Settings in External Event Counter Mode (with Rising Edge Specified)


(a) 16-bit timer mode control register 0n (TMC0n)

(b) Capture/compare control register 0n (CRC0n)


(c) Prescaler mode register 0n (PRM0n)

Remark 0/1: Setting 0 or 1 allows another function to be used simultaneously with the external event counter. See the description of the respective control registers for details.

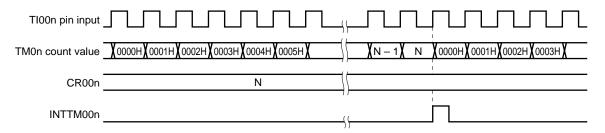

n = 0: μ PD78F0132H

Figure 6-32. Configuration Diagram of External Event Counter

Note OVF0n is set to 1 only when CR00n is set to FFFFH.

Figure 6-33. External Event Counter Operation Timing (with Rising Edge Specified)

Caution When reading the external event counter count value, TM0n should be read.

Remark n = 0: μ PD78F0132H

6.4.5 Square-wave output operation

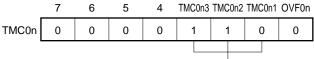
Setting

The basic operation setting procedure is as follows.

- <1> Set the count clock by using the PRM0n register.
- <2> Set the CRC0n register (see Figure 6-34 for the set value).
- <3> Set the TOC0n register (see Figure 6-34 for the set value).
- <4> Set any value to the CR00n register (0000H cannot be set).
- <5> Set the TMC0n register to start the operation (see Figure 6-34 for the set value).

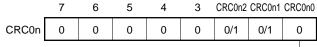
Caution Do not rewrite CR00n during TM0n operation.

Remarks 1. For the setting of the TO0n pin, see 6.3 (5) Port mode register 0 (PM0).


2. For how to enable the INTTM00n interrupt, see CHAPTER 17 INTERRUPT FUNCTIONS.

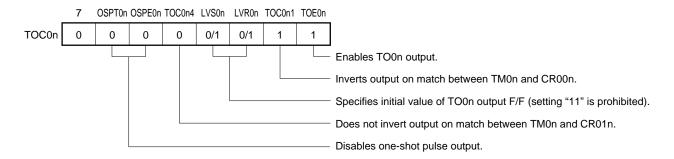
A square wave with any selected frequency can be output at intervals determined by the count value preset to 16-bit timer capture/compare register 00n (CR00n).

The TO0n pin output status is reversed at intervals determined by the count value preset to CR00n + 1 by setting bit 0 (TOE0n) and bit 1 (TOC0n1) of 16-bit timer output control register 0n (TOC0n) to 1. This enables a square wave with any selected frequency to be output.


Figure 6-34. Control Register Settings in Square-Wave Output Mode (1/2)

(a) 16-bit timer mode control register 0n (TMC0n)

Clears and starts on match between TM0n and CR00n.


(b) Capture/compare control register 0n (CRC0n)

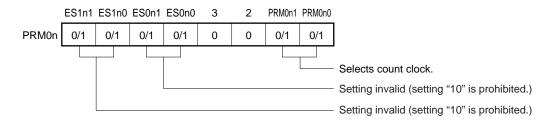
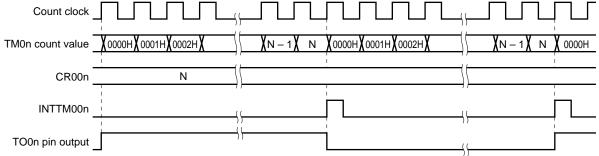

CR00n used as compare register

Figure 6-34. Control Register Settings in Square-Wave Output Mode (2/2)

(c) 16-bit timer output control register 0n (TOC0n)

(d) Prescaler mode register 0n (PRM0n)



Remark 0/1: Setting 0 or 1 allows another function to be used simultaneously with square-wave output. See the description of the respective control registers for details.

n = 0: μ PD78F0132H

n = 0, 1: μ PD78F0133H, 78F0134H, 78F0136H, 78F0138HD

Figure 6-35. Square-Wave Output Operation Timing

Remark n = 0: μ PD78F0132H

6.4.6 One-shot pulse output operation

16-bit timer/event counter 0n can output a one-shot pulse in synchronization with a software trigger or an external trigger (TI00n pin input).

Setting

The basic operation setting procedure is as follows.

- <1> Set the count clock by using the PRM0n register.
- <2> Set the CRC0n register (see Figures 6-36 and 6-38 for the set value).
- <3> Set the TOC0n register (see Figures 6-36 and 6-38 for the set value).
- <4> Set any value to the CR00n and CR01n registers (0000H cannot be set).
- <5> Set the TMC0n register to start the operation (see Figures 6-36 and 6-38 for the set value).

Remarks 1. For the setting of the TO0n pin, see 6.3 (5) Port mode register 0 (PM0).

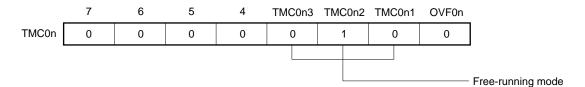
2. For how to enable the INTTM00n (if necessary, INTTM01n) interrupt, see **CHAPTER 17 INTERRUPT FUNCTIONS**.

(1) One-shot pulse output with software trigger

A one-shot pulse can be output from the TO0n pin by setting 16-bit timer mode control register 0n (TMC0n), capture/compare control register 0n (CRC0n), and 16-bit timer output control register 0n (TOC0n) as shown in Figure 6-36, and by setting bit 6 (OSPT0n) of the TOC0n register to 1 by software.

By setting the OSPT0n bit to 1, 16-bit timer/event counter 0n is cleared and started, and its output becomes active at the count value (N) set in advance to 16-bit timer capture/compare register 01n (CR01n). After that, the output becomes inactive at the count value (M) set in advance to 16-bit timer capture/compare register 00n (CR00n)^{Note}.

Even after the one-shot pulse has been output, the TM0n register continues its operation. To stop the TM0n register, the TMC0n3 and TMC0n2 bits of the TMC0n register must be set to 00.


Note The case where N < M is described here. When N > M, the output becomes active with the CR00n register and inactive with the CR01n register. Do not set N to M.

- Cautions 1. Do not set the OSPT0n bit to 1 while the one-shot pulse is being output. To output the one-shot pulse again, wait until the current one-shot pulse output is completed.
 - 2. When using the one-shot pulse output of 16-bit timer/event counter 0n with a software trigger, do not change the level of the TI00n pin or its alternate-function port pin.
 Because the external trigger is valid even in this case, the timer is cleared and started even at the level of the TI00n pin or its alternate-function port pin, resulting in the output of a pulse at an undesired timing.

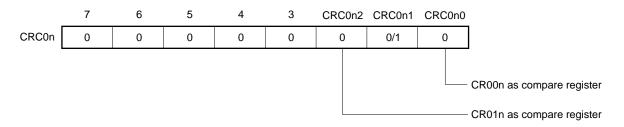
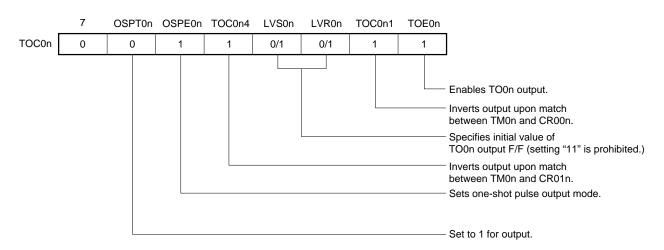
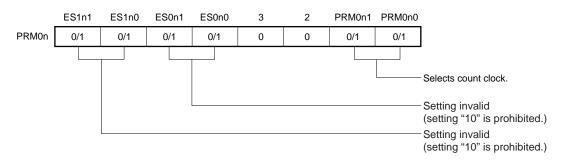

Remark n = 0: μ PD78F0132H

Figure 6-36. Control Register Settings for One-Shot Pulse Output with Software Trigger


(a) 16-bit timer mode control register 0n (TMC0n)


(b) Capture/compare control register 0n (CRC0n)

(c) 16-bit timer output control register 0n (TOC0n)

(d) Prescaler mode register 0n (PRM0n)

Caution Do not set the CR00n and CR01n registers to 0000H.

Remark n = 0: μ PD78F0132H

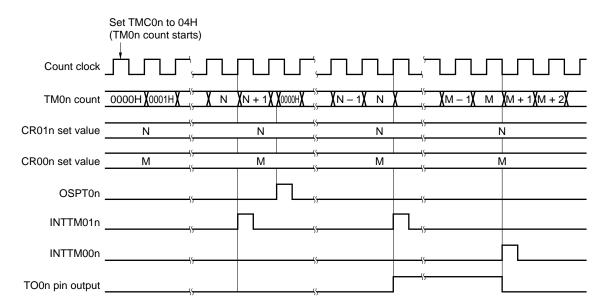


Figure 6-37. Timing of One-Shot Pulse Output Operation with Software Trigger

Caution 16-bit timer counter 0n starts operating as soon as a value other than 00 (operation stop mode) is set to the TMC0n3 and TMC0n2 bits.

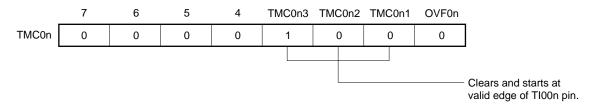
Remark N < M

(2) One-shot pulse output with external trigger

A one-shot pulse can be output from the TO0n pin by setting 16-bit timer mode control register 0n (TMC0n), capture/compare control register 0n (CRC0n), and 16-bit timer output control register 0n (TOC0n) as shown in Figure 6-38, and by using the valid edge of the Tl00n pin as an external trigger.

The valid edge of the TI00n pin is specified by bits 4 and 5 (ES0n0, ES0n1) of prescaler mode register 0n (PRM0n). The rising, falling, or both the rising and falling edges can be specified.

When the valid edge of the TI00n pin is detected, the 16-bit timer/event counter is cleared and started, and the output becomes active at the count value set in advance to 16-bit timer capture/compare register 01n (CR01n). After that, the output becomes inactive at the count value set in advance to 16-bit timer capture/compare register 00n (CR00n)^{Note}.


Note The case where N < M is described here. When N > M, the output becomes active with the CR00n register and inactive with the CR01n register. Do not set N to M.

Caution Even if the external trigger is generated again while the one-shot pulse is output, it is ignored.

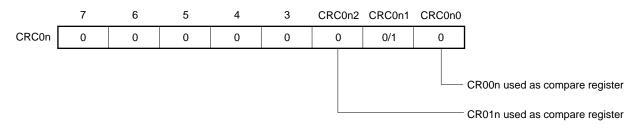
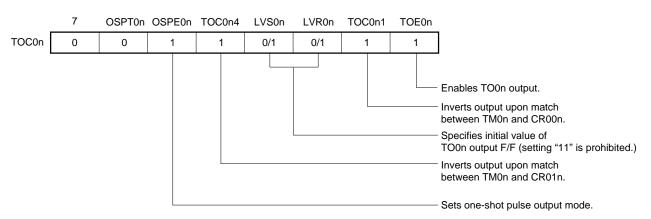
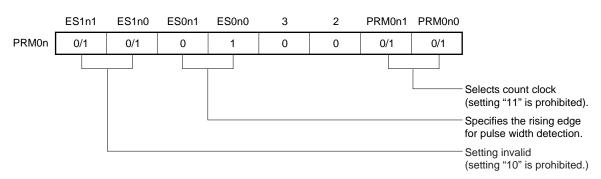

Remark n = 0: μ PD78F0132H

Figure 6-38. Control Register Settings for One-Shot Pulse Output with External Trigger (with Rising Edge Specified)


(a) 16-bit timer mode control register 0n (TMC0n)


(b) Capture/compare control register 0n (CRC0n)

(c) 16-bit timer output control register 0n (TOC0n)

(d) Prescaler mode register 0n (PRM0n)

Caution Do not set the CR00n and CR01n registers to 0000H.

Remark n = 0: μ PD78F0132H

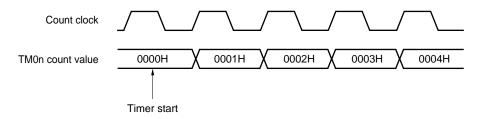
When TMC0n is set to 08H (TM0n count starts) <u>t</u>___ Count clock TM0n count value 0000H 0001H **X**0000H (N + 1)(N + 2)CR01n set value Ν Ν Ν N CR00n set value М М М TI00n pin input INTTM01n INTTM00n

Figure 6-39. Timing of One-Shot Pulse Output Operation with External Trigger (with Rising Edge Specified)

Caution 16-bit timer counter 0n starts operating as soon as a value other than 00 (operation stop mode) is set to the TMC0n3 and TMC0n2 bits.

Remark N < M

TO0n pin output ___


n = 0: μ PD78F0132H

6.5 Cautions for 16-Bit Timer/Event Counters 00 and 01

(1) Timer start errors

An error of up to one clock may occur in the time required for a match signal to be generated after timer start. This is because 16-bit timer counter 0n (TM0n) is started asynchronously to the count clock.

Figure 6-40. Start Timing of 16-Bit Timer Counter On (TMOn)

(2) 16-bit timer capture/compare register 00n setting

In the mode in which clear & start occurs on a match between TM0n and CR00n, set 16-bit timer capture/compare register 00n (CR00n) to other than 0000H. This means a 1-pulse count operation cannot be performed when 16-bit timer/event counter 0n is used as an external event counter.

(3) Capture register data retention timing

The values of 16-bit timer capture/compare registers 00n and 01n (CR00n and CR01n) are not guaranteed after 16-bit timer/event counter 0n has been stopped.

(4) Valid edge setting

Set the valid edge of the Tl00n pin after setting bits 2 and 3 (TMC0n2 and TMC0n3) of 16-bit timer mode control register 0n (TMC0n) to 0, 0, respectively, and then stopping timer operation. The valid edge is set using bits 4 and 5 (ES0n0 and ES0n1) of prescaler mode register 0n (PRM0n).

(5) Re-triggering one-shot pulse

(a) One-shot pulse output by software

When a one-shot pulse is output, do not set the OSPT0n bit to 1. Do not output the one-shot pulse again until INTTM00n, which occurs upon a match with the CR00n register, or INTTM01n, which occurs upon a match with the CR01n register, occurs.

(b) One-shot pulse output with external trigger

If the external trigger occurs again while a one-shot pulse is output, it is ignored.

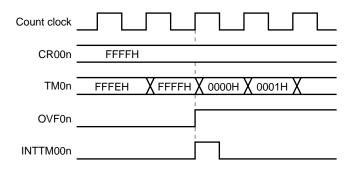
(c) One-shot pulse output function

When using the one-shot pulse output of 16-bit timer/event counter 0n with a software trigger, do not change the level of the TI00n pin or its alternate function port pin.

Because the external trigger is valid even in this case, the timer is cleared and started even at the level of the TI00n pin or its alternate function port pin, resulting in the output of a pulse at an undesired timing.

Remark n = 0: μ PD78F0132H

(6) Operation of OVF0n flag

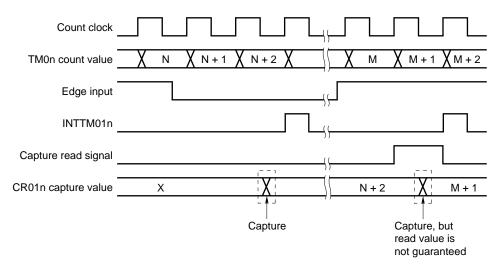

<1> The OFV0n flag is also set to 1 in the following case.

When any of the following modes is selected: the mode in which clear & start occurs on a match between TM0n and CR00n, the mode in which clear & start occurs at the TI00n valid edge, or the free-running mode

↓ CR00n is set to FFFFH

TM0n is counted up from FFFFH to 0000H.

Figure 6-41. Operation Timing of OVF0n Flag



<2> Even if the OVF0n flag is cleared before the next count clock is counted (before TM0n becomes 0001H) after the occurrence of TM0n overflow, the OVF0n flag is re-set newly so this clear is not valid.

(7) Conflicting operations

When a read period of the 16-bit timer capture/compare register (CR00n/CR01n) and a capture trigger input (CR00n/CR01n used as capture register) conflict, the priority is given to the capture trigger input. The data read from CR00n/CR01n is undefined.

Figure 6-42. Capture Register Data Retention Timing

Remark n = 0: μ PD78F0132H

n = 0, 1: μ PD78F0133H, 78F0134H, 78F0136H, 78F0138HD

(8) Timer operation

- <1> Even if 16-bit timer counter 0n (TM0n) is read, the value is not captured by 16-bit timer capture/compare register 01n (CR01n).
- <2> Regardless of the CPU's operation mode, when the timer stops, the input signals to the TI00n/TI01n pins are not acknowledged.
- <3> The one-shot pulse output mode operates correctly only in the free-running mode and the mode in which clear & start occurs at the TI00n valid edge. In the mode in which clear & start occurs on a match between the TM0n register and CR00n register, one-shot pulse output is not possible because an overflow does not occur.

(9) Capture operation

- <1> If the TI00n pin valid edge is specified as the count clock, a capture operation by the capture register specified as the trigger for the TI00n pin is not possible.
- <2> To ensure the reliability of the capture operation, the capture trigger requires a pulse longer than two cycles of the count clock selected by prescaler mode register 0n (PRM0n).
- <3> The capture operation is performed at the falling edge of the count clock. An interrupt request input (INTTM00n/INTTM01n), however, is generated at the rise of the next count clock.

(10) Compare operation

A capture operation may not be performed for CR00n/CR01n set in compare mode even if a capture trigger has been input.

(11) Edge detection

- <1> If the TI00n or TI01n pin is high level immediately after system reset and the rising edge or both the rising and falling edges are specified as the valid edge of the TI00n or TI01n pin to enable the 16-bit timer counter 0n (TM0n) operation, a rising edge is detected immediately after the operation is enabled. Be careful therefore when pulling up the TI00n or TI01n pin. However, if the TI00n or TI01n pin is high level when reenabling operation after the operation has been stopped, the rising edge is not detected.
- <2> The sampling clock used to remove noise differs when the TI00n pin valid edge is used as the count clock and when it is used as a capture trigger. In the former case, the count clock is fx, and in the latter case the count clock is selected by prescaler mode register 0n (PRM0n). The capture operation is started only after a valid edge is detected twice by sampling, thus eliminating noise with a short pulse width.

Remark n = 0: μ PD78F0132H

n = 0, 1: μ PD78F0133H, 78F0134H, 78F0136H, 78F0138HD

CHAPTER 7 8-BIT TIMER/EVENT COUNTERS 50 AND 51

7.1 Functions of 8-Bit Timer/Event Counters 50 and 51

8-bit timer/event counters 50 and 51 have the following functions.

- Interval timer
- · External event counter
- Square-wave output
- PWM output

Figures 7-1 and 7-2 show the block diagrams of 8-bit timer/event counters 50 and 51.

Internal bus 8-bit timer compare → INTTM50 Selector Mask circuit register 50 (CR50) TI50/TO50/ FLMD1/P17 @ To TMH0 To UART0 To UART6 Match Note 1 fx Selector fx/2 fx/2² S Selector 8-bit timer fx/2⁶ -© TO50/TI50/ FLMD1/P17 counter 50 (TM50) fx/28 Clear Note 2 Output latch PM17 (P17) Invert 3 level Selector TCE50 TMC506 LVS50 LVR50 TMC501 TOE50 TCL502 TCL501 TCL500 8-bit timer mode control Timer clock selection register 50 (TMC50) register 50 (TCL50) Internal bus

Figure 7-1. Block Diagram of 8-Bit Timer/Event Counter 50

Notes 1. Timer output F/F

2. PWM output F/F

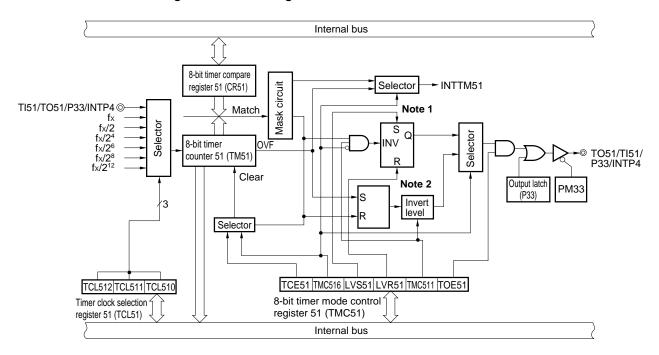


Figure 7-2. Block Diagram of 8-Bit Timer/Event Counter 51

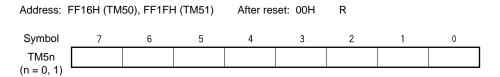
Notes 1. Timer output F/F

2. PWM output F/F

7.2 Configuration of 8-Bit Timer/Event Counters 50 and 51

8-bit timer/event counters 50 and 51 include the following hardware.

Table 7-1. Configuration of 8-Bit Timer/Event Counters 50 and 51


Item	Configuration
Timer register	8-bit timer counter 5n (TM5n)
Register	8-bit timer compare register 5n (CR5n)
Timer input	TI5n
Timer output	TO5n
Control registers	Timer clock selection register 5n (TCL5n) 8-bit timer mode control register 5n (TMC5n) Port mode register 1 (PM1) or port mode register 3 (PM3) Port register 1 (P1) or port register 3 (P3)

(1) 8-bit timer counter 5n (TM5n)

TM5n is an 8-bit register that counts the count pulses and is read-only.

The counter is incremented in synchronization with the rising edge of the count clock.

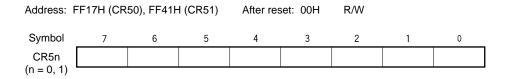
Figure 7-3. Format of 8-Bit Timer Counter 5n (TM5n)

In the following situations, the count value is cleared to 00H.

- <1> RESET input
- <2> When TCE5n is cleared
- <3> When TM5n and CR5n match in the mode in which clear & start occurs upon a match of the TM5n and CR5n.

(2) 8-bit timer compare register 5n (CR5n)

CR5n can be read and written by an 8-bit memory manipulation instruction.


Except in PWM mode, the value set in CR5n is constantly compared with the 8-bit timer counter 5n (TM5n) count value, and an interrupt request (INTTM5n) is generated if they match.

In PWM mode, when the TO5n pin becomes active due to a TM5n overflow and the values of TM5n and CR5n match, the TO5n pin becomes inactive.

The value of CR5n can be set within 00H to FFH.

RESET input clears CR5n to 00H.

Figure 7-4. Format of 8-Bit Timer Compare Register 5n (CR5n)

- Cautions 1. In the mode in which clear & start occurs on a match of TM5n and CR5n (TMC5n6 = 0), do not write other values to CR5n during operation.
 - 2. In PWM mode, make the CR5n rewrite interval 3 count clocks of the count clock (clock selected by TCL5n) or more.

7.3 Registers Controlling 8-Bit Timer/Event Counters 50 and 51

The following four registers are used to control 8-bit timer/event counters 50 and 51.

- Timer clock selection register 5n (TCL5n)
- 8-bit timer mode control register 5n (TMC5n)
- Port mode register 1 (PM1) or port mode register 3 (PM3)
- Port register 1 (P1) or port register 3 (P3)

(1) Timer clock selection register 5n (TCL5n)

This register sets the count clock of 8-bit timer/event counter 5n and the valid edge of the TI5n pin input.

TCL5n can be set by an 8-bit memory manipulation instruction.

RESET input clears TCL5n to 00H.

Remark n = 0, 1

<R>

Figure 7-5. Format of Timer Clock Selection Register 50 (TCL50)

Address: FF	6AH After	reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
TCL50	0	0	0	0	0	TCL502	TCL501	TCL500

TCL502	TCL501	TCL500	Count clock selection Note
0	0	0	TI50 pin falling edge
0	0	1	TI50 pin rising edge
0	1	0	fx (10 MHz)
0	1	1	fx/2 (5 MHz)
1	0	0	fx/2 ² (2.5 MHz)
1	0	1	fx/2 ⁶ (156.25 kHz)
1	1	0	fx/2 ⁸ (39.06 kHz)
1	1	1	fx/2 ¹³ (1.22 kHz)

Note Be sure to set the count clock so that the following condition is satisfied.

- V_{DD} = 4.0 to 5.5 V: Count clock ≤ 10 MHz
- V_{DD} = 3.3 to 4.0 V: Count clock \leq 8.38 MHz
- V_{DD} = 2.7 to 3.3 V: Count clock ≤ 5 MHz
- V_{DD} = 2.5 to 2.7 V: Count clock ≤ 2.5 MHz (standard products, (A) grade products only)

Cautions 1. When the internal oscillation clock is selected as the clock to be supplied to the CPU, the clock of the internal oscillator is divided and supplied as the count clock. If the count clock is the internal oscillation clock, the operation of 8-bit timer/event counter 50 is not guaranteed.

- 2. When rewriting TCL50 to other data, stop the timer operation beforehand.
- 3. Be sure to clear bits 3 to 7 to 0.

Remarks 1. fx: High-speed system clock oscillation frequency

2. Figures in parentheses apply to operation at fx = 10 MHz.

Figure 7-6. Format of Timer Clock Selection Register 51 (TCL51)

 Address:
 FF8CH
 After reset:
 00H
 R/W

 Symbol
 7
 6
 5
 4
 3
 2
 1
 0

 TCL51
 0
 0
 0
 0
 TCL512
 TCL511
 TCL510

TCL512	TCL511	TCL510	Count clock selection Note
0	0	0	TI51 falling edge
0	0	1	TI51 rising edge
0	1	0	fx (10 MHz)
0	1	1	fx/2 (5 MHz)
1	0	0	fx/2 ⁴ (625 kHz)
1	0	1	fx/2 ⁶ (156.25 kHz)
1	1	0	fx/2 ⁸ (39.06 kHz)
1	1	1	fx/2 ¹² (2.44 kHz)

Note Be sure to set the count clock so that the following condition is satisfied.

- V_{DD} = 4.0 to 5.5 V: Count clock \leq 10 MHz
- V_{DD} = 3.3 to 4.0 V: Count clock ≤ 8.38 MHz
- V_{DD} = 2.7 to 3.3 V: Count clock \leq 5 MHz
- VDD = 2.5 to 2.7 V: Count clock ≤ 2.5 MHz (standard products, (A) grade products only)

Cautions 1. When the internal oscillation clock is selected as the clock to be supplied to the CPU, the clock of the internal oscillator is divided and supplied as the count clock. If the count clock is the internal oscillation clock, the operation of 8-bit timer/event counter 51 is not guaranteed.

- 2. When rewriting TCL51 to other data, stop the timer operation beforehand.
- 3. Be sure to clear bits 3 to 7 to 0.

Remarks 1. fx: High-speed system clock oscillation frequency

2. Figures in parentheses apply to operation at fx = 10 MHz.

<R>

(2) 8-bit timer mode control register 5n (TMC5n)

TMC5n is a register that performs the following five types of settings.

- <1> 8-bit timer counter 5n (TM5n) count operation control
- <2> 8-bit timer counter 5n (TM5n) operating mode selection
- <3> Timer output F/F (flip flop) status setting
- <4> Active level selection in timer F/F control or PWM (free-running) mode.
- <5> Timer output control

TMC5n can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Remark n = 0, 1

Figure 7-7. Format of 8-Bit Timer Mode Control Register 50 (TMC50)

Address: FF	F6BH After	reset: 00H	R/W ^{Note}					
Symbol	<7>	6	5	4	<3>	<2>	1	<0>
TMC50	TCE50	TMC506	0	0	LVS50	LVR50	TMC501	TOE50

TCE50	TM50 count operation control
0	After clearing to 0, count operation disabled (counter stopped)
1	Count operation start

TMC506	TM50 operating mode selection
0	Mode in which clear & start occurs on a match between TM50 and CR50
1	PWM (free-running) mode

LVS50	LVR50	Timer output F/F status setting
0	0	No change
0	1	Timer output F/F reset (0)
1	0	Timer output F/F set (1)
1	1	Setting prohibited

TMC501	In other modes (TMC506 = 0)	In PWM mode (TMC506 = 1)
	Timer F/F control	Active level selection
0	Inversion operation disabled	Active-high
1	Inversion operation enabled	Active-low

TOE50	Timer output control	
0	Output disabled (TM50 output is low level)	
1	Output enabled	

Note Bits 2 and 3 are write-only.

(Refer to Cautions and Remarks on the next page.)

Figure 7-8. Format of 8-Bit Timer Mode Control Register 51 (TMC51)

R/W^{Note} Address: FF43H After reset: 00H Symbol <7> <3> <2> <0> TMC51 TCE51 TMC516 0 0 LVS51 LVR51 TMC511 TOE51

TCE51	TM51 count operation control
0	After clearing to 0, count operation disabled (counter stopped)
1	Count operation start

TMC516	TM51 operating mode selection		
0	Mode in which clear & start occurs on a match between TM51 and CR51		
1	PWM (free-running) mode		

LVS51	LVR51	Timer output F/F status setting			
0	0	No change			
0	1	Timer output F/F reset (0)			
1	0	Timer output F/F set (1)			
1	1	Setting prohibited			

TMC511	In other modes (TMC516 = 0)	In PWM mode (TMC516 = 1)
	Timer F/F control	Active level selection
0	Inversion operation disabled	Active-high
1	Inversion operation enabled	Active-low

TOE51	Timer output control			
0	Output disabled (TM51 output is low level)			
1	Output enabled			

Note Bits 2 and 3 are write-only.

Cautions 1. The settings of LVS5n and LVR5n are valid in other than PWM mode.

2. Perform <1> to <4> below in the following order, not at the same time.

<1> Set TMC5n1, TMC5n6: Operation mode setting

<2> Set TOE5n to enable output: Timer output enable

<3> Set LVS5n, LVR5n (see Caution 1): Timer F/F setting

<4> Set TCE5n

3. Stop operation before rewriting TMC5n6.

Remarks 1. In PWM mode, PWM output is made inactive by clearing TCE5n to 0.

- 2. If LVS5n and LVR5n are read, the value is 0.
- **3.** The values of the TMC5n6, LVS5n, LVR5n, TMC5n1, and TOE5n bits are reflected at the TO5n pin regardless of the value of TCE5n.
- **4.** n = 0, 1

(3) Port mode registers 1 and 3 (PM1, PM3)

These registers set port 1 and 3 input/output in 1-bit units.

When using the P17/TO50/TI50/FLMD1 and P33/TO51/TI51/INTP4 pins for timer output, clear PM17 and PM33 and the output latches of P17 and P33 to 0.

When using the P17/TO50/TI50/FLMD1 and P33/TO51/TI51/INTP4 pins for timer input, set PM17 and PM33 to 1. The output latches of P17 and P33 at this time may be 0 or 1.

PM1 and PM3 can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets these registers to FFH.

Figure 7-9. Format of Port Mode Register 1 (PM1)

Address: FF21H After reset: FFH		H R/W						
Symbol	7	6	5	4	3	2	1	0
PM1	PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10

PM1n	P1n pin I/O mode selection (n = 0 to 7)			
0	Output mode (output buffer on)			
1	Input mode (output buffer off)			

Figure 7-10. Format of Port Mode Register 3 (PM3)

Address: FF23H After reset: FFH		H R/W						
Symbol	7	6	5	4	3	2	1	0
PM3	1	1	1	1	PM33	PM32	PM31	PM30

PM3n	P3n pin I/O mode selection (n = 0 to 3)			
0	Output mode (output buffer on)			
1	Input mode (output buffer off)			

7.4 Operations of 8-Bit Timer/Event Counters 50 and 51

7.4.1 Operation as interval timer

8-bit timer/event counter 5n operates as an interval timer that generates interrupt requests repeatedly at intervals of the count value preset to 8-bit timer compare register 5n (CR5n).

When the count value of 8-bit timer counter 5n (TM5n) matches the value set to CR5n, counting continues with the TM5n value cleared to 0 and an interrupt request signal (INTTM5n) is generated.

The count clock of TM5n can be selected with bits 0 to 2 (TCL5n0 to TCL5n2) of timer clock selection register 5n (TCL5n).

Setting

<1> Set the registers.

• TCL5n: Select the count clock.

• CR5n: Compare value

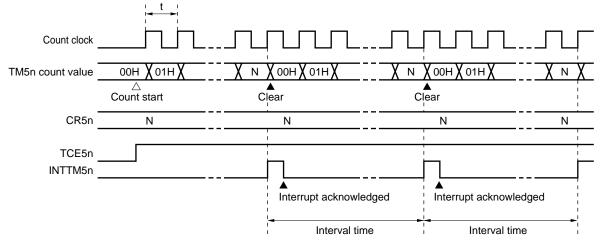
• TMC5n: Stop the count operation, select the mode in which clear & start occurs on a match of TM5n

and CR5n.

 $(TMC5n = 0000 \times \times \times 0B \times = Don't care)$

<2> After TCE5n = 1 is set, the count operation starts.

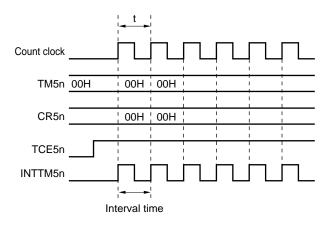
<3> If the values of TM5n and CR5n match, INTTM5n is generated (TM5n is cleared to 00H).


<4> INTTM5n is generated repeatedly at the same interval.

Set TCE5n to 0 to stop the count operation.

Caution Do not write other values to CR5n during operation.

Figure 7-11. Interval Timer Operation Timing (1/2)


(a) Basic operation

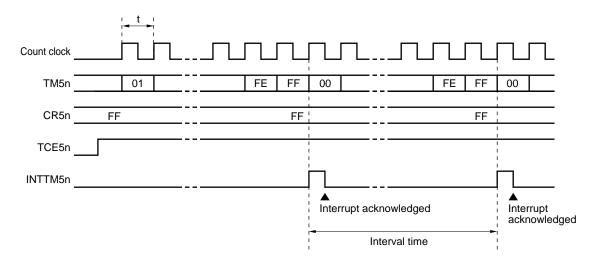

Remark Interval time = $(N + 1) \times t$ N = 01H to FEHn = 0, 1

Figure 7-11. Interval Timer Operation Timing (2/2)

(b) When CR5n = 00H

(c) When CR5n = FFH

7.4.2 Operation as external event counter

The external event counter counts the number of external clock pulses to be input to the TI5n pin by 8-bit timer counter 5n (TM5n).

TM5n is incremented each time the valid edge specified by timer clock selection register 5n (TCL5n) is input. Either the rising or falling edge can be selected.

When the TM5n count value matches the value of 8-bit timer compare register 5n (CR5n), TM5n is cleared to 0 and an interrupt request signal (INTTM5n) is generated.

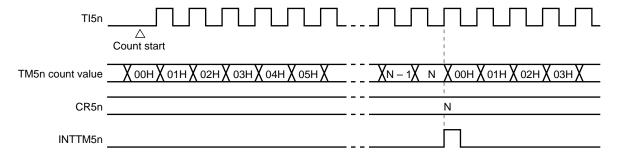
Whenever the TM5n value matches the value of CR5n, INTTM5n is generated.

Setting

- <1> Set each register.
 - Set the port mode register (PM17 or PM33)^{Note} to 1.
 - TCL5n: Select TI5n pin input edge.

TI5n pin falling edge \rightarrow TCL5n = 00H

TI5n pin rising edge → TCL5n = 01H


- CR5n: Compare value
- TMC5n: Stop the count operation, select the mode in which clear & start occurs on match of TM5n and CR5n, disable the timer F/F inversion operation, disable timer output.

 $(TMC5n = 0000 \times \times 00B \times = Don't care)$

- <2> When TCE5n = 1 is set, the number of pulses input from the TI5n pin is counted.
- <3> When the values of TM5n and CR5n match, INTTM5n is generated (TM5n is cleared to 00H).
- <4> After these settings, INTTM5n is generated each time the values of TM5n and CR5n match.

Note 8-bit timer/event counter 50: PM17 8-bit timer/event counter 51: PM33

Figure 7-12. External Event Counter Operation Timing (with Rising Edge Specified)

Remark N = 00H to FFH n = 0, 1

7.4.3 Square-wave output operation

A square wave with any selected frequency is output at intervals determined by the value preset to 8-bit timer compare register 5n (CR5n).

The TO5n pin output status is inverted at intervals determined by the count value preset to CR5n by setting bit 0 (TOE5n) of 8-bit timer mode control register 5n (TMC5n) to 1. This enables a square wave with any selected frequency to be output (duty = 50%).

Setting

<1> Set each register.

- Clear the port output latch (P17 or P33)^{Note} and port mode register (PM17 or PM33)^{Note} to 0.
- TCL5n: Select the count clock.
- CR5n: Compare value
- TMC5n: Stop the count operation, select the mode in which clear & start occurs on a match of TM5n and CR5n.

LVS5n	LVR5n	Timer Output F/F Status Setting	
1	0	High-level output	
0	1	Low-level output	

Timer output F/F inversion enabled

Timer output enabled

(TMC5n = 00001011B or 00000111B)

- <2> After TCE5n = 1 is set, the count operation starts.
- <3> The timer output F/F is inverted by a match of TM5n and CR5n. After INTTM5n is generated, TM5n is cleared to 00H.
- <4> After these settings, the timer output F/F is inverted at the same interval and a square wave is output from TO5n

The frequency is as follows.

Frequency = 1/2t (N + 1)(N: 00H to FFH)

Note 8-bit timer/event counter 50: P17, PM17 8-bit timer/event counter 51: P33, PM33

Caution Do not write other values to CR5n during operation.

Figure 7-13. Square-Wave Output Operation Timing

Note The initial value of TO5n output can be set by bits 2 and 3 (LVR5n, LVS5n) of 8-bit timer mode control register 5n (TMC5n).

7.4.4 PWM output operation

8-bit timer/event counter 5n operates as a PWM output when bit 6 (TMC5n6) of 8-bit timer mode control register 5n (TMC5n) is set to 1.

The duty pulse determined by the value set to 8-bit timer compare register 5n (CR5n) is output from TO5n.

Set the active level width of the PWM pulse to CR5n; the active level can be selected with bit 1 (TMC5n1) of TMC5n.

The count clock can be selected with bits 0 to 2 (TCL5n0 to TCL5n2) of timer clock selection register 5n (TCL5n). PWM output can be enabled/disabled with bit 0 (TOE5n) of TMC5n.

Caution In PWM mode, make the CR5n rewrite interval 3 count clocks of the count clock (clock selected by TCL5n) or more.

(1) PWM output basic operation

Setting

<1> Set each register.

• Clear the port output latch (P17 or P33) Note and port mode register (PM17 or PM33) Note to 0.

• TCL5n: Select the count clock.

• CR5n: Compare value

• TMC5n: Stop the count operation, select PWM mode.

The timer output F/F is not changed.

TMC5n1	Active Level Selection	
0	Active-high	
1	Active-low	

Timer output enabled

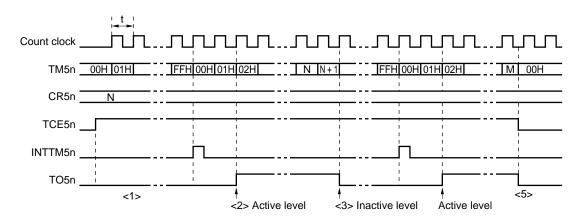
(TMC5n = 01000001B or 01000011B)

<2> The count operation starts when TCE5n = 1. Clear TCE5n to 0 to stop the count operation.

Note 8-bit timer/event counter 50: P17, PM17 8-bit timer/event counter 51: P33, PM33

PWM output operation

- <1> PWM output (output from TO5n) outputs an inactive level until an overflow occurs.
- <2> When an overflow occurs, the active level is output. The active level is output until CR5n matches the count value of 8-bit timer counter 5n (TM5n).
- <3> After the CR5n matches the count value, the inactive level is output until an overflow occurs again.
- <4> Operations <2> and <3> are repeated until the count operation stops.
- <5> When the count operation is stopped with TCE5n = 0, PWM output becomes inactive.


For details of timing, see Figures 7-14 and 7-15.

The cycle, active-level width, and duty are as follows.

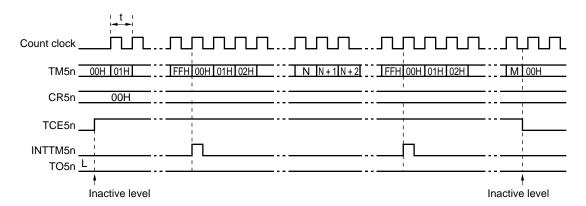

- Cycle = 2⁸t
- Active-level width = Nt
- Duty = N/2⁸
 (N = 00H to FFH)

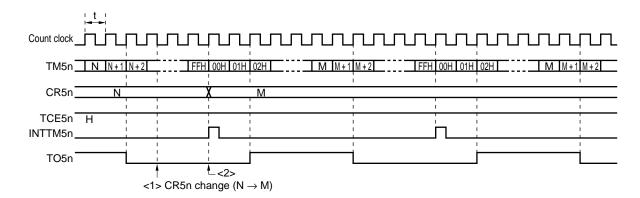
Figure 7-14. PWM Output Operation Timing

(a) Basic operation (active level = H)

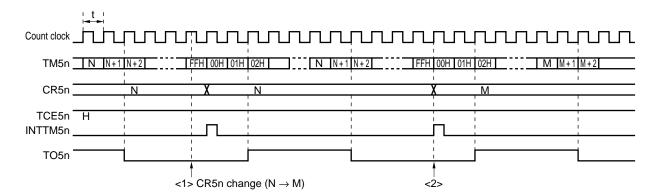
(b) CR5n = 00H

(c) CR5n = FFH

Remarks 1. <1> to <3> and <5> in Figure 7-14 (a) correspond to <1> to <3> and <5> in PWM output operation in 7.4.4 (1) PWM output basic operation.


2. n = 0, 1

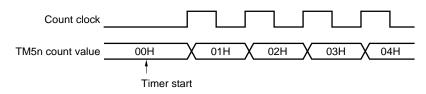
(2) Operation with CR5n changed


Figure 7-15. Timing of Operation with CR5n Changed

(a) CR5n value is changed from N to M before clock rising edge of FFH

→ Value is transferred to CR5n at overflow immediately after change.

(b) CR5n value is changed from N to M after clock rising edge of FFH \rightarrow Value is transferred to CR5n at second overflow.


Caution When reading from CR5n between <1> and <2> in Figure 7-15, the value read differs from the actual value (read value: M, actual value of CR5n: N).

7.5 Cautions for 8-Bit Timer/Event Counters 50 and 51

(1) Timer start error

An error of up to one clock may occur in the time required for a match signal to be generated after timer start. This is because 8-bit timer counters 50 and 51 (TM50, TM51) are started asynchronously to the count clock.

Figure 7-16. 8-Bit Timer Counter 5n Start Timing

CHAPTER 8 8-BIT TIMERS H0 AND H1

8.1 Functions of 8-Bit Timers H0 and H1

8-bit timers H0 and H1 have the following functions.

- Interval timer
- PWM output mode
- Square-wave output
- Carrier generator mode (8-bit timer H1 only)

8.2 Configuration of 8-Bit Timers H0 and H1

8-bit timers H0 and H1 include the following hardware.

Table 8-1. Configuration of 8-Bit Timers H0 and H1

Item	Configuration
Timer register	8-bit timer counter Hn
Registers	8-bit timer H compare register 0n (CMP0n) 8-bit timer H compare register 1n (CMP1n)
Timer output	TOHn
Control registers	8-bit timer H mode register n (TMHMDn) 8-bit timer H carrier control register 1 (TMCYC1) ^{Note} Port mode register 1 (PM1) Port register 1 (P1)

Note 8-bit timer H1 only

Remark n = 0, 1

Figures 8-1 and 8-2 show the block diagrams.

User's Manual U16899EJ3V0UD

→INTTMH0

Internal bus 8-bit timer H mode register 0 \(\) (TMHMD0) TMHE0 CKS02 CKS01 CKS00 TMMD01 TMMD00 TOLEV0 TOEN0 8-bit timer H 8-bit timer H compare register 10 (CMP10) compare register 00 (CMP00) ∤3 2 Decoder -⊚TOH0/P15 Selector Output latch (P15) F/F Output Level PM15 Interrupt generator Match controller inversion R fx fx/2 Selector 8-bit timer $fx/2^2$ fx/2⁶ fx/2¹⁰ counter H0 Clear 8-bit timer/ event counter 50 output PWM mode signal Timer H enable signal

Figure 8-1. Block Diagram of 8-Bit Timer H0

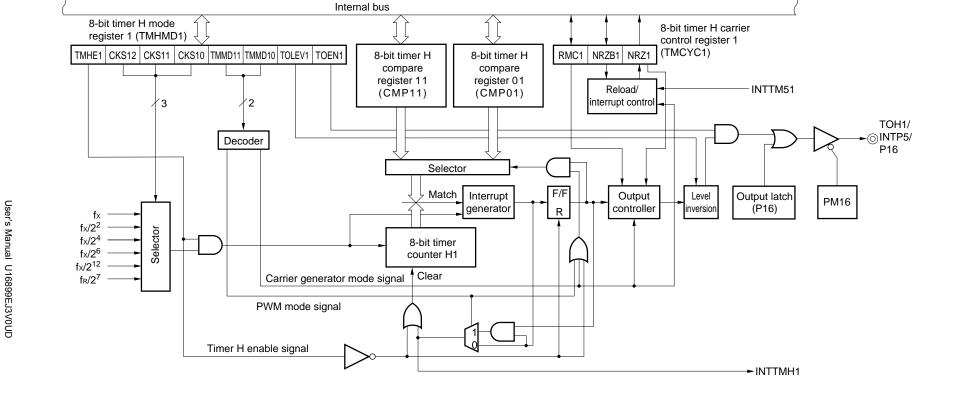
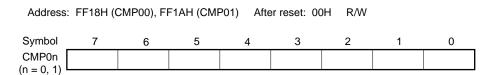
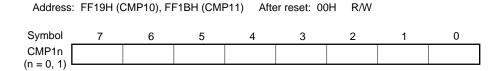



Figure 8-2. Block Diagram of 8-Bit Timer H1

(1) 8-bit timer H compare register 0n (CMP0n)

This register can be read or written by an 8-bit memory manipulation instruction. RESET input clears this register to 00H.

Figure 8-3. Format of 8-Bit Timer H Compare Register 0n (CMP0n)



Caution CMP0n cannot be rewritten during timer count operation.

(2) 8-bit timer H compare register 1n (CMP1n)

This register can be read or written by an 8-bit memory manipulation instruction. RESET input clears this register to 00H.

Figure 8-4. Format of 8-Bit Timer H Compare Register 1n (CMP1n)

CMP1n can be rewritten during timer count operation.

An interrupt request signal (INTTMHn) is generated if the timer count values and CMP1n match after setting CMP1n in carrier generator mode. The timer count value is cleared at the same time. If the CMP1n value is rewritten during timer operation, transferring is performed at the timing at which the count value and CMP1n value match. If the transfer timing and writing from CPU to CMP1n conflict, transfer is not performed.

Caution In the PWM output mode and carrier generator mode, be sure to set CMP1n when starting the timer count operation (TMHEn = 1) after the timer count operation was stopped (TMHEn = 0) (be sure to set again even if setting the same value to CMP1n).

8.3 Registers Controlling 8-Bit Timers H0 and H1

The following four registers are used to control 8-bit timers H0 and H1.

- 8-bit timer H mode register n (TMHMDn)
- 8-bit timer H carrier control register 1 (TMCYC1)^{Note}
- Port mode register 1 (PM1)
- Port register 1 (P1)

Note 8-bit timer H1 only

(1) 8-bit timer H mode register n (TMHMDn)

This register controls the mode of timer H.

This register can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Figure 8-5. Format of 8-Bit Timer H Mode Register 0 (TMHMD0)

Address: FF69H After reset: 00H R/W

TMHMD0

<7>	6	5	4	3	2	<1>	<0>
TMHE0	CKS02	CKS01	CKS00	TMMD01	TMMD00	TOLEV0	TOEN0

TMHE0	Timer operation enable			
0	Stops timer count operation (counter is cleared to 0)			
1	Enables timer count operation (count operation started by inputting clock)			

CKS02	CKS01	CKS00		Count clock (fcnt) selectionNote 1
0	0	0	fx	(10 MHz)
0	0	1	fx/2	(5 MHz)
0	1	0	fx/2 ²	(2.5 MHz)
0	1	1	fx/2 ⁶	(156.25 kHz)
1	0	0	fx/2 ¹⁰	(9.77 kHz)
1	0	1	TM50	output ^{Note 2}
Other than above		Setting	prohibited	

TMMD01	TMMD00	Timer operation mode
0	0	Interval timer mode
1	0	PWM output mode
Other than above		Setting prohibited

TOLEV0	Timer output level control (in default mode)
0	Low level
1	High level

TOEN0	Timer output control
0	Disables output
1	Enables output

Notes 1. Be sure to set the count clock so that the following condition is satisfied.

- V_{DD} = 4.0 to 5.5 V: Count clock \leq 10 MHz
- V_{DD} = 3.3 to 4.0 V: Count clock \leq 8.38 MHz
- V_{DD} = 2.7 to 3.3 V: Count clock ≤ 5 MHz
- V_{DD} = 2.5 to 2.7 V: Count clock ≤ 2.5 MHz (standard products, (A) grade products only)
- 2. Note the following points when selecting the TM50 output as the count clock.
 - PWM mode (TMC506 = 1)
 Start the operation of 8-bit timer/event counter 50 first and then set the count clock to make the duty = 50%.
 - Mode in which the count clock is cleared and started upon a match of TM50 and CR50 (TMC506 = 0) Start the operation of 8-bit timer/event counter 50 first and then enable the timer F/F inversion operation (TMC501 = 1).

It is not necessary to enable the TO50 pin as a timer output pin in any mode.

<R>

- Cautions 1. When the internal oscillation clock is selected as the clock to be supplied to the CPU, the clock of the internal oscillator is divided and supplied as the count clock. If the count clock is the internal oscillation clock, the operation of 8-bit timer H0 is not guaranteed.
 - 2. When TMHE0 = 1, setting the other bits of TMHMD0 is prohibited.
 - 3. In the PWM output mode, be sure to set 8-bit timer H compare register 10 (CMP10) when starting the timer count operation (TMHE0 = 1) after the timer count operation was stopped (TMHE0 = 0) (be sure to set again even if setting the same value to CMP10).
- **Remarks 1.** fx: High-speed system clock oscillation frequency
 - **2.** Figures in parentheses apply to operation at fx = 10 MHz
 - 3. TMC506: Bit 6 of 8-bit timer mode control register 50 (TMC50)

TMC501: Bit 1 of TMC50

Figure 8-6. Format of 8-Bit Timer H Mode Register 1 (TMHMD1)

Address: FF6CH After reset: 00H R/W

TMHMD1

<7>	6	5	4	3	2	<1>	<0>
TMHE1	CKS12	CKS11	CKS10	TMMD11	TMMD10	TOLEV1	TOEN1

TMHE1	Timer operation enable
0	Stops timer count operation (counter is cleared to 0)
1	Enables timer count operation (count operation started by inputting clock)

CKS12	CKS11	CKS10		Count clock (fcnt) selection Note
0	0	0	fx	(10 MHz)
0	0	1	fx/2 ²	(2.5 MHz)
0	1	0	fx/2 ⁴	(625 kHz)
0	1	1	fx/2 ⁶	(156.25 kHz)
1	0	0	fx/2 ¹²	(2.44 kHz)
1	0	1	f _R /2 ⁷	(1.88 kHz (TYP.))
Other than above		Setting	prohibited	

TMMD11	TMMD10	Timer operation mode	
0	0	Interval timer mode	
0	1	Carrier generator mode	
1	0	WM output mode	
Other than above		Setting prohibited	

TOLEV1	Timer output level control (in default mode)
0	Low level
1	High level

TOEN1	Timer output control
0	Disables output
1	Enables output

Note Be sure to set the count clock so that the following condition is satisfied.

- V_{DD} = 4.0 to 5.5 V: Count clock \leq 10 MHz
- V_{DD} = 3.3 to 4.0 V: Count clock \leq 8.38 MHz
- V_{DD} = 2.7 to 3.3 V: Count clock \leq 5 MHz
- V_{DD} = 2.5 to 2.7 V: Count clock ≤ 2.5 MHz (standard products, (A) grade products only)

<R>

- Cautions 1. When the internal oscillation clock is selected as the clock to be supplied to the CPU, the clock of the internal oscillator is divided and supplied as the count clock. If the count clock is the internal oscillation clock, the operation of 8-bit timer H1 is not guaranteed (except when CKS12, CKS11, CKS10 = 1, 0, 1 ($f_R/2^7$))
 - 2. When TMHE1 = 1, setting the other bits of TMHMD1 is prohibited.
 - 3. In the PWM output mode and carrier generator mode, be sure to set 8-bit timer H compare register 11 (CMP11) when starting the timer count operation (TMHE1 = 1) after the timer count operation was stopped (TMHE1 = 0) (be sure to set again even if setting the same value to CMP11).
 - 4. When the carrier generator mode is used, set so that the count clock frequency of TMH1 becomes more than 6 times the count clock frequency of TM51.

Remarks 1. fx: High-speed system clock oscillation frequency

- 2. fr.: Internal oscillation clock oscillation frequency
- **3.** Figures in parentheses apply to operation at fx = 10 MHz, fR = 240 kHz (TYP.).

(2) 8-bit timer H carrier control register 1 (TMCYC1)

This register controls the remote control output and carrier pulse output status of 8-bit timer H1. This register can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Figure 8-7. Format of 8-Bit Timer H Carrier Control Register 1 (TMCYC1)

Address: FF6DH After reset: 00H R/W^{Note}

7 6 5 4 3 2 1 <0>
TMCYC1 0 0 0 0 0 RMC1 NRZB1 NRZ1

RMC1	NRZB1	Remote control output
0	0	Low-level output
0	1	High-level output
1	0	Low-level output
1	1	Carrier pulse output

NRZ1	Carrier pulse output status flag
0	Carrier output disabled status (low-level status)
1	Carrier output enabled status (RMC1 = 1: Carrier pulse output, RMC1 = 0: High-level status)

Note Bit 0 is read-only.

(3) Port mode register 1 (PM1)

This register sets port 1 input/output in 1-bit units.

When using the P15/TOH0 and P16/TOH1/INTP5 pins for timer output, clear PM15 and PM16 and the output latches of P15 and P16 to 0.

PM1 can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to FFH.

Figure 8-8. Format of Port Mode Register 1 (PM1)

Address: FF21H After reset: FFH R/W Symbol 7 5 4 3 2 1 0 PM1 PM17 PM15 PM14 PM13 PM12 PM11 PM10 PM16

PM1n	P1n pin I/O mode selection (n = 0 to 7)
0	Output mode (output buffer on)
1	Input mode (output buffer off)

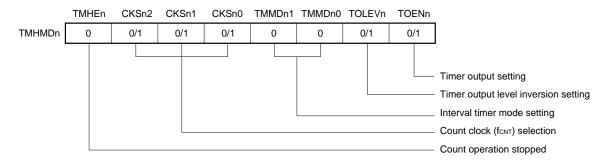
8.4 Operation of 8-Bit Timers H0 and H1

8.4.1 Operation as interval timer/square-wave output

When 8-bit timer counter Hn and compare register 0n (CMP0n) match, an interrupt request signal (INTTMHn) is generated and 8-bit timer counter Hn is cleared to 00H.

Compare register 1n (CMP1n) is not used in interval timer mode. Since a match of 8-bit timer counter Hn and the CMP1n register is not detected even if the CMP1n register is set, timer output is not affected.

By setting bit 0 (TOENn) of timer H mode register n (TMHMDn) to 1, a square wave of any frequency (duty = 50%) is output from TOHn.


(1) Usage

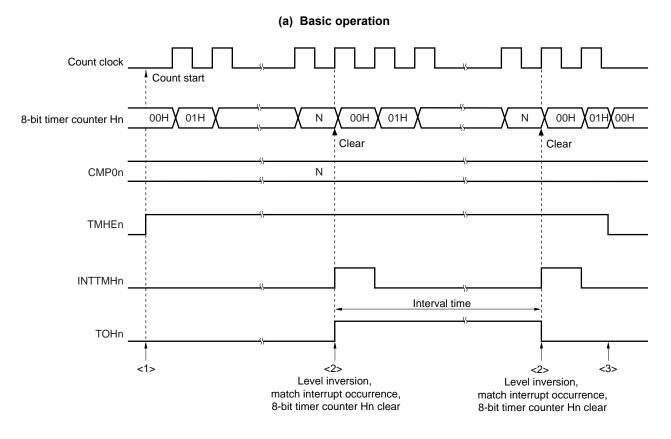
Generates the INTTMHn signal repeatedly at the same interval.

<1> Set each register.

Figure 8-9. Register Setting During Interval Timer/Square-Wave Output Operation

(i) Setting timer H mode register n (TMHMDn)

(ii) CMP0n register setting

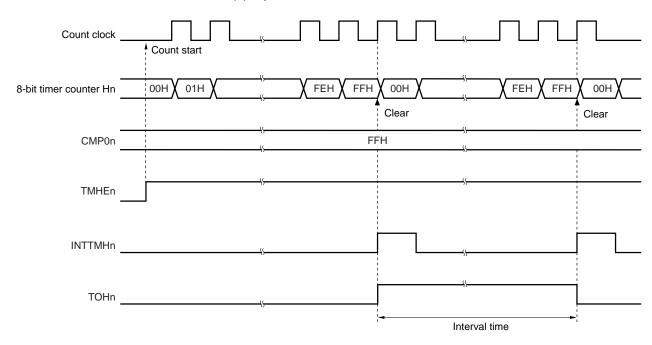

- Compare value (N)
- <2> Count operation starts when TMHEn = 1.
- <3> When the values of 8-bit timer counter Hn and the CMP0n register match, the INTTMHn signal is generated and 8-bit timer counter Hn is cleared to 00H.

<4> Subsequently, the INTTMHn signal is generated at the same interval. To stop the count operation, clear TMHEn to 0.

(2) Timing chart

The timing of the interval timer/square-wave output operation is shown below.

Figure 8-10. Timing of Interval Timer/Square-Wave Output Operation (1/2)



- <1> The count operation is enabled by setting the TMHEn bit to 1. The count clock starts counting no more than 1 clock after the operation is enabled.
- <2> When the values of 8-bit timer counter Hn and the CMP0n register match, the value of 8-bit timer counter Hn is cleared, the TOHn output level is inverted, and the INTTMHn signal is output.
- <3> The INTTMHn signal and TOHn output become inactive by clearing the TMHEn bit to 0 during timer Hn operation. If these are inactive from the first, the level is retained.

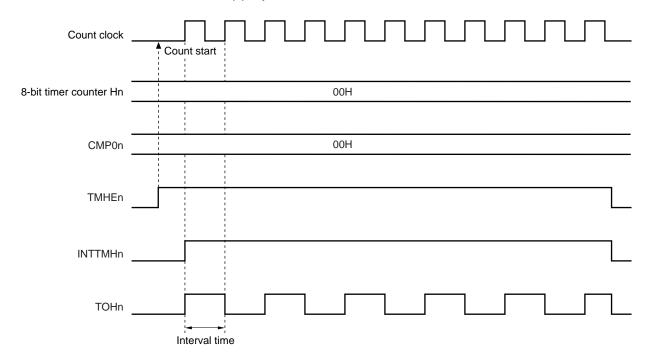

Remark n = 0, 1N = 01H to FEH

Figure 8-10. Timing of Interval Timer/Square-Wave Output Operation (2/2)

(c) Operation when CMP0n = 00H

8.4.2 Operation as PWM output mode

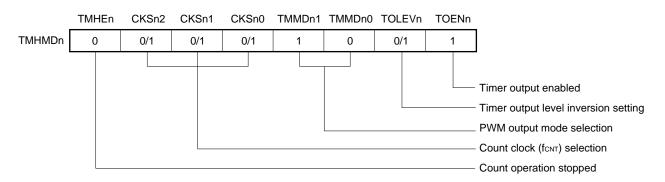
In PWM output mode, a pulse with an arbitrary duty and arbitrary cycle can be output.

8-bit timer compare register 0n (CMP0n) controls the cycle of timer output (TOHn). Rewriting the CMP0n register during timer operation is prohibited.

8-bit timer compare register 1n (CMP1n) controls the duty of timer output (TOHn). Rewriting the CMP1n register during timer operation is possible.

The operation in PWM output mode is as follows.

TOHn output becomes active and 8-bit timer counter Hn is cleared to 0 when 8-bit timer counter Hn and the CMP0n register match after the timer count is started. TOHn output becomes inactive when 8-bit timer counter Hn and the CMP1n register match.


(1) Usage

In PWM output mode, a pulse for which an arbitrary duty and arbitrary cycle can be set is output.

<1> Set each register.

Figure 8-11. Register Setting in PWM Output Mode

(i) Setting timer H mode register n (TMHMDn)

(ii) Setting CMP0n register

· Compare value (N): Cycle setting

(iii) Setting CMP1n register

• Compare value (M): Duty setting

Remarks 1. n = 0, 1

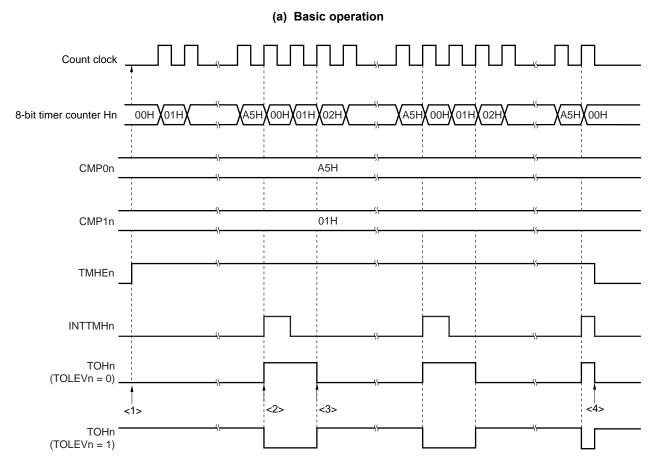
2. $00H \le CMP1n (M) < CMP0n (N) \le FFH$

- <2> The count operation starts when TMHEn = 1.
- <3> The CMP0n register is the compare register that is to be compared first after the count operation is enabled. When the values of 8-bit timer counter Hn and the CMP0n register match, 8-bit timer counter Hn is cleared, an interrupt request signal (INTTMHn) is generated, and TOHn output becomes active. At the same time, the compare register to be compared with 8-bit timer counter Hn is changed from the CMP0n register to the CMP1n register.
- <4> When 8-bit timer counter Hn and the CMP1n register match, TOHn output becomes inactive and the compare register to be compared with 8-bit timer counter Hn is changed from the CMP1n register to the CMP0n register. At this time, 8-bit timer counter Hn is not cleared and the INTTMHn signal is not generated.
- <5> By performing procedures <3> and <4> repeatedly, a pulse with an arbitrary duty can be obtained.
- <6> To stop the count operation, set TMHEn = 0.

If the setting value of the CMP0n register is N, the setting value of the CMP1n register is M, and the count clock frequency is fcnt, the PWM pulse output cycle and duty are as follows.

```
PWM pulse output cycle = (N + 1)/fcnt
Duty = Active width : Total width of PWM = (M + 1) : (N + 1)
```

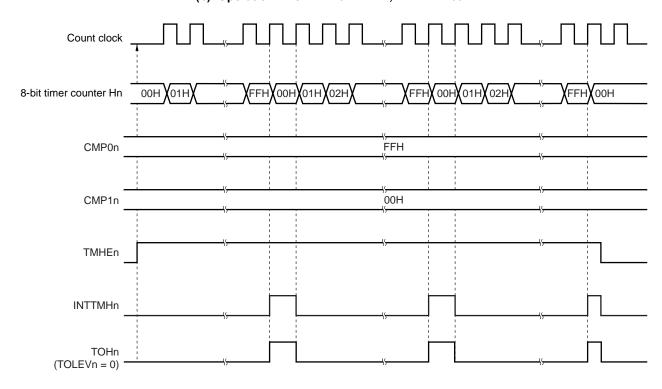
- Cautions 1. In PWM output mode, three operation clocks (signal selected using the CKSn2 to CKSn0 bits of the TMHMDn register) are required to transfer the CMP1n register value after rewriting the register.
 - 2. Be sure to set the CMP1n register when starting the timer count operation (TMHEn = 1) after the timer count operation was stopped (TMHEn = 0) (be sure to set again even if setting the same value to the CMP1n register).


(2) Timing chart

The operation timing in PWM output mode is shown below.

Caution Make sure that the CMP1n register setting value (M) and CMP0n register setting value (N) are within the following range.

 $00H \le CMP1n (M) < CMP0n (N) \le FFH$


Figure 8-12. Operation Timing in PWM Output Mode (1/4)

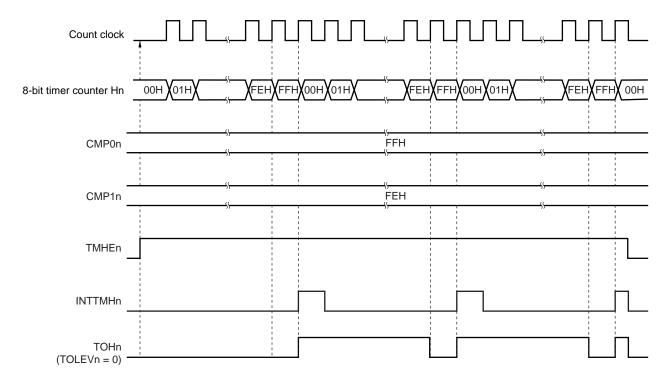
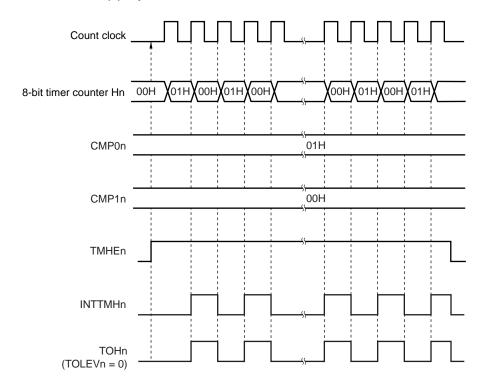

- <1> The count operation is enabled by setting the TMHEn bit to 1. Start 8-bit timer counter Hn by masking one count clock to count up. At this time, TOHn output remains inactive (when TOLEVn = 0).
- <2> When the values of 8-bit timer counter Hn and the CMP0n register match, the TOHn output level is inverted, the value of 8-bit timer counter Hn is cleared, and the INTTMHn signal is output.
- <3> When the values of 8-bit timer counter Hn and the CMP1n register match, the level of the TOHn output is returned. At this time, the 8-bit timer counter value is not cleared and the INTTMHn signal is not output.
- <4> Clearing the TMHEn bit to 0 during timer Hn operation makes the INTTMHn signal and TOHn output inactive.

Figure 8-12. Operation Timing in PWM Output Mode (2/4)

(b) Operation when CMP0n = FFH, CMP1n = 00H


(c) Operation when CMP0n = FFH, CMP1n = FEH

Remark n = 0, 1

Figure 8-12. Operation Timing in PWM Output Mode (3/4)

(d) Operation when CMP0n = 01H, CMP1n = 00H

Remark n = 0, 1

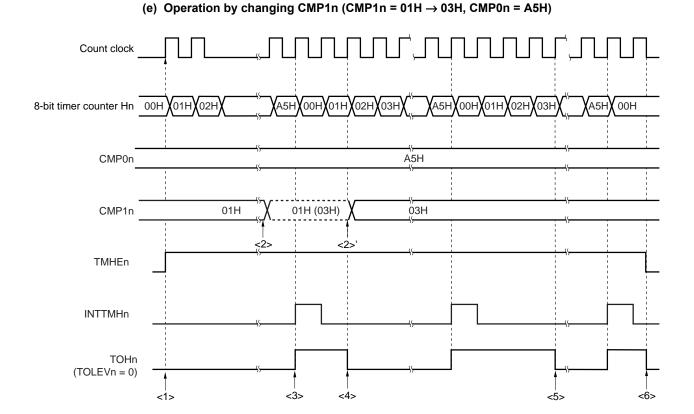


Figure 8-12. Operation Timing in PWM Output Mode (4/4)

- <1> The count operation is enabled by setting TMHEn = 1. Start 8-bit timer counter Hn by masking one count clock to count up. At this time, the TOHn output remains inactive (when TOLEVn = 0).
- <2> The CMP1n register value can be changed during timer counter operation. This operation is asynchronous to the count clock.
- <3> When the values of 8-bit timer counter Hn and the CMP0n register match, the value of 8-bit timer counter Hn is cleared, the TOHn output becomes active, and the INTTMHn signal is output.
- <4> If the CMP1n register value is changed, the value is latched and not transferred to the register. When the values of 8-bit timer counter Hn and the CMP1n register before the change match, the value is transferred to the CMP1n register and the CMP1n register value is changed (<2>').
 - However, three count clocks or more are required from when the CMP1n register value is changed to when the value is transferred to the register. If a match signal is generated within three count clocks, the changed value cannot be transferred to the register.
- <5> When the values of 8-bit timer counter Hn and the CMP1n register after the change match, the TOHn output becomes inactive. 8-bit timer counter Hn is not cleared and the INTTMHn signal is not generated.
- <6> Clearing the TMHEn bit to 0 during timer Hn operation makes the INTTMHn signal and TOHn output inactive.

Remark n = 0, 1

8.4.3 Carrier generator mode operation (8-bit timer H1 only)

The carrier clock generated by 8-bit timer H1 is output in the cycle set by 8-bit timer/event counter 51.

In carrier generator mode, the output of the 8-bit timer H1 carrier pulse is controlled by 8-bit timer/event counter 51, and the carrier pulse is output from the TOH1 output.

(1) Carrier generation

In carrier generator mode, 8-bit timer H compare register 01 (CMP01) generates a low-level width carrier pulse waveform and 8-bit timer H compare register 11 (CMP11) generates a high-level width carrier pulse waveform. Rewriting the CMP11 register during 8-bit timer H1 operation is possible but rewriting the CMP01 register is prohibited.

(2) Carrier output control

Carrier output is controlled by the interrupt request signal (INTTM51) of 8-bit timer/event counter 51 and the NRZB1 and RMC1 bits of the 8-bit timer H carrier control register (TMCYC1). The relationship between the outputs is shown below.

RMC1 Bit	NRZB1 Bit	Output
0	0	Low-level output
0	1	High-level output
1	0	Low-level output
1	1	Carrier pulse output

To control the carrier pulse output during a count operation, the NRZ1 and NRZB1 bits of the TMCYC1 register have a master and slave bit configuration. The NRZ1 bit is read-only but the NRZB1 bit can be read and written. The INTTM51 signal is synchronized with the 8-bit timer H1 count clock and output as the INTTM5H1 signal. The INTTM5H1 signal becomes the data transfer signal of the NRZ1 bit, and the NRZB1 bit value is transferred to the NRZ1 bit. The timing for transfer from the NRZB1 bit to the NRZ1 bit is as shown below.

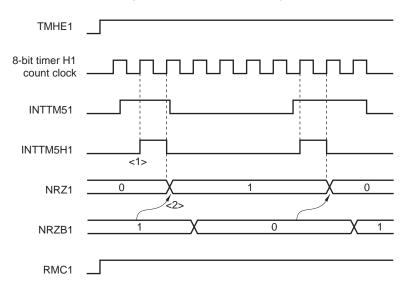


Figure 8-13. Transfer Timing

- <1> The INTTM51 signal is synchronized with the count clock of 8-bit timer H1 and is output as the INTTM5H1 signal.
- <2> The value of the NRZB1 bit is transferred to the NRZ1 bit at the second clock from the rising edge of the INTTM5H1 signal.
- Cautions 1. Do not rewrite the NRZB1 bit again until at least the second clock after it has been rewritten, or else the transfer from the NRZB1 bit to the NRZ1 bit is not guaranteed.
 - 2. When 8-bit timer/event counter 51 is used in the carrier generator mode, an interrupt is generated at the timing of <1>. When 8-bit timer/event counter 51 is used in a mode other than the carrier generator mode, the timing of the interrupt generation differs.

(3) Usage

Outputs an arbitrary carrier clock from the TOH1 pin.

<1> Set each register.

Figure 8-14. Register Setting in Carrier Generator Mode

(i) Setting 8-bit timer H mode register 1 (TMHMD1)

(ii) CMP01 register setting

· Compare value

(iii) CMP11 register setting

· Compare value

(iv) TMCYC1 register setting

- RMC1 = 1 ... Remote control output enable bit
- NRZB1 = 0/1 ... Carrier output enable bit

(v) TCL51 and TMC51 register setting

- See 7.3 Registers Controlling 8-Bit Timer/Event Counters 50 and 51.
- <2> When TMHE1 = 1, 8-bit timer H1 starts counting.
- <3> When TCE51 of 8-bit timer mode control register 51 (TMC51) is set to 1, 8-bit timer/event counter 51 starts counting.
- <4> After the count operation is enabled, the first compare register to be compared is the CMP01 register. When the count value of 8-bit timer counter H1 and the CMP01 register value match, the INTTMH1 signal is generated, 8-bit timer counter H1 is cleared, and at the same time, the compare register to be compared with 8-bit timer counter H1 is switched from the CMP01 register to the CMP11 register.
- <5> When the count value of 8-bit timer counter H1 and the CMP11 register value match, the INTTMH1 signal is generated, 8-bit timer counter H1 is cleared, and at the same time, the compare register to be compared with 8-bit timer counter H1 is switched from the CMP11 register to the CMP01 register.
- <6> By performing procedures <4> and <5> repeatedly, a carrier clock is generated.
- <7> The INTTM51 signal is synchronized with count clock of 8-bit timer H1 and output as the INTTM5H1 signal. The INTTM5H1 signal becomes the data transfer signal for the NRZB1 bit, and the NRZB1 bit value is transferred to the NRZ1 bit.
- <8> When the NRZ1 bit is high level, a carrier clock is output from the TOH1 pin.
- <9> By performing the procedures above, an arbitrary carrier clock is obtained. To stop the count operation, clear TMHE1 to 0.

If the setting value of the CMP01 register is N, the setting value of the CMP11 register is M, and the count clock frequency is fcNT, the carrier clock output cycle and duty are as follows.

```
Carrier clock output cycle = (N + M + 2)/fcnt
Duty = High-level width : Carrier clock output width = (M + 1): (N + M + 2)
```

- Cautions 1. Be sure to set the CMP11 register when starting the timer count operation (TMHE1 = 1) after the timer count operation was stopped (TMHE1 = 0) (be sure to set again even if setting the same value to the CMP11 register).
 - 2. Set so that the count clock frequency of TMH1 becomes more than 6 times the count clock frequency of TM51.

(4) Timing chart

The carrier output control timing is shown below.

- Cautions 1. Set the values of the CMP01 and CMP11 registers in a range of 01H to FFH.
 - 2. In the carrier generator mode, three operating clocks (signal selected by CKS12 to CKS10 bits of TMHMD1 register) or more are required from when the CMP11 register value is changed to when the value is transferred to the register.
 - 3. Be sure to set the RMC1 bit before the count operation is started.

8-bit timer Hn count clock 8-bit timer counter N X00HX ... X N X00HX ... X N X00HX ... X N X00HX ... Hn count value CMPn0 CMPn1 **TMHEn INTTMHn** <1> <2> Carrier clock 8-bit timer 5n count clock TM5n count value **X**00H**X**01H CR5n TCE5n <5> INTTM5n INTTM5Hn NRZBn <6> NRZn Carrier clock **TOHn**

Figure 8-15. Carrier Generator Mode Operation Timing (1/3)

(a) Operation when CMP01 = N, CMP11 = N

- <1> When TMHE1 = 0 and TCE51 = 0, 8-bit timer counter H1 operation is stopped.
- <2> When TMHE1 = 1 is set, 8-bit timer counter H1 starts a count operation. At that time, the carrier clock is held at the inactive level.
- <3> When the count value of 8-bit timer counter H1 matches the CMP01 register value, the first INTTMH1 signal is generated, the carrier clock signal is inverted, and the compare register to be compared with 8-bit timer counter H1 is switched from the CMP01 register to the CMP11 register. 8-bit timer counter H1 is cleared to 00H.
- <4> When the count value of 8-bit timer counter H1 matches the CMP11 register value, the INTTMH1 signal is generated, the carrier clock signal is inverted, and the compare register to be compared with 8-bit timer counter H1 is switched from the CMP11 register to the CMP01 register. 8-bit timer counter H1 is cleared to 00H. By performing procedures <3> and <4> repeatedly, a carrier clock with duty fixed to 50% is generated.
- <5> When the INTTM51 signal is generated, it is synchronized with 8-bit timer H1 count clock and output as the INTTM5H1 signal.
- <6> The INTTM5H1 signal becomes the data transfer signal for the NRZB1 bit, and the NRZB1 bit value is transferred to the NRZ1 bit.
- <7> When NRZ1 = 0 is set, the TOH1 output becomes low level.

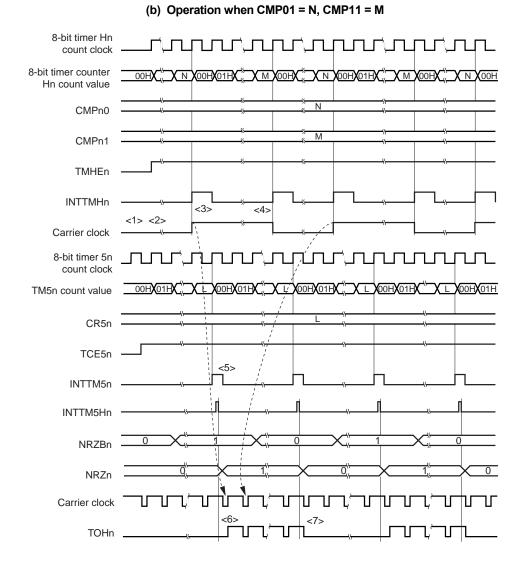


Figure 8-15. Carrier Generator Mode Operation Timing (2/3)

- <1> When TMHE1 = 0 and TCE51 = 0, 8-bit timer counter H1 operation is stopped.
- <2> When TMHE1 = 1 is set, 8-bit timer counter H1 starts a count operation. At that time, the carrier clock is held at the inactive level.
- <3> When the count value of 8-bit timer counter H1 matches the CMP01 register value, the first INTTMH1 signal is generated, the carrier clock signal is inverted, and the compare register to be compared with 8-bit timer counter H1 is switched from the CMP01 register to the CMP11 register. 8-bit timer counter H1 is cleared to 00H.
- When the count value of 8-bit timer counter H1 matches the CMP11 register value, the INTTMH1 signal is generated, the carrier clock signal is inverted, and the compare register to be compared with 8-bit timer counter H1 is switched from the CMP11 register to the CMP01 register. 8-bit timer counter H1 is cleared to 00H. By performing procedures <3> and <4> repeatedly, a carrier clock with duty fixed to other than 50% is generated.
- <5> When the INTTM51 signal is generated, it is synchronized with 8-bit timer H1 count clock and output as the INTTM5H1 signal.
- <6> A carrier signal is output at the first rising edge of the carrier clock if NRZ1 is set to 1.
- <7> When NRZ1 = 0, the TOH1 output is held at the high level and is not changed to low level while the carrier clock is high level (from <6> and <7>, the high-level width of the carrier clock waveform is guaranteed).

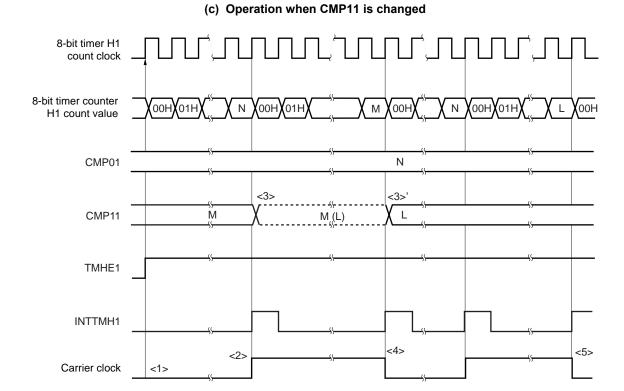


Figure 8-15. Carrier Generator Mode Operation Timing (3/3)

- <1> When TMHE1 = 1 is set, 8-bit timer H1 starts a count operation. At that time, the carrier clock is held at the inactive level.
- <2> When the count value of 8-bit timer counter H1 matches the CMP01 register value, 8-bit timer counter H1 is cleared and the INTTMH1 signal is output.
- <3> The CMP11 register can be rewritten during 8-bit timer H1 operation, however, the changed value (L) is latched. The CMP11 register is changed when the count value of 8-bit timer counter H1 and the CMP11 register value before the change (M) match (<3>').
- When the count value of 8-bit timer counter H1 and the CMP11 register value before the change (M) match, the INTTMH1 signal is output, the carrier signal is inverted, and 8-bit timer counter H1 is cleared to 00H.
- <5> The timing at which the count value of 8-bit timer counter H1 and the CMP11 register value match again is indicated by the value after the change (L).

CHAPTER 9 WATCH TIMER

9.1 Functions of Watch Timer

The watch timer has the following functions.

- Watch timer
- Interval timer

The watch timer and the interval timer can be used simultaneously.

Figure 9-1 shows the watch timer block diagram.

Figure 9-1. Block Diagram of Watch Timer

Remark fx: High-speed system clock oscillation frequency

 f_{XT} : Subsystem clock oscillation frequency

fw: Watch timer clock frequency

fwx: fw or fw/29

(1) Watch timer

When the high-speed system clock or subsystem clock is used, interrupt requests (INTWT) are generated at preset intervals.

Table 9-1. Watch Timer Interrupt Time

Interrupt Time	When Operated at fxT = 32.768 kHz	When Operated at fx = 10 MHz
2 ⁴ /fw	488 μs	205 μs
2 ⁵ /fw	977 μs	410 μs
2 ¹³ /fw	0.25 s	0.105 s
2 ¹⁴ /fw	0.5 s	0.210 s

Remark fx: High-speed system clock oscillation frequency

fxr: Subsystem clock oscillation frequency

fw: Watch timer clock frequency

(2) Interval timer

Interrupt requests (INTWTI) are generated at preset time intervals.

Table 9-2. Interval Timer Interval Time

Interval Time	When Operated at fxT = 32.768 kHz	When Operated at fx = 10 MHz
2 ⁴ /fw	488 μs	205 <i>μ</i> s
2 ⁵ /fw	977 <i>μ</i> s	410 <i>μ</i> s
2 ⁶ /fw	1.95 ms	820 <i>μ</i> s
2 ⁷ /fw	3.91 ms	1.64 ms
2 ⁸ /fw	7.81 ms	3.28 ms
2 ⁹ /fw	15.6 ms	6.55 ms
2 ¹⁰ /fw	31.3 ms	13.1 ms
2 ¹¹ /fw	62.5 ms	26.2 ms

Remark fx: High-speed system clock oscillation frequency

fxT: Subsystem clock oscillation frequency

fw: Watch timer clock frequency

9.2 Configuration of Watch Timer

The watch timer includes the following hardware.

Table 9-3. Watch Timer Configuration

Item	Configuration		
Counter	5 bits × 1		
Prescaler	11 bits × 1		
Control register	Watch timer operation mode register (WTM)		

9.3 Register Controlling Watch Timer

The watch timer is controlled by the watch timer operation mode register (WTM).

• Watch timer operation mode register (WTM)

This register sets the watch timer count clock, enables/disables operation, prescaler interval time, and 5-bit counter operation control.

WTM is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears WTM to 00H.

Figure 9-2. Format of Watch Timer Operation Mode Register (WTM)

Address: FF6FH After reset: 00H R/W Symbol 5 3 2 7 4 <1> <0> WTM WTM7 WTM6 WTM5 WTM4 WTM3 WTM2 WTM1 WTM0

	WTM7	Watch timer count clock selection	
	0	fx/2 ⁷ (78.125 kHz)	
Ī	1	fхт (32.768 kHz)	

WTM6	WTM5	WTM4	Prescaler interval time selection
0	0	0	2 ⁴ /fw
0	0	1	2 ⁵ /fw
0	1	0	2 ⁶ /fw
0	1	1	2 ⁷ /fw
1	0	0	2 ⁸ /fw
1	0	1	2 ⁹ /fw
1	1	0	2 ¹⁰ /fw
1	1	1	2 ¹¹ /fw

WTM3	WTM2	Interrupt time selection
0	0	2 ¹⁴ /fw
0	1	2 ¹³ /fw
1	0	2 ⁵ /fw
1	1	2 ⁴ /fw

	WTM1	5-bit counter operation control	
Ī	0	Clear after operation stop	
I	1	Start	

WTM0	Watch timer operation enable
0	Operation stop (clear both prescaler and timer)
1	Operation enable

Caution Do not change the count clock and interval time (by setting bits 4 to 7 (WTM4 to WTM7) of WTM) during watch timer operation.

Remarks 1. fw: Watch timer clock frequency $(fx/2^7 \text{ or } fxT)$

2. fx: High-speed system clock oscillation frequency

3. fxT: Subsystem clock oscillation frequency

4. Figures in parentheses apply to operation with fx = 10 MHz, fxT = 32.768 kHz.

9.4 Watch Timer Operations

9.4.1 Watch timer operation

The watch timer generates an interrupt request (INTWT) at a specific time interval by using the high-speed system clock or subsystem clock.

When bit 0 (WTM0) and bit 1 (WTM1) of the watch timer operation mode register (WTM) are set to 1, the count operation starts. When these bits are set to 0, the 5-bit counter is cleared and the count operation stops.

When the interval timer is simultaneously operated, zero-second start can be achieved only for the watch timer by setting WTM1 to 0. In this case, however, the 11-bit prescaler is not cleared. Therefore, an error up to $2^9 \times 1/\text{fw}$ seconds occurs in the first overflow (INTWT) after zero-second start.

The interrupt request is generated at the following time intervals.

Table 9-4. Watch Timer Interrupt Time

WTM3	WTM2	Interrupt Time Selection	When Operated at f_{XT} = 32.768 kHz (WTM7 = 1)	When Operated at fx = 10 MHz (WTM7 = 0)
0	0	2 ¹⁴ /fw	0.5 s	0.210 s
0	1	2 ¹³ /fw	0.25 s	0.105 s
1	0	2 ⁵ /fw	977 <i>μ</i> s	410 μs
1	1	2 ⁴ /fw	488 μs	205 μs

Remark fx: High-speed system clock oscillation frequency

fxT: Subsystem clock oscillation frequency

fw: Watch timer clock frequency

9.4.2 Interval timer operation

The watch timer operates as interval timer which generates interrupt requests (INTWTI) repeatedly at an interval of the preset count value.

The interval time can be selected with bits 4 to 6 (WTM4 to WTM6) of the watch timer operation mode register (WTM).

When bit 0 (WTM0) of the WTM is set to 1, the count operation starts. When this bit is set to 0, the count operation stops.

WTM6 WTM5 WTM4 Interval Time When Operated at When Operated at $f_{XT} = 32.768 \text{ kHz (WTM7} = 1)$ $f_X = 10 \text{ MHz (WTM7} = 0)$ $2^4/f_W$ 0 0 0 $205 \mu s$ 488 μs 0 0 1 $2^5/f_W$ 410 *μ*s $977 \mu s$ 0 1 0 $2^6/f_W$ 1.95 ms 820 *μ*s 0 27/fw 1 1 3.91 ms 1.64 ms 28/fw 1 0 0 7.81 ms 3.28 ms 29/fw 1 0 1 15.6 ms 6.55 ms $2^{10}/f_{W}$ 1 1 0 31.3 ms 13.1 ms $2^{11}/f_{W}$ 1 1 62.5 ms 26.2 ms 1

Table 9-5. Interval Timer Interval Time

Remark fx: High-speed system clock oscillation frequency

fxT: Subsystem clock oscillation frequency

fw: Watch timer clock frequency

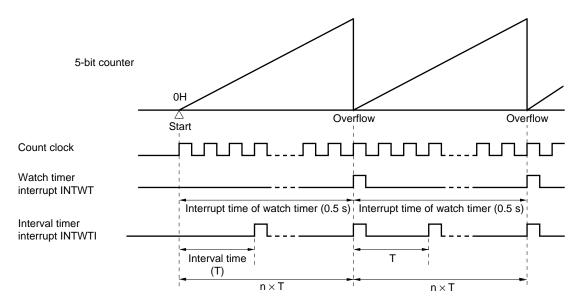
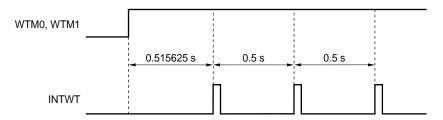


Figure 9-3. Operation Timing of Watch Timer/Interval Timer

Remark fw: Watch timer clock frequency

n: The number of times of interval timer operations


Figures in parentheses are for operation with fw = 32.768 kHz (WTM7 = 1, WTM3, WTM2 = 0, 0)

9.5 Cautions for Watch Timer

When operation of the watch timer and 5-bit counter is enabled by the watch timer mode control register (WTM) (by setting bits 0 (WTM0) and 1 (WTM1) of WTM to 1), the interval until the first interrupt request (INTWT) is generated after the register is set does not exactly match the specification made with bits 2 and 3 (WTM2 and WTM3) of WTM. Subsequently, however, the INTWT signal is generated at the specified intervals.

Figure 9-4. Example of Generation of Watch Timer Interrupt Request (INTWT) (When Interrupt Period = 0.5 s)

It takes 0.515625 seconds (max.) for the first INTWT to be generated ($2^9 \times 1/32768 = 0.015625$ s longer). INTWT is then generated every 0.5 seconds.

CHAPTER 10 WATCHDOG TIMER

10.1 Functions of Watchdog Timer

The watchdog timer is used to detect an inadvertent program loop. If a program loop is detected, an internal reset signal is generated.

When a reset occurs due to the watchdog timer, bit 4 (WDTRF) of the reset control flag register (RESF) is set to 1. For details of RESF, refer to **CHAPTER 20 RESET FUNCTION**.

Table 10-1. Loop Detection Time of Watchdog Timer

Loop Detection Time				
During Internal Oscillation Clock Operation	During High-Speed System Clock Operation			
2 ¹¹ /f _R (4.27 ms)	2 ¹³ /f _{XP} (819.2 μs)			
2 ¹² /f _R (8.53 ms)	2 ¹⁴ /f _{XP} (1.64 ms)			
2 ¹³ /f _R (17.07 ms)	2 ¹⁵ /f _{XP} (3.28 ms)			
2 ¹⁴ /f _R (34.13 ms)	2 ¹⁶ /f _{XP} (6.55 ms)			
2 ¹⁵ /f _R (68.27 ms)	2 ¹⁷ /f _{XP} (13.11 ms)			
2 ¹⁶ /f _R (136.53 ms)	2 ¹⁸ /f _{XP} (26.21 ms)			
2 ¹⁷ /f _R (273.07 ms)	2 ¹⁹ /f _{XP} (52.43 ms)			
2 ¹⁸ /f _R (546.13 ms)	2 ²⁰ /f _{XP} (104.86 ms)			

Remarks 1. fr.: Internal oscillation clock oscillation frequency

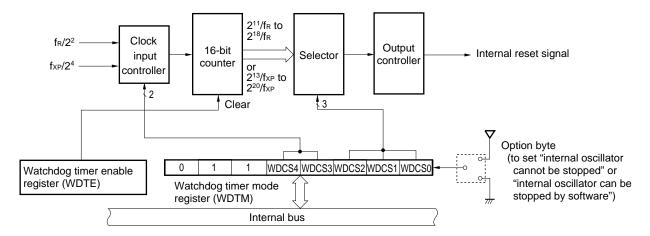
- 2. fxp: High-speed system clock oscillation frequency
- 3. Figures in parentheses apply to operation at $f_R = 480 \text{ kHz}$ (MAX.), $f_{XP} = 10 \text{ MHz}$

The operation mode of the watchdog timer (WDT) is switched according to the option byte setting of the on-chip internal oscillator as shown in Table 10-2.

Table 10-2. Option Byte Setting and Watchdog Timer Operation Mode

	Option Byte		
	Internal Oscillator Cannot Be Stopped	Internal Oscillator Can Be Stopped by Software	
Watchdog timer clock source	Fixed to fR ^{Note 1} .	Selectable by software (fxp, fR or stopped) When reset is released: fR	
Operation after reset	Operation starts with the maximum interval $(2^{18}/f_{\rm R})$.	Operation starts with maximum interval $(2^{18}/f_R)$.	
Operation mode selection	The interval can be changed only once.	The clock selection/interval can be changed only once.	
Features	The watchdog timer cannot be stopped.	The watchdog timer can be stopped in standby mode Note 2.	

- **Notes 1.** As long as power is being supplied, internal oscillator oscillation cannot be stopped (except in the reset period).
 - **2.** The conditions under which clock supply to the watchdog timer is stopped differ depending on the clock source of the watchdog timer.
 - <1> If the clock source is fxp, clock supply to the watchdog timer is stopped under the following conditions.
 - When fxp is stopped
 - In HALT/STOP mode
 - · During oscillation stabilization time
 - <2> If the clock source is fR, clock supply to the watchdog timer is stopped under the following conditions.
 - If the CPU clock is fxp and if fR is stopped by software before execution of the STOP instruction
 - In HALT/STOP mode
- Remarks 1. fr.: Internal oscillation clock oscillation frequency
 - 2. fxp: High-speed system clock oscillation frequency


10.2 Configuration of Watchdog Timer

The watchdog timer includes following hardware.

Table 10-3. Configuration of Watchdog Timer

Item Configuration	
Control registers	Watchdog timer mode register (WDTM)
Watchdog timer enable register (WDTE)	

Figure 10-1. Block Diagram of Watchdog Timer

10.3 Registers Controlling Watchdog Timer

The watchdog timer is controlled by the following two registers.

- Watchdog timer mode register (WDTM)
- Watchdog timer enable register (WDTE)

(1) Watchdog timer mode register (WDTM)

This register sets the overflow time and operation clock of the watchdog timer.

This register can be set by an 8-bit memory manipulation instruction and can be read many times, but can be written only once after reset is released.

RESET input sets this register to 67H.

Figure 10-2. Format of Watchdog Timer Mode Register (WDTM)

Address: FF98H		After reset: 67H	R/W					
Symbol	7	6	5	4	3	2	1	0
WDTM	0	1	1	WDCS4	WDCS3	WDCS2	WDCS1	WDCS0

WDCS4 ^{Note 1}	WDCS3 ^{Note 1}	Operation clock selection			
0	0	Internal oscillation clock (fR)			
0	1	High-speed system clock (fxP)			
1	×	Natchdog timer operation stopped			

WDCS2 ^{Note 2}	WDCS1 ^{Note 2}	WDCS0 ^{Note 2}	Overflow time setting		
			During internal oscillation clock operation	During high-speed system clock operation	
0	0	0	2 ¹¹ /f _R (4.27 ms)	2 ¹³ /f _{XP} (819.2 μs)	
0	0	1	2 ¹² /f _R (8.53 ms) 2 ¹⁴ /f _{XP} (1.64 ms)		
0	1	0	2 ¹³ /f _R (17.07 ms) 2 ¹⁵ /f _{XP} (3.28 ms)		
0	1	1	2 ¹⁴ /f _R (34.13 ms)	2 ¹⁶ /fxp (6.55 ms)	
1	0	0	2 ¹⁵ /f _R (68.27 ms) 2 ¹⁷ /f _{XP} (13.11 ms)		
1	0	1	2 ¹⁶ /f _R (136.53 ms) 2 ¹⁸ /f _{XP} (26.21 ms)		
1	1	0	2 ¹⁷ /f _R (273.07 ms) 2 ¹⁹ /f _{XP} (52.43 ms)		
1	1	1	2 ¹⁸ /f _R (546.13 ms) 2 ²⁰ /f _{XP} (104.86 ms)		

Notes 1. If "internal oscillator cannot be stopped" is specified by the option byte, this cannot be set. The internal oscillation clock will be selected no matter what value is written.

2. Reset is released at the maximum cycle (WDCS2, 1, 0 = 1, 1, 1).

- Cautions 1. If data is written to WDTM, a wait cycle is generated. Do not write data to WDTM when the CPU is operating on the subsystem clock and the high-speed system clock is stopped. For details, see CHAPTER 33 CAUTIONS FOR WAIT.
 - 2. Set bits 7, 6, and 5 to 0, 1, and 1, respectively (when "internal oscillator cannot be stopped" is selected by the option byte, other values are ignored).
 - 3. After reset is released, WDTM can be written only once by an 8-bit memory manipulation instruction. If writing attempted a second time, an internal reset signal is generated. If the source clock to the watchdog timer is stopped, however, an internal reset signal is generated when the source clock to the watchdog timer resumes operation.
 - 4. WDTM cannot be set by a 1-bit memory manipulation instruction.
 - 5. If "internal oscillator can be stopped by software" is selected by the option byte and the watchdog timer is stopped by setting WDCS4 to 1, the watchdog timer does not resume operation even if WDCS4 is cleared to 0. In addition, the internal reset signal is not generated.

Remarks 1. fr.: Internal oscillation clock oscillation frequency

- **2.** fxp: High-speed system clock oscillation frequency
- 3. x: Don't care
- 4. Figures in parentheses apply to operation at fR = 480 kHz (MAX.), fXP = 10 MHz

(2) Watchdog timer enable register (WDTE)

Writing ACH to WDTE clears the watchdog timer counter and starts counting again.

This register can be set by an 8-bit memory manipulation instruction.

RESET input sets this register to 9AH.

Figure 10-3. Format of Watchdog Timer Enable Register (WDTE)

Address: FF99H After reset: 9AH		l R/W						
Symbol	7	6	5	4	3	2	1	0
WDTE								

- Cautions 1. If a value other than ACH is written to WDTE, an internal reset signal is generated. If the source clock to the watchdog timer is stopped, however, an internal reset signal is generated when the source clock to the watchdog timer resumes operation.
 - If a 1-bit memory manipulation instruction is executed for WDTE, an internal reset signal is generated. If the source clock to the watchdog timer is stopped, however, an internal reset signal is generated when the source clock to the watchdog timer resumes operation.
 - 3. The value read from WDTE is 9AH (this differs from the written value (ACH)).

The relationship between the watchdog timer operation and the internal reset signal generated by the watchdog timer is shown below.

Table 10-4. Relationship Between Watchdog Timer Operation and Internal Reset Signal Generated by Watchdog Timer

Watchdog Timer	"Internal Oscillator	"Internal Oscillator Can E	"Internal Oscillator Can Be Stopped by Software" Is Selected by Option Byte			
Operation	Cannot Be Stopped " Is	Watchdog Timer Is	Watchdog Ti	mer Stopped		
Internal Reset Signal Generation Cause	eset Signal (Watchdog Timer Is Always Operating)		WDCS4 Is Set to 1	Source Clock to Watchdog Timer Is Stopped		
Watchdog timer overflows	Internal reset signal is generated.	Internal reset signal is generated.	_	-		
Write to WDTM for the second time	Internal reset signal is generated.	Internal reset signal is generated.	Internal reset signal is not generated and the watchdog timer does not resume operation.	Internal reset signal is generated when the source clock to the watchdog timer resumes operation.		
Write other than "ACH" to WDTE	Internal reset signal is generated.	Internal reset signal is generated.	Internal reset signal is not generated.	Internal reset signal is generated when the		
Access WDTE by 1-bit memory manipulation instruction				source clock to the watchdog timer resumes operation.		

10.4 Operation of Watchdog Timer

10.4.1 Watchdog timer operation when "internal oscillator cannot be stopped" is selected by option byte

The operation clock of watchdog timer is fixed to the internal oscillation clock.

After reset is released, operation is started at the maximum cycle (bits 2, 1, and 0 (WDCS2, WDCS1, WDCS0) of the watchdog timer mode register (WDTM) = 1, 1, 1). The watchdog timer operation cannot be stopped.

The following shows the watchdog timer operation after reset release.

- 1. The status after reset release is as follows.
 - Operation clock: Internal oscillation clock
 - Cycle: $2^{18}/f_R$ (546.13 ms: At operation with $f_R = 480$ kHz (MAX.))
 - · Counting starts
- 2. The following should be set in the watchdog timer mode register (WDTM) by an 8-bit memory manipulation instruction Notes 1, 2.
 - Cycle: Set using bits 2 to 0 (WDCS2 to WDCS0)
- 3. After the above procedures are executed, writing ACH to WDTE clears the count to 0, enabling recounting.
- **Notes 1.** The operation clock (internal oscillation clock) cannot be changed. If any value is written to bits 3 and 4 (WDCS3, WDCS4) of WDTM, it is ignored.
 - 2. As soon as WDTM is written, the counter of the watchdog timer is cleared.

Caution In this mode, operation of the watchdog timer absolutely cannot be stopped even during STOP instruction execution. For 8-bit timer H1 (TMH1), a division of the internal oscillation clock can be selected as the count source, so clear the watchdog timer using the interrupt request of TMH1 before the watchdog timer overflows after STOP instruction execution. If this processing is not performed, an internal reset signal is generated when the watchdog timer overflows after STOP instruction execution.

10.4.2 Watchdog timer operation when "internal oscillator can be stopped by software" is selected by option byte

The operation clock of the watchdog timer can be selected as either the internal oscillation clock or the high-speed system clock.

After reset is released, operation is started at the maximum cycle (bits 2, 1, and 0 (WDCS2, WDCS1, WDCS0) of the watchdog timer mode register (WDTM) = 1, 1, 1).

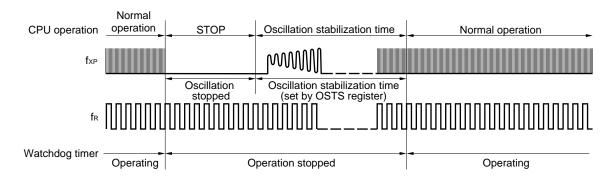
The following shows the watchdog timer operation after reset release.

- 1. The status after reset release is as follows.
 - Operation clock: Internal oscillation clock
 - Cycle: $2^{18}/f_R$ (546.13 ms: At operation with f_R = 480 kHz (MAX.))
 - · Counting starts
- 2. The following should be set in the watchdog timer mode register (WDTM) by an 8-bit memory manipulation instruction Notes 1, 2, 3.
 - Operation clock: Any of the following can be selected using bits 3 and 4 (WDCS3 and WDCS4).
 - Internal oscillation clock (fR)
 - High-speed system clock (fxp)
 - Watchdog timer operation stopped
 - Cycle: Set using bits 2 to 0 (WDCS2 to WDCS0)
- 3. After the above procedures are executed, writing ACH to WDTE clears the count to 0, enabling recounting.
- Notes 1. As soon as WDTM is written, the counter of the watchdog timer is cleared.
 - 2. Set bits 7, 6, and 5 to 0, 1, 1, respectively. Do not set the other values.
 - **3.** If the watchdog timer is stopped by setting WDCS4 and WDCS3 to 1 and \times , respectively, an internal reset signal is not generated even if the following processing is performed.
 - · WDTM is written a second time.
 - A 1-bit memory manipulation instruction is executed to WDTE.
 - A value other than ACH is written to WDTE.

Caution In this mode, watchdog timer operation is stopped during HALT/STOP instruction execution.

After HALT/STOP mode is released, counting is started again using the operation clock of the watchdog timer set before HALT/STOP instruction execution by WDTM. At this time, the counter is not cleared to 0 but holds its value.

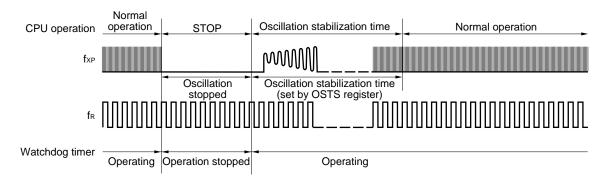
For the watchdog timer operation during STOP mode and HALT mode in each status, refer to **10.4.3 Watchdog** timer operation in STOP mode and **10.4.4 Watchdog** timer operation in HALT mode.


10.4.3 Watchdog timer operation in STOP mode (when "internal oscillator can be stopped by software" is selected by option byte)

The watchdog timer stops counting during STOP instruction execution regardless of whether the high-speed system clock or internal oscillation clock is being used.

(1) When the CPU clock and the watchdog timer operation clock are the high-speed system clock (fxp) when the STOP instruction is executed

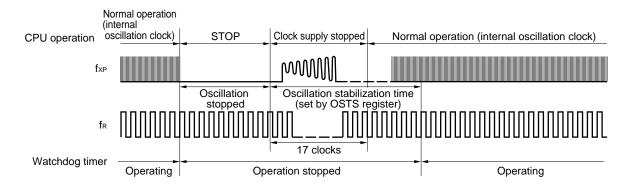
When STOP instruction is executed, operation of the watchdog timer is stopped. After STOP mode is released, counting stops for the oscillation stabilization time set by the oscillation stabilization time select register (OSTS) and then counting is started again using the operation clock before the operation was stopped. At this time, the counter is not cleared to 0 but holds its value.


Figure 10-4. Operation in STOP Mode (CPU Clock and WDT Operation Clock: High-Speed System Clock)

(2) When the CPU clock is the high-speed system clock (fxp) and the watchdog timer operation clock is the internal oscillation clock (fR) when the STOP instruction is executed

When the STOP instruction is executed, operation of the watchdog timer is stopped. After STOP mode is released, counting is started again using the operation clock before the operation was stopped. At this time, the counter is not cleared to 0 but holds its value.

Figure 10-5. Operation in STOP Mode (CPU Clock: High-Speed System Clock, WDT Operation Clock: Internal Oscillation Clock)


(3) When the CPU clock is the internal oscillation clock (fR) and the watchdog timer operation clock is the high-speed system clock (fxP) when the STOP instruction is executed

When the STOP instruction is executed, operation of the watchdog timer is stopped. After STOP mode is released, counting is stopped until the timing of <1> or <2>, whichever is earlier, and then counting is started using the operation clock before the operation was stopped. At this time, the counter is not cleared to 0 but holds its value.

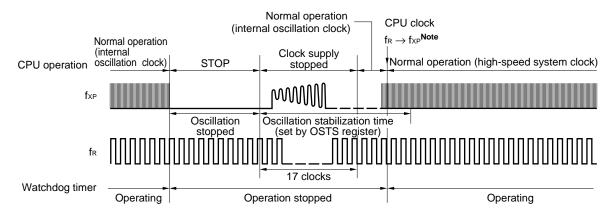

- <1> The oscillation stabilization time set by the oscillation stabilization time select register (OSTS) elapses.
- <2> The CPU clock is switched to the high-speed system clock (fxp).

Figure 10-6. Operation in STOP Mode (CPU Clock: Internal Oscillator Clock, WDT Operation Clock: High-Speed System Clock)

<1> Timing when counting is started after the oscillation stabilization time set by the oscillation stabilization time select register (OSTS) has elapsed

<2> Timing when counting is started after the CPU clock is switched to the high-speed system clock (fxp)

Note Confirm the oscillation stabilization time of fxp using the oscillation stabilization time counter status register (OSTC).

(4) When CPU clock and watchdog timer operation clock are the internal oscillation clocks (fR) when the STOP instruction is executed

When the STOP instruction is executed, operation of the watchdog timer is stopped. After STOP mode is released, counting is started again using the operation clock before the operation was stopped. At this time, the counter is not cleared to 0 but holds its value.

Figure 10-7. Operation in STOP Mode (CPU Clock and WDT Operation Clock: Internal Oscillator Clock)

10.4.4 Watchdog timer operation in HALT mode (when "internal oscillator can be stopped by software" is selected by option byte)

The watchdog timer stops counting during HALT instruction execution regardless of whether the CPU clock is the high-speed system clock (f_{XP}), internal oscillation clock (f_{R}), or subsystem clock (f_{XT}), or whether the operation clock of the watchdog timer is the high-speed system clock (f_{XP}) or internal oscillation clock (f_{R}). After HALT mode is released, counting is started again using the operation clock before the operation was stopped. At this time, the counter is not cleared to 0 but holds its value.

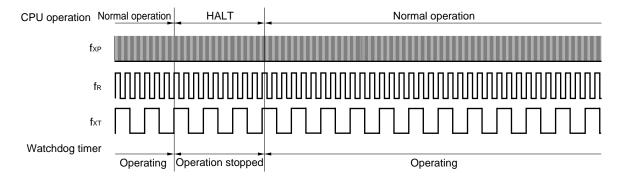
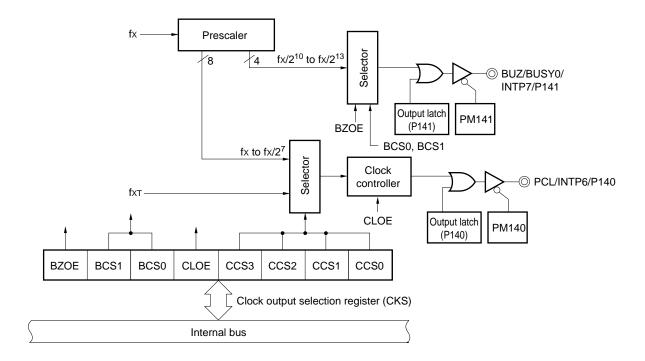


Figure 10-8. Operation in HALT Mode

CHAPTER 11 CLOCK OUTPUT/BUZZER OUTPUT CONTROLLER


11.1 Functions of Clock Output/Buzzer Output Controller

The clock output controller is intended for carrier output during remote controlled transmission and clock output for supply to peripheral LSIs. The clock selected with the clock output selection register (CKS) is output.

In addition, the buzzer output is intended for square-wave output of buzzer frequency selected with CKS.

Figure 11-1 shows the block diagram of clock output/buzzer output controller.

Figure 11-1. Block Diagram of Clock Output/Buzzer Output Controller

11.2 Configuration of Clock Output/Buzzer Output Controller

The clock output/buzzer output controller includes the following hardware.

Table 11-1. Clock Output/Buzzer Output Controller Configuration

Item	Configuration
Control registers	Clock output selection register (CKS) Port mode register 14 (PM14)
	Port register 14 (P14)

11.3 Register Controlling Clock Output/Buzzer Output Controller

The following two registers are used to control the clock output/buzzer output controller.

- Clock output selection register (CKS)
- Port mode register 14 (PM14)

(1) Clock output selection register (CKS)

This register sets output enable/disable for clock output (PCL) and for the buzzer frequency output (BUZ), and sets the output clock.

CKS is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears CKS to 00H.

Figure 11-2. Format of Clock Output Selection Register (CKS)

Address: FF40H After reset: 00H R/W

Symbol CKS

<7>	6	5	<4>	3	2	1	0
BZOE	BCS1	BCS0	CLOE	CCS3	CCS2	CCS1	CCS0

BZOE	BUZ output enable/disable specification					
0	Clock division circuit operation stopped. BUZ fixed to low level.					
1	Clock division circuit operation enabled. BUZ output enabled.					

BCS1	BCS0	BUZ output clock selection
0	0	fx/2 ¹⁰ (9.77 kHz)
0	1	fx/2 ¹¹ (4.88 kHz)
1	0	fx/2 ¹² (2.44 kHz)
1	1	fx/2 ¹³ (1.22 kHz)

CLOE	PCL output enable/disable specification				
0	clock division circuit operation stopped. PCL fixed to low level.				
1	Clock division circuit operation enabled. PCL output enabled.				

CCS3	CCS2	CCS1	CCS0	PCL output clock selection Note
0	0	0	0	fx (10 MHz)
0	0	0	1	fx/2 (5 MHz)
0	0	1	0	fx/2 ² (2.5 MHz)
0	0	1	1	fx/2 ³ (1.25 MHz)
0	1	0	0	fx/2 ⁴ (625 kHz)
0	1	0	1	fx/2 ⁵ (312.5 kHz)
0	1	1	0	fx/2 ⁶ (156.25 kHz)
0	1	1	1	fx/2 ⁷ (78.125 kHz)
1	0	0	0	fxт (32.768 kHz)
	Other that	an above		Setting prohibited

Note Set the PCL output clock so that the following condition is satisfied.

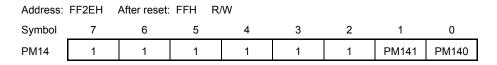
• PCL output clock ≤ 10 MHz

Remarks 1. fx: High-speed system clock oscillation frequency

2. fxT: Subsystem clock oscillation frequency

3. Figures in parentheses are for operation with fx = 10 MHz or fxT = 32.768 kHz.

(2) Port mode register 14 (PM14)


This register sets port 14 input/output in 1-bit units.

When using the P140/INTP6/PCL pin for clock output and the P141/INTP7/BUZ pin for buzzer output, set PM140, PM141 and the output latch of P140, P141 to 0.

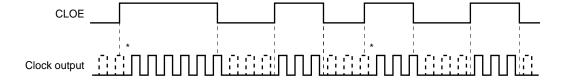
PM14 is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets PM14 to FFH.

Figure 11-3. Format of Port Mode Register 14 (PM14)

PM14n	P14n pin I/O mode selection (n = 0, 1)
0	Output mode (output buffer on)
1	Input mode (output buffer off)

11.4 Clock Output/Buzzer Output Controller Operations


11.4.1 Clock output operation

The clock pulse is output as the following procedure.

- <1> Select the clock pulse output frequency with bits 0 to 3 (CCS0 to CCS3) of the clock output selection register (CKS) (clock pulse output in disabled status).
- <2> Set bit 4 (CLOE) of CKS to 1 to enable clock output.

Remark The clock output controller is designed not to output pulses with a small width during output enable/disable switching of the clock output. As shown in Figure 11-4, be sure to start output from the low period of the clock (marked with * in the figure). When stopping output, do so after securing high level of the clock.

Figure 11-4. Remote Control Output Application Example

11.4.2 Operation as buzzer output

The buzzer frequency is output as the following procedure.

- <1> Select the buzzer output frequency with bits 5 and 6 (BCS0, BCS1) of the clock output selection register (CKS) (buzzer output in disabled status).
- <2> Set bit 7 (BZOE) of CKS to 1 to enable buzzer output.

CHAPTER 12 A/D CONVERTER

12.1 Functions of A/D Converter

The A/D converter converts an analog input signal into a digital value, and consists of up to eight channels (ANI0 to ANI7) with a resolution of 10 bits.

The A/D converter has the following two functions.

(1) 10-bit resolution A/D conversion

10-bit resolution A/D conversion is carried out repeatedly for one channel selected from analog inputs ANI0 to ANI7. Each time an A/D conversion operation ends, an interrupt request (INTAD) is generated.

(2) Power-fail detection function

This function is used to detect a voltage drop in a battery. The A/D conversion result (ADCR register value) and power-fail comparison threshold register (PFT) value are compared. INTAD is generated only when a comparative condition has been matched.

ADCS bit ANI0/P20 © Sample & hold circuit ANI1/P21 © ANI2/P22 © Voltage comparator Selector Fap selector ANI3/P23 © ANI4/P24 (3) ANI5/P25 @ AVss 777 ANI6/P26 ⊚ ANI7/P27 @-Successive approximation ⊕ AVss register (SAR) - INTAD Controller Comparato A/D conversion result Power-fail comparison register (ADCR) threshold register (PFT) 3 PFCM ADS2 ADS1 ADS0 ADCS FR2 FR1 FR0 ADCE PFEN Analog input channel A/D converter mode Power-fail comparison specification register register (ADM) mode register (PFM) (ADS) Internal bus

Figure 12-1. Block Diagram of A/D Converter

12.2 Configuration of A/D Converter

The A/D converter includes the following hardware.

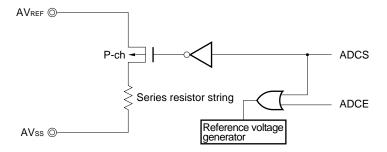
Table 12-1. Registers of A/D Converter Used on Software

Item	Configuration
Registers	A/D conversion result register (ADCR)
	A/D converter mode register (ADM)
	Analog input channel specification register (ADS)
	Power-fail comparison mode register (PFM)
	Power-fail comparison threshold register (PFT)

(1) ANI0 to ANI7 pins

These are the analog input pins of the 8-channel A/D converter. They input analog signals to be converted into digital signals. Pins other than the one selected as the analog input pin by the analog input channel specification register (ADS) can be used as input port pins.

(2) Sample & hold circuit


The sample & hold circuit samples the input signal of the analog input pin selected by the selector when A/D conversion is started, and holds the sampled analog input voltage value during A/D conversion.

(3) Series resistor string

The series resistor string is connected between AV_{REF} and AV_{SS}, and generates a voltage to be compared with the analog input signal.

Figure 12-2. Circuit Configuration of Series Resistor String

(4) Voltage comparator

The voltage comparator compares the sampled analog input voltage and the output voltage of the series resistor string.

(5) Successive approximation register (SAR)

This register compares the sampled analog voltage and the voltage of the series resistor string, and converts the result, starting from the most significant bit (MSB).

When the voltage value is converted into a digital value down to the least significant bit (LSB) (end of A/D conversion), the contents of the SAR register are transferred to the A/D conversion result register (ADCR).

(6) A/D conversion result register (ADCR)

The result of A/D conversion is loaded from the successive approximation register (SAR) to this register each time A/D conversion is completed, and the ADCR register holds the result of A/D conversion in its higher 10 bits (the lower 6 bits are fixed to 0).

(7) Controller

When A/D conversion has been completed or when the power-fail detection function is used, this controller compares the result of A/D conversion (value of the ADCR register) and the value of the power-fail comparison threshold register (PFT). It generates the interrupt INTAD only if a specified comparison condition is satisfied as a result.

(8) AVREF pin

This pin inputs an analog power/reference voltage to the A/D converter. Always use this pin at the same potential as that of the V_{DD} pin even when the A/D converter is not used.

The signal input to ANI0 to ANI7 is converted into a digital signal, based on the voltage applied across AVREF and AVss.

(9) AVss pin

This is the ground potential pin of the A/D converter. Always use this pin at the same potential as that of the Vss pin even when the A/D converter is not used.

(10) A/D converter mode register (ADM)

This register is used to set the conversion time of the analog input signal to be converted, and to start or stop the conversion operation.

(11) Analog input channel specification register (ADS)

This register is used to specify the port that inputs the analog voltage to be converted into a digital signal.

(12) Power-fail comparison mode register (PFM)

This register is used to set the power-fail monitor mode.

(13) Power-fail comparison threshold register (PFT)

This register is used to set the threshold value that is to be compared with the value of the A/D conversion result register (ADCR).

12.3 Registers Used in A/D Converter

The A/D converter uses the following five registers.

- A/D converter mode register (ADM)
- Analog input channel specification register (ADS)
- A/D conversion result register (ADCR)
- Power-fail comparison mode register (PFM)
- Power-fail comparison threshold register (PFT)

(1) A/D converter mode register (ADM)

This register sets the conversion time for analog input to be A/D converted, and starts/stops conversion.

ADM can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Figure 12-3. Format of A/D Converter Mode Register (ADM)

Address: FF28H		After res	set: 00H	R/W				
Symbol								
ADM	ADCS	0	FR2	FR1	FR0	0	0	ADCE

ADCS	A/D conversion operation control					
0	Stops conversion operation					
1	Enables conversion operation					

FR2	FR1	FR0	(Conversion time selection ^{Note 1}					
				fx = 2 MHz	fx = 8.38 MHz	fx = 10 MHz	fx = 16 MHz		
0	0	0	288/fx	144μs	34.3 <i>μ</i> s	28.8 μs	18 <i>μ</i> s		
0	0	1	240/fx	120 <i>μ</i> s	28.6 μs	24.0 μs	15 <i>μ</i> s		
0	1	0	192/fx	96 μs	22.9 μs	19.2 <i>μ</i> s	12 <i>μ</i> s		
1	0	0	144/fx	72 μs	17.2 μs	14.4 μs	9 μs		
1	0	1	120/fx	60 μs	14.3 μs	12.0 <i>μ</i> s	7.5 μs		
1	1	0	96/fx	48 μs	11.5 <i>μ</i> s	9.6 <i>μ</i> s	6 μs		
Other than above			Setting prohibited						

ADCE	Boost reference voltage generator operation control ^{Note 2}
0	Stops operation of reference voltage generator
1	Enables operation of reference voltage generator

<R> Notes 1. Set so that the A/D conversion time is as follows.

- \bullet Standard products, (A) grade products: 14 μs or longer but less than 100 μs
- (A1) grade products: 14 μ s or longer but less than 60 μ s
- **2.** A booster circuit is incorporated to realize low-voltage operation. The operation of the circuit that generates the reference voltage for boosting is controlled by ADCE, and it takes 14 μ s from operation start to operation stabilization. Therefore, when ADCS is set to 1 after 14 μ s or more has elapsed from the time ADCE is set to 1, the conversion result at that time has priority over the first conversion result.

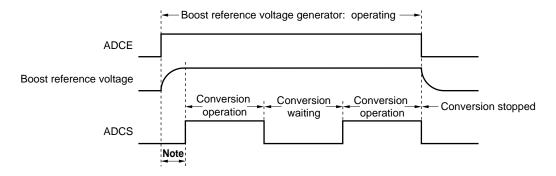

Remark fx: High-speed system clock oscillation frequency

Table 12-2. Settings of ADCS and ADCE

ADCS	ADCE	A/D Conversion Operation
0	0	Stop status (DC power consumption path does not exist)
0	1	Conversion waiting mode (only reference voltage generator consumes power)
1	0	Conversion mode (reference voltage generator operation stopped ^{Note})
1	1	Conversion mode (reference voltage generator operates)

Note Data of first conversion cannot be used.

Figure 12-4. Timing Chart When Boost Reference Voltage Generator Is Used

Note The time from the rising of the ADCE bit to the falling of the ADCS bit must be 14 μ s or longer to stabilize the reference voltage.

- Cautions 1. A/D conversion must be stopped before rewriting bits FR0 to FR2 to values other than the identical data.
 - 2. For the sampling time of the A/D converter and the A/D conversion start delay time, see (11) in 12.6 Cautions for A/D Converter.
 - 3. If data is written to ADM, a wait cycle is generated. Do not write data to ADM when the CPU is operating on the subsystem clock and the high-speed system clock is stopped. For details, see CHAPTER 33 CAUTIONS FOR WAIT.

(2) Analog input channel specification register (ADS)

This register specifies the input port of the analog voltage to be A/D converted.

ADS can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

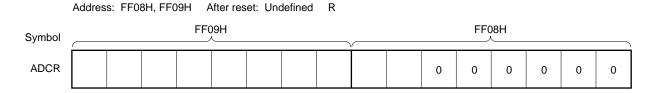
Figure 12-5. Format of Analog Input Channel Specification Register (ADS)

Address: FF29H		After reset: 00H		R/W				
Symbol	7	6	5	4	3	2	1	0
ADS	0	0	0	0	0	ADS2	ADS1	ADS0

ADS2	ADS1	ADS0	Analog input channel specification
0	0	0	ANI0
0	0	1	ANI1
0	1	0	ANI2
0	1	1	ANI3
1	0	0	ANI4
1	0	1	ANI5
1	1	0	ANI6
1	1	1	ANI7

Cautions 1. Be sure to clear bits 3 to 7 of ADS to 0.

2. If data is written to ADS, a wait cycle is generated. Do not write data to ADS when the CPU is operating on the subsystem clock and the high-speed system clock is stopped. For details, see CHAPTER 33 CAUTIONS FOR WAIT.


(3) A/D conversion result register (ADCR)

This register is a 16-bit register that stores the A/D conversion result. The lower six bits are fixed to 0. Each time A/D conversion ends, the conversion result is loaded from the successive approximation register, and is stored in ADCR in order starting from the most significant bit (MSB). FF09H indicates the higher 8 bits of the conversion result, and FF08H indicates the lower 2 bits of the conversion result.

ADCR can be read by a 16-bit memory manipulation instruction.

RESET input makes ADCR undefined.

Figure 12-6. Format of A/D Conversion Result Register (ADCR)

- Cautions 1. When writing to the A/D converter mode register (ADM) and analog input channel specification register (ADS), the contents of ADCR may become undefined. Read the conversion result following conversion completion before writing to ADM and ADS. Using timing other than the above may cause an incorrect conversion result to be read.
 - If data is read from ADCR, a wait cycle is generated. Do not read data from ADCR when the CPU is operating on the subsystem clock and the high-speed system clock is stopped. For details, see CHAPTER 33 CAUTIONS FOR WAIT.

(4) Power-fail comparison mode register (PFM)

The power-fail comparison mode register (PFM) is used to compare the A/D conversion result (value of the ADCR register) and the value of the power-fail comparison threshold register (PFT).

PFM can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Figure 12-7. Format of Power-Fail Comparison Mode Register (PFM)

Address:	FF2AH	After re	set: 00H	R/W				
Symbol	<7>	<6>	5	4	3	2	1	0
PFM	PFEN	PFCM	0	0	0	0	0	0

PFEN	Power-fail comparison enable
0	Stops power-fail comparison (used as a normal A/D converter)
1	Enables power-fail comparison (used for power-fail detection)

PFCM		Power-fail comparison mode selection
0	Higher 8 bits of ADCR ≥ PFT	Interrupt request signal (INTAD) generation
	Higher 8 bits of ADCR < PFT	No INTAD generation
1	Higher 8 bits of ADCR ≥ PFT	No INTAD generation
1	Higher 8 bits of ADCR < PFT	INTAD generation

Caution If data is written to PFM, a wait cycle is generated. Do not write data to PFM when the CPU is operating on the subsystem clock and the high-speed system clock is stopped. For details, see CHAPTER 33 CAUTIONS FOR WAIT.

(5) Power-fail comparison threshold register (PFT)

The power-fail comparison threshold register (PFT) is a register that sets the threshold value when comparing the values with the A/D conversion result.

8-bit data in PFT is compared to the higher 8 bits (FF09H) of the 10-bit A/D conversion result.

PFT can be set by an 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Figure 12-8. Format of Power-Fail Comparison Threshold Register (PFT)

Caution If data is written to PFT, a wait cycle is generated. Do not write data to PFT when the CPU is operating on the subsystem clock and the high-speed system clock is stopped. For details, see CHAPTER 33 CAUTIONS FOR WAIT.

12.4 A/D Converter Operations

12.4.1 Basic operations of A/D converter

- <1> Select one channel for A/D conversion using the analog input channel specification register (ADS).
- <2> Set ADCE to 1 and wait for 14 μ s or longer.
- <3> Set ADCS to 1 and start the conversion operation. (<4> to <10> are operations performed by hardware.)
- <4> The voltage input to the selected analog input channel is sampled by the sample & hold circuit.
- <5> When sampling has been done for a certain time, the sample & hold circuit is placed in the hold state and the input analog voltage is held until the A/D conversion operation has ended.
- <6> Bit 9 of the successive approximation register (SAR) is set. The series resistor string voltage tap is set to (1/2) AVREF by the tap selector.
- <7> The voltage difference between the series resistor string voltage tap and analog input is compared by the voltage comparator. If the analog input is greater than (1/2) AVREF, the MSB of SAR remains set to 1. If the analog input is smaller than (1/2) AVREF, the MSB is reset to 0.
- Next, bit 8 of SAR is automatically set to 1, and the operation proceeds to the next comparison. The series resistor string voltage tap is selected according to the preset value of bit 9, as described below.
 - Bit 9 = 1: (3/4) AVREF
 - Bit 9 = 0: (1/4) AVREF

The voltage tap and analog input voltage are compared and bit 8 of SAR is manipulated as follows.

- Analog input voltage ≥ Voltage tap: Bit 8 = 1
- Analog input voltage < Voltage tap: Bit 8 = 0
- <9> Comparison is continued in this way up to bit 0 of SAR.
- <10> Upon completion of the comparison of 10 bits, an effective digital result value remains in SAR, and the result value is transferred to the A/D conversion result register (ADCR) and then latched.

At the same time, the A/D conversion end interrupt request (INTAD) can also be generated.

<11> Repeat steps <4> to <10>, until ADCS is cleared to 0.

To stop the A/D converter, clear ADCS to 0.

To restart A/D conversion from the status of ADCE = 1, start from <3>. To restart A/D conversion from the status of ADCE = 0, however, start from <2>.

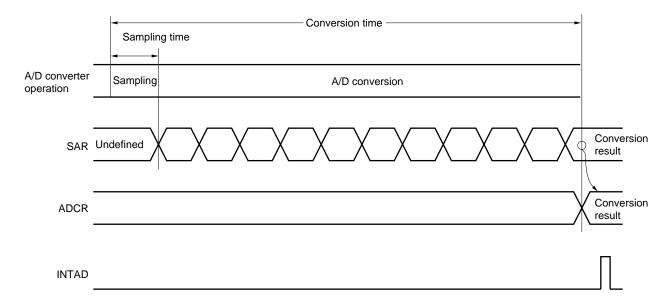


Figure 12-9. Basic Operation of A/D Converter

A/D conversion operations are performed continuously until bit 7 (ADCS) of the A/D converter mode register (ADM) is reset (0) by software.

If a write operation is performed to one of the ADM, analog input channel specification register (ADS), power-fail comparison mode register (PFM), or power-fail comparison threshold register (PFT) during an A/D conversion operation, the conversion operation is initialized, and if the ADCS bit is set (1), conversion starts again from the beginning.

RESET input makes the A/D conversion result register (ADCR) undefined.

12.4.2 Input voltage and conversion results

The relationship between the analog input voltage input to the analog input pins (ANI0 to ANI7) and the theoretical A/D conversion result (stored in the A/D conversion result register (ADCR)) is shown by the following expression.

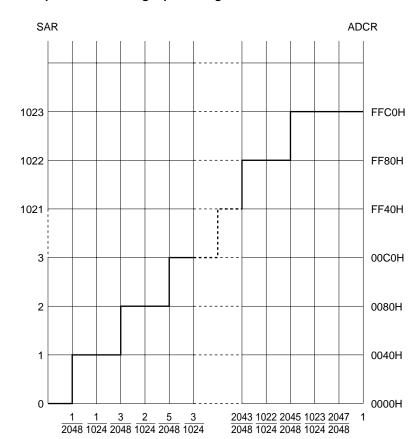
SAR = INT
$$(\frac{V_{AIN}}{AV_{REF}} \times 1024 + 0.5)$$

ADCR = SAR × 64

or

$$(ADCR - 0.5) \times \frac{AV_{REF}}{1024} \le V_{AIN} < (ADCR + 0.5) \times \frac{AV_{REF}}{1024}$$

where, INT(): Function which returns integer part of value in parentheses


Vain: Analog input voltage AVREF: AVREF pin voltage

ADCR: A/D conversion result register (ADCR) value

SAR: Successive approximation register

Figure 12-10 shows the relationship between the analog input voltage and the A/D conversion result.

Figure 12-10. Relationship Between Analog Input Voltage and A/D Conversion Result

A/D conversion result

Input voltage/AVREF

12.4.3 A/D converter operation mode

The operation mode of the A/D converter is the select mode. One channel of analog input is selected from ANI0 to ANI7 by the analog input channel specification register (ADS) and A/D conversion is executed.

In addition, the following two functions can be selected by setting of bit 7 (PFEN) of the power-fail comparison mode register (PFM).

- Normal 10-bit A/D converter (PFEN = 0)
- Power-fail detection function (PFEN = 1)

(1) A/D conversion operation (when PFEN = 0)

By setting bit 7 (ADCS) of the A/D converter mode register (ADM) to 1 and bit 7 (PFEN) of the power-fail comparison mode register (PFM) to 0, the A/D conversion operation of the voltage, which is applied to the analog input pin specified by the analog input channel specification register (ADS), is started.

When A/D conversion has been completed, the result of the A/D conversion is stored in the A/D conversion result register (ADCR), and an interrupt request signal (INTAD) is generated. Once the A/D conversion has started and when one A/D conversion has been completed, the next A/D conversion operation is immediately started. The A/D conversion operations are repeated until new data is written to ADS.

If ADM, ADS, the power-fail comparison mode register (PFM), and the power-fail comparison threshold register (PFT) are rewritten during A/D conversion, the A/D conversion operation under execution is stopped and restarted from the beginning.

If 0 is written to ADCS during A/D conversion, A/D conversion is immediately stopped. At this time, the conversion result is undefined.

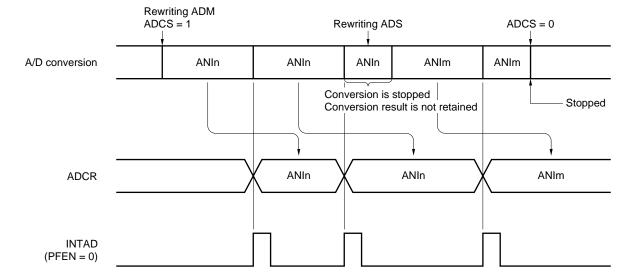


Figure 12-11. A/D Conversion Operation

Remarks 1. n = 0 to 7

2. m = 0 to 7

(2) Power-fail detection function (when PFEN = 1)

By setting bit 7 (ADCS) of the A/D converter mode register (ADM) to 1 and bit 7 (PFEN) of the power-fail comparison mode register (PFM) to 1, the A/D conversion operation of the voltage applied to the analog input pin specified by the analog input channel specification register (ADS) is started.

When the A/D conversion has been completed, the result of the A/D conversion is stored in the A/D conversion result register (ADCR), the values are compared with power-fail comparison threshold register (PFT), and an interrupt request signal (INTAD) is generated under the condition specified by bit 6 (PFCM) of PFM.

<1> When PFEN = 1 and PFCM = 0

The higher 8 bits of ADCR and PFT values are compared when A/D conversion ends and INTAD is only generated when the higher 8 bits of ADCR \geq PFT.

<2> When PFEN = 1 and PFCM = 1

The higher 8 bits of ADCR and PFT values are compared when A/D conversion ends and INTAD is only generated when the higher 8 bits of ADCR < PFT.

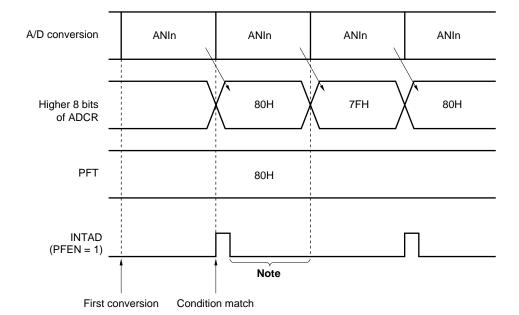


Figure 12-12. Power-Fail Detection (When PFEN = 1 and PFCM = 0)

Note If the conversion result is not read before the end of the next conversion after INTAD is output, the result is replaced by the next conversion result.

Remark n = 0 to 7

The setting methods are described below.

- When used as A/D conversion operation
 - <1> Set bit 0 (ADCE) of the A/D converter mode register (ADM) to 1.
 - <2> Select the channel and conversion time using bits 2 to 0 (ADS2 to ADS0) of the analog input channel specification register (ADS) and bits 5 to 3 (FR2 to FR0) of ADM.
 - <3> Set bit 7 (ADCS) of ADM to 1 to start A/D conversion.
 - <4> An interrupt request signal (INTAD) is generated.
 - <5> Transfer the A/D conversion data to the A/D conversion result register (ADCR).

<Change the channel>

- <6> Change the channel using bits 2 to 0 (ADS2 to ADS0) of ADS to start A/D conversion.
- <7> An interrupt request signal (INTAD) is generated.
- <8> Transfer the A/D conversion data to the A/D conversion result register (ADCR).

<Complete A/D conversion>

- <9> Clear ADCS to 0.
- <10> Clear ADCE to 0.

Cautions 1. Make sure the period of <1> to <3> is 14 μ s or more.

- 2. It is no problem if the order of <1> and <2> is reversed.
- 3. <1> can be omitted. However, do not use the first conversion result after <3> in this case.
- 4. The period from <4> to <7> differs from the conversion time set using bits 5 to 3 (FR2 to FR0) of ADM. The period from <6> to <7> is the conversion time set using FR2 to FR0.
- · When used as power-fail function
 - <1> Set bit 7 (PFEN) of the power-fail comparison mode register (PFM).
 - <2> Set power-fail comparison condition using bit 6 (PFCM) of PFM.
 - <3> Set bit 0 (ADCE) of the A/D converter mode register (ADM) to 1.
 - <4> Select the channel and conversion time using bits 2 to 0 (ADS2 to ADS0) of the analog input channel specification register (ADS) and bits 5 to 3 (FR2 to FR0) of ADM.
 - <5> Set a threshold value to the power-fail comparison threshold register (PFT).
 - <6> Set bit 7 (ADCS) of ADM to 1.
 - <7> Transfer the A/D conversion data to the A/D conversion result register (ADCR).
 - <8> The higher 8 bits of ADCR and PFT are compared and an interrupt request signal (INTAD) is generated if the conditions match.

<Change the channel>

- <9> Change the channel using bits 2 to 0 (ADS2 to ADS0) of ADS.
- <10> Transfer the A/D conversion data to the A/D conversion result register (ADCR).
- <11> The higher 8 bits of ADCR and the power-fail comparison threshold register (PFT) are compared and an interrupt request signal (INTAD) is generated if the conditions match.

<Complete A/D conversion>

- <12> Clear ADCS to 0.
- <13> Clear ADCE to 0.

Cautions 1. Make sure the period of <3> to <6> is 14 μ s or more.

- 2. It is no problem if the order of <3>, <4>, and <5> is changed.
- 3. <3> must not be omitted if the power-fail function is used.
- 4. The period from <7> to <11> differs from the conversion time set using bits 5 to 3 (FR2 to FR0) of ADM. The period from <9> to <11> is the conversion time set using FR2 to FR0.

12.5 How to Read A/D Converter Characteristics Table

Here, special terms unique to the A/D converter are explained.

(1) Resolution

This is the minimum analog input voltage that can be identified. That is, the percentage of the analog input voltage per bit of digital output is called 1LSB (Least Significant Bit). The percentage of 1LSB with respect to the full scale is expressed by %FSR (Full Scale Range).

1LSB is as follows when the resolution is 10 bits.

$$1LSB = 1/2^{10} = 1/1024$$

= 0.098%FSR

Accuracy has no relation to resolution, but is determined by overall error.

(2) Overall error

This shows the maximum error value between the actual measured value and the theoretical value.

Zero-scale error, full-scale error, integral linearity error, and differential linearity errors that are combinations of these express the overall error.

Note that the quantization error is not included in the overall error in the characteristics table.

(3) Quantization error

When analog values are converted to digital values, a $\pm 1/2$ LSB error naturally occurs. In an A/D converter, an analog input voltage in a range of $\pm 1/2$ LSB is converted to the same digital code, so a quantization error cannot be avoided.

Note that the quantization error is not included in the overall error, zero-scale error, full-scale error, integral linearity error, and differential linearity error in the characteristics table.

Figure 12-13. Overall Error

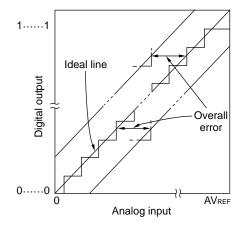
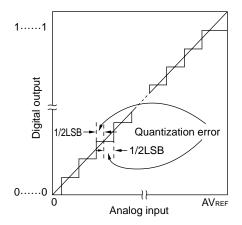



Figure 12-14. Quantization Error

(4) Zero-scale error

This shows the difference between the actual measurement value of the analog input voltage and the theoretical value (1/2LSB) when the digital output changes from 0......000 to 0......001.

If the actual measurement value is greater than the theoretical value, it shows the difference between the actual measurement value of the analog input voltage and the theoretical value (3/2LSB) when the digital output changes from 0......001 to 0......010.

(5) Full-scale error

This shows the difference between the actual measurement value of the analog input voltage and the theoretical value (Full-scale – 3/2LSB) when the digital output changes from 1......110 to 1......111.

(6) Integral linearity error

This shows the degree to which the conversion characteristics deviate from the ideal linear relationship. It expresses the maximum value of the difference between the actual measurement value and the ideal straight line when the zero-scale error and full-scale error are 0.

(7) Differential linearity error

While the ideal width of code output is 1LSB, this indicates the difference between the actual measurement value and the ideal value.

Figure 12-15. Zero-Scale Error

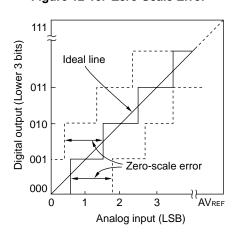


Figure 12-17. Integral Linearity Error

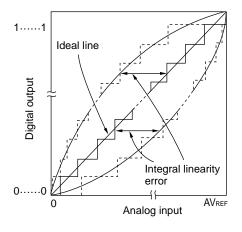


Figure 12-16. Full-Scale Error

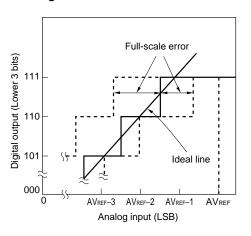
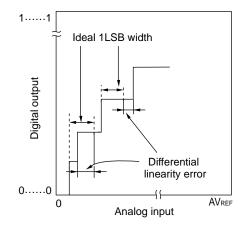
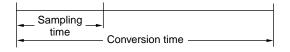



Figure 12-18. Differential Linearity Error


(8) Conversion time

This expresses the time from the start of sampling to when the digital output is obtained.

The sampling time is included in the conversion time in the characteristics table.

(9) Sampling time

This is the time the analog switch is turned on for the analog voltage to be sampled by the sample & hold circuit.

12.6 Cautions for A/D Converter

(1) Operating current in standby mode

The A/D converter stops operating in the standby mode. At this time, the operating current can be reduced by clearing bit 7 (ADCS) and bit 0 (ADCE) of the A/D converter mode register (ADM) to 0 (see **Figure 12-2**).

(2) Input range of ANI0 to ANI7

<R>

Observe the rated range of the ANI0 to ANI7 input voltage. If a voltage of AVREF or higher and AVss or lower (even in the range of absolute maximum ratings) is input to an analog input channel, the converted value of that channel becomes undefined. In addition, the converted values of the other channels may also be affected.

(3) Conflicting operations

- <1> Conflict between A/D conversion result register (ADCR) write and ADCR read by instruction upon the end of conversion
 - ADCR read has priority. After the read operation, the new conversion result is written to ADCR.
- <2> Conflict between ADCR write and A/D converter mode register (ADM) write or analog input channel specification register (ADS) write upon the end of conversion ADM or ADS write has priority. ADCR write is not performed, nor is the conversion end interrupt signal (INTAD) generated.

(4) Noise countermeasures

To maintain the 10-bit resolution, attention must be paid to noise input to the AVREF pin and pins ANI0 to ANI7. Because the effect increases in proportion to the output impedance of the analog input source, it is recommended that a capacitor be connected externally, as shown in Figure 12-19, to reduce noise.

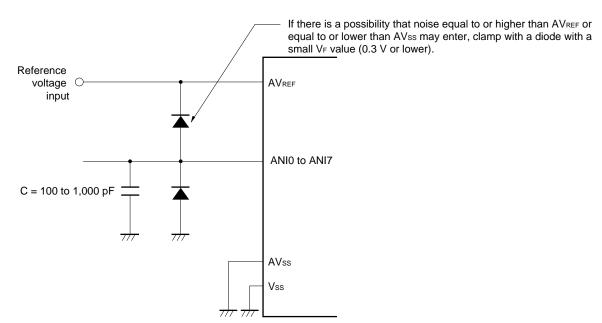


Figure 12-19. Analog Input Pin Connection

(5) ANI0/P20 to ANI7/P27

- <1> The analog input pins (ANI0 to ANI7) are also used as input port pins (P20 to P27).

 When A/D conversion is performed with any of ANI0 to ANI7 selected, do not access port 2 while conversion is in progress; otherwise the conversion resolution may be degraded.
- <2> If a digital pulse is applied to the pins adjacent to the pins currently used for A/D conversion, the expected value of the A/D conversion may not be obtained due to coupling noise. Therefore, do not apply a pulse to the pins adjacent to the pin undergoing A/D conversion.

(6) Input impedance of ANI0 to ANI7 pins

In this A/D converter, the internal sampling capacitor is charged and sampling is performed for approx. one sixth of the conversion time.

Since only the leakage current flows other than during sampling and the current for charging the capacitor also flows during sampling, the input impedance fluctuates and has no meaning.

To perform sufficient sampling, however, it is recommended to make the output impedance of the analog input source 10 k Ω or lower, or connect a capacitor of around 100 pF to the ANI0 to ANI7 pins (see **Figure 12-19**).

(7) AVREF pin input impedance

A series resistor string of several tens of $k\Omega$ is connected between the AVREF and AVss pins.

Therefore, if the output impedance of the reference voltage source is high, this will result in a series connection to the series resistor string between the AVREF and AVss pins, resulting in a large reference voltage error.

(8) Interrupt request flag (ADIF)

The interrupt request flag (ADIF) is not cleared even if the analog input channel specification register (ADS) is changed.

Therefore, if an analog input pin is changed during A/D conversion, the A/D conversion result and ADIF for the pre-change analog input may be set just before the ADS rewrite. Caution is therefore required since, at this time, when ADIF is read immediately after the ADS rewrite, ADIF is set despite the fact A/D conversion for the post-change analog input has not ended.

When A/D conversion is stopped and then resumed, clear ADIF before the A/D conversion operation is resumed.

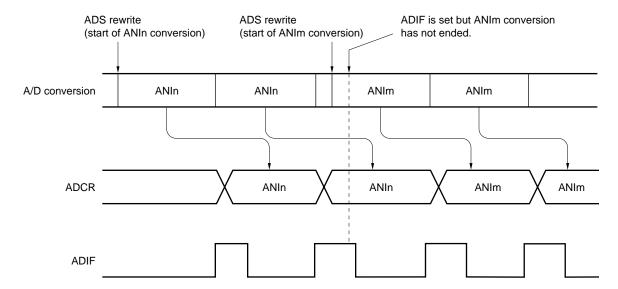


Figure 12-20. Timing of A/D Conversion End Interrupt Request Generation

Remarks 1. n = 0 to 7

2. m = 0 to 7

(9) Conversion results just after A/D conversion start

The first A/D conversion value immediately after A/D conversion starts may not fall within the rating range if the ADCS bit is set to 1 within 14 μ s after the ADCE bit was set to 1, or if the ADCS bit is set to 1 with the ADCE bit = 0. Take measures such as polling the A/D conversion end interrupt request (INTAD) and removing the first conversion result.

(10) A/D conversion result register (ADCR) read operation

When a write operation is performed to the A/D converter mode register (ADM) and analog input channel specification register (ADS), the contents of ADCR may become undefined. Read the conversion result following conversion completion before writing to ADM and ADS. Using a timing other than the above may cause an incorrect conversion result to be read.

(11) A/D converter sampling time and A/D conversion start delay time

The A/D converter sampling time differs depending on the set value of the A/D converter mode register (ADM). The delay time exists until actual sampling is started after A/D converter operation is enabled.

When using a set in which the A/D conversion time must be strictly observed, care is required for the contents shown in Figure 12-21 and Table 12-3.

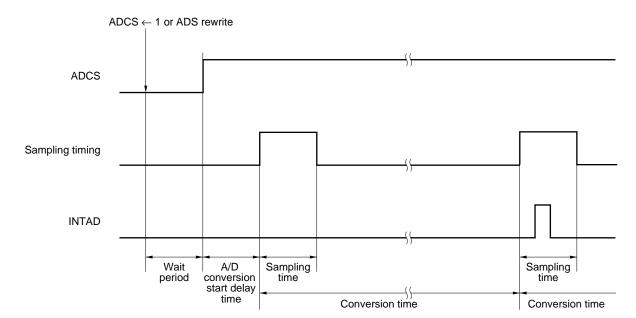


Figure 12-21. Timing of A/D Converter Sampling and A/D Conversion Start Delay

Table 12-3. A/D Converter Sampling Time and A/D Conversion Start Delay Time (ADM Set Value)

FR2	FR1	FR0	Conversion Time	Sampling Time	A/D Conversion S	tart Delay Time ^{Note}
					MIN.	MAX.
0	0	0	288/fx	40/fx	32/fx	36/fx
0	0	1	240/fx	32/fx	28/fx	32/fx
0	1	0	192/fx	24/fx	24/fx	28/fx
1	0	0	144/fx	20/fx	16/fx	18/fx
1	0	1	120/fx	16/fx	14/fx	16/fx
1	1	0	96/fx	12/fx	12/fx	14/fx
Other than above			Setting prohibited	_	_	-

Note The A/D conversion start delay time is the time after wait period. For the wait function, see CHAPTER 33 CAUTIONS FOR WAIT.

Remark fx: High-speed system clock oscillation frequency

(12) Register generating wait cycle

Do not read data from the ADCR register and do not write data to the ADM, ADS, PFM, and PFT registers while the CPU is operating on the subsystem clock and while high-speed system clock oscillation is stopped.

(13) Internal equivalent circuit

The equivalent circuit of the analog input block is shown below.

Figure 12-22. Internal Equivalent Circuit of ANIn Pin

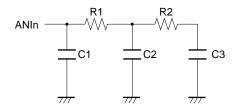


Table 12-4. Resistance and Capacitance Values of Equivalent Circuit (Reference Values)

AVREF	R1	R2	C1	C2	C3
2.7 V	12 kΩ	8 kΩ	8 pF	3 pF	0.6 pF
4.5 V	4 kΩ	2.7 kΩ	8 pF	1.4 pF	0.6 pF

Remarks 1. The resistance and capacitance values shown in Table 12-4 are not guaranteed values.

2. n = 0 to 7

CHAPTER 13 SERIAL INTERFACE UARTO

13.1 Functions of Serial Interface UARTO

Serial interface UART0 has the following two modes.

(1) Operation stop mode

This mode is used when serial communication is not executed and can enable a reduction in the power consumption.

For details, see 13.4.1 Operation stop mode.

(2) Asynchronous serial interface (UART) mode

The functions of this mode are outlined below.

For details, see 13.4.2 Asynchronous serial interface (UART) mode and 13.4.3 Dedicated baud rate generator.

• Two-pin configuration TxD0: Transmit data output pin

RxD0: Receive data input pin

- Length of communication data can be selected from 7 or 8 bits.
- Dedicated on-chip 5-bit baud rate generator allowing any baud rate to be set
- Transmission and reception can be performed independently.
- Four operating clock inputs selectable
- · Fixed to LSB-first communication
- Cautions 1. If clock supply to serial interface UART0 is not stopped (e.g., in the HALT mode), normal operation continues. If clock supply to serial interface UART0 is stopped (e.g., in the STOP mode), each register stops operating, and holds the value immediately before clock supply was stopped. The TxD0 pin also holds the value immediately before clock supply was stopped and outputs it. However, the operation is not guaranteed after clock supply is resumed. Therefore, reset the circuit so that POWER0 = 0, RXE0 = 0, and TXE0 = 0.
 - 2. Set POWER0 = 1 and then set TXE0 = 1 (transmission) or RXE0 = 1 (reception) to start communication.
 - 3. TXE0 and RXE0 are synchronized by the base clock (fxclk0) set by BRGC0. To enable transmission or reception again, set TXE0 or RXE0 to 1 at least two clocks of base clock after TXE0 or RXE0 has been cleared to 0. If TXE0 or RXE0 is set within two clocks of base clock, the transmission circuit or reception circuit may not be initialized.
 - 4. Set transmit data to TXS0 at least two base clocks after setting POWER0 = 1 and one base clock after setting TXE0 = 1.

<R>

13.2 Configuration of Serial Interface UART0

Serial interface UART0 includes the following hardware.

Table 13-1. Configuration of Serial Interface UART0

Item	Configuration
Registers Receive buffer register 0 (RXB0) Receive shift register 0 (RXS0) Transmit shift register 0 (TXS0)	
Control registers	Asynchronous serial interface operation mode register 0 (ASIM0) Asynchronous serial interface reception error status register 0 (ASIS0) Baud rate generator control register 0 (BRGC0) Port mode register 1 (PM1) Port register 1 (P1)

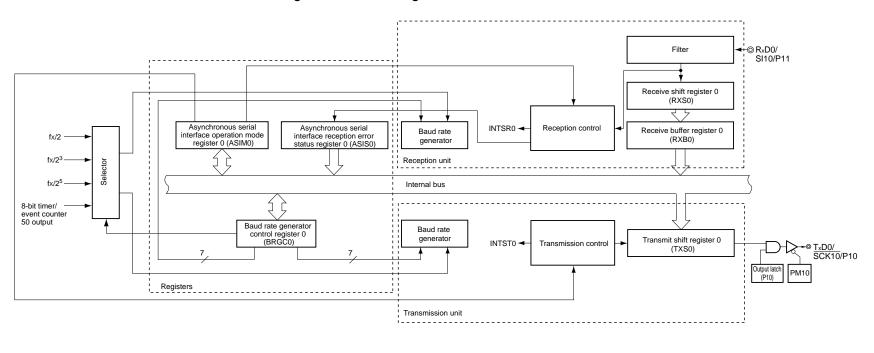


Figure 13-1. Block Diagram of Serial Interface UART0

(1) Receive buffer register 0 (RXB0)

This 8-bit register stores parallel data converted by receive shift register 0 (RXS0).

Each time 1 byte of data has been received, new receive data is transferred to this register from receive shift register 0 (RXS0).

If the data length is set to 7 bits the receive data is transferred to bits 0 to 6 of RXB0 and the MSB of RXB0 is always 0.

If an overrun error (OVE0) occurs, the receive data is not transferred to RXB0.

RXB0 can be read by an 8-bit memory manipulation instruction. No data can be written to this register.

RESET input or POWER0 = 0 sets this register to FFH.

(2) Receive shift register 0 (RXS0)

This register converts the serial data input to the RxD0 pin into parallel data.

RXS0 cannot be directly manipulated by a program.

(3) Transmit shift register 0 (TXS0)

This register is used to set transmit data. Transmission is started when data is written to TXS0, and serial data is transmitted from the TxD0 pins.

TXS0 can be written by an 8-bit memory manipulation instruction. This register cannot be read.

RESET input, POWER0 = 0, or TXE0 = 0 sets this register to FFH.

- Caution1. Do not write the next transmit data to TXS0 before the transmission completion interrupt signal (INTST0) is generated.
 - 2. Set transmit data to TXS0 at least two base clocks after setting POWER0 = 1 and one base clock after setting TXE0 = 1.

<R>

13.3 Registers Controlling Serial Interface UART0

Serial interface UART0 is controlled by the following five registers.

- Asynchronous serial interface operation mode register 0 (ASIM0)
- Asynchronous serial interface reception error status register 0 (ASIS0)
- Baud rate generator control register 0 (BRGC0)
- Port mode register 1 (PM1)
- Port register 1 (P1)

(1) Asynchronous serial interface operation mode register 0 (ASIM0)

This 8-bit register controls the serial communication operations of serial interface UART0.

This register can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 01H.

Figure 13-2. Format of Asynchronous Serial Interface Operation Mode Register 0 (ASIM0) (1/2)

Address: FF70H After reset: 01H R/W

Symbol	<7>	<6>	<5>	4	3	2	1	0
ASIM0	POWER0	TXE0	RXE0	PS01	PS00	CL0	SL0	1

POWER0	Enables/disables operation of internal operation clock
O ^{Note 1}	Disables operation of the internal operation clock (fixes the clock to low level) and asynchronously resets the internal circuit ^{Note 2} .
1	Enables operation of the internal operation clock.

TXE0	Enables/disables transmission
0	Disables transmission (synchronously resets the transmission circuit).
1	Enables transmission.

RXE0	Enables/disables reception
0	Disables reception (synchronously resets the reception circuit).
1	Enables reception.

- **Notes 1.** The input from the RxD0 pin is fixed to high level when POWER0 = 0.
 - 2. Asynchronous serial interface reception error status register 0 (ASIS0), transmit shift register 0 (TXS0), and receive buffer register 0 (RXB0) are reset.

Figure 13-2. Format of Asynchronous Serial Interface Operation Mode Register 0 (ASIM0) (2/2)

PS01	PS00	Transmission operation	Reception operation
0	0	Does not output parity bit.	Reception without parity
0	1	Outputs 0 parity.	Reception as 0 parity ^{Note}
1	0	Outputs odd parity.	Judges as odd parity.
1	1	Outputs even parity.	Judges as even parity.

CL0	CL0 Specifies character length of transmit/receive data	
0	Character length of data = 7 bits	
1	Character length of data = 8 bits	

SL0	Specifies number of stop bits of transmit data
0	Number of stop bits = 1
1	Number of stop bits = 2

Note If "reception as 0 parity" is selected, the parity is not judged. Therefore, bit 2 (PE0) of asynchronous serial interface reception error status register 0 (ASIS0) is not set and the error interrupt does not occur.

- Cautions 1. At startup, set POWER0 to 1 and then set TXE0 to 1. To stop the operation, clear TXE0 to 0, and then clear POWER0 to 0.
 - 2. At startup, set POWER0 to 1 and then set RXE0 to 1. To stop the operation, clear RXE0 to 0, and then clear POWER0 to 0.
 - 3. Set POWER0 to 1 and then set RXE0 to 1 while a high level is input to the RxD0 pin. If POWER0 is set to 1 and RXE0 is set to 1 while a low level is input, reception is started.
 - 4. TXE0 and RXE0 are synchronized by the base clock (fxclko) set by BRGC0. To enable transmission or reception again, set TXE0 or RXE0 to 1 at least two clocks of base clock after TXE0 or RXE0 has been cleared to 0. If TXE0 or RXE0 is set within two clocks of base clock, the transmission circuit or reception circuit may not be initialized.
 - 5. Set transmit data to TXS0 at least two base clocks after setting POWER0 = 1 and one base clock after setting TXE0 = 1.
 - 6. Clear the TXE0 and RXE0 bits to 0 before rewriting the PS01, PS00, and CL0 bits.
 - 7. Make sure that TXE0 = 0 when rewriting the SL0 bit. Reception is always performed with "number of stop bits = 1", and therefore, is not affected by the set value of the SL0 bit.
 - 8. Be sure to set bit 0 to 1.

<R>

(2) Asynchronous serial interface reception error status register 0 (ASIS0)

This register indicates an error status on completion of reception by serial interface UART0. It includes three error flag bits (PE0, FE0, OVE0).

This register is read-only by an 8-bit memory manipulation instruction.

RESET input or clearing bit 7 (POWER0) or bit 5 (RXE0) of ASIM0 to 0 clears this register to 00H. 00H is read when this register is read.

Figure 13-3. Format of Asynchronous Serial Interface Reception Error Status Register 0 (ASIS0)

Address: FF73H After reset: 00H R

Symbol	7	6	5	4	3	2	1	0
ASIS0	0	0	0	0	0	PE0	FE0	OVE0

PE0	Status flag indicating parity error
0	If POWER0 = 0 and RXE0 = 0, or if ASIS0 register is read.
1	If the parity of transmit data does not match the parity bit on completion of reception.

FE0	Status flag indicating framing error
0	If POWER0 = 0 and RXE0 = 0, or if ASIS0 register is read.
1	If the stop bit is not detected on completion of reception.

OVE0	Status flag indicating overrun error
0	If POWER0 = 0 and RXE0 = 0, or if ASIS0 register is read.
1	If receive data is set to the RXB0 register and the next reception operation is completed before the data is read.

Cautions 1. The operation of the PE0 bit differs depending on the set values of the PS01 and PS00 bits of asynchronous serial interface operation mode register 0 (ASIM0).

- 2. Only the first bit of the receive data is checked as the stop bit, regardless of the number of stop bits.
- 3. If an overrun error occurs, the next receive data is not written to receive buffer register 0 (RXB0) but discarded.
- 4. If data is read from ASIS0, a wait cycle is generated. Do not read data from ASIS0 when the CPU is operating on the subsystem clock and the high-speed system clock is stopped. For details, see CHAPTER 33 CAUTIONS FOR WAIT.

(3) Baud rate generator control register 0 (BRGC0)

This register selects the base clock of serial interface UART0 and the division value of the 5-bit counter.

BRGC0 can be set by an 8-bit memory manipulation instruction.

RESET input sets this register to 1FH.

Figure 13-4. Format of Baud Rate Generator Control Register 0 (BRGC0)

Address: FF71H After reset: 1FH R/W

Symbol	7	6	5	4	3	2	1	0
BRGC0	TPS01	TPS00	0	MDL04	MDL03	MDL02	MDL01	MDL00

TPS01	TPS00	Base clock (fxclk0) selection ^{Note 1}
0	0	TM50 output ^{Note 2}
0	1	fx/2 (5 MHz)
1	0	fx/2 ³ (1.25 MHz)
1	1	fx/2 ⁵ (312.5 kHz)

MDL04	MDL03	MDL02	MDL01	MDL00	k	Selection of 5-bit counter output clock
0	0	×	×	×	×	Setting prohibited
0	1	0	0	0	8	fхсько/8
0	1	0	0	1	9	fхсько/9
0	1	0	1	0	10	fхсько/10
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
1	1	0	1	0	26	fxclko/26
1	1	0	1	1	27	fxclко/27
1	1	1	0	0	28	fxclко/28
1	1	1	0	1	29	fхсько/29
1	1	1	1	0	30	fхсько/30
1	1	1	1	1	31	fхсько/31

Notes 1. Be sure to set the base clock so that the following condition is satisfied.

- V_{DD} = 4.0 to 5.5 V: Base clock \leq 10 MHz
- V_{DD} = 3.3 to 4.0 V: Base clock \leq 8.38 MHz
- V_{DD} = 2.7 to 3.3 V: Base clock \leq 5 MHz
- V_{DD} = 2.5 to 2.7 V: Base clock ≤ 2.5 MHz (standard products, (A) grade products only)
- 2. Note the following points when selecting the TM50 output as the base clock.
 - PWM mode (TMC506 = 1)

Start the operation of 8-bit timer/event counter 50 first and then set the count clock to make the duty = 50%.

• Mode in which the count clock is cleared and started upon a match of TM50 and CR50 (TMC506 = 0) Start the operation of 8-bit timer/event counter 50 first and then enable the timer F/F inversion operation (TMC501 = 1).

It is not necessary to enable the TO50 pin as a timer output pin in any mode.

<R>

- Cautions 1. When the internal oscillation clock is selected as the clock to be supplied to the CPU, the clock of the internal oscillator is divided and supplied as the count clock. If the base clock is the internal oscillation clock, the operation of serial interface UART0 is not guaranteed.
 - 2. Make sure that bit 6 (TXE0) and bit 5 (RXE0) of the ASIM0 register = 0 when rewriting the MDL04 to MDL00 bits.
 - 3. The baud rate value is the output clock of the 5-bit counter divided by 2.

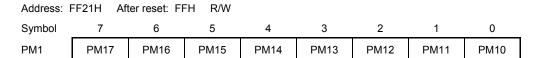
Remarks 1. fxclko: Frequency of base clock selected by the TPS01 and TPS00 bits

- 2. fx: High-speed system clock oscillation frequency
- **3.** k: Value set by the MDL04 to MDL00 bits (k = 8, 9, 10, ..., 31)
- 4. ×: Don't care
- **5.** Figures in parentheses apply to operation at fx = 10 MHz
- **6.** TMC506: Bit 6 of 8-bit timer mode control register 50 (TMC50)

TMC501: Bit 1 of TMC50

(4) Port mode register 1 (PM1)

This register sets port 1 input/output in 1-bit units.


When using the P10/TxD0/SCK10 pin for serial interface data output, clear PM10 to 0 and set the output latch of P10 to 1.

When using the P11/RxD0/SI10 pin for serial interface data input, set PM11 to 1. The output latch of P11 at this time may be 0 or 1.

PM1 can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to FFH.

Figure 13-5. Format of Port Mode Register 1 (PM1)

PM1n	P1n pin I/O mode selection (n = 0 to 7)						
0	Output mode (output buffer on)						
1	Input mode (output buffer off)						

13.4 Operation of Serial Interface UART0

Serial interface UART0 has the following two modes.

- · Operation stop mode
- Asynchronous serial interface (UART) mode

13.4.1 Operation stop mode

In this mode, serial communication cannot be executed, thus reducing the power consumption. In addition, the pins can be used as ordinary port pins in this mode. To set the operation stop mode, clear bits 7, 6, and 5 (POWER0, TXE0, and RXE0) of ASIM0 to 0.

(1) Register used

The operation stop mode is set by asynchronous serial interface operation mode register 0 (ASIM0).

ASIMO can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 01H.

Address: FF70H After reset: 01H R/W

Symbol	<7>	<6>	<5>	4	3	2	1	0
ASIM0	POWER0	TXE0	RXE0	PS01	PS00	CL0	SL0	1

POWER0	Enables/disables operation of internal operation clock
O ^{Note 1}	Disables operation of the internal operation clock (fixes the clock to low level) and asynchronously resets the internal circuit ^{Note 2} .

TXE0	Enables/disables transmission
0	Disables transmission (synchronously resets the transmission circuit).

RXE0	Enables/disables reception
0	Disables reception (synchronously resets the reception circuit).

- **Notes 1.** The input from the $R \times D0$ pin is fixed to high level when POWER0 = 0.
 - 2. Asynchronous serial interface reception error status register 0 (ASIS0), transmit shift register 0 (TXS0), and receive buffer register 0 (RXB0) are reset.

Caution Clear POWER0 to 0 after clearing TXE0 and RXE0 to 0 to set the operation stop mode.

To start the operation, set POWER0 to 1, and then set TXE0 and RXE0 to 1.

Remark To use the RxD0/SI10/P11 and TxD0/SCK10/P10 pins as general-purpose port pins, see CHAPTER 4 PORT FUNCTIONS.

13.4.2 Asynchronous serial interface (UART) mode

In this mode, 1-byte data is transmitted/received following a start bit, and a full-duplex operation can be performed. A dedicated UART baud rate generator is incorporated, so that communication can be executed at a wide range of baud rates.

(1) Registers used

- Asynchronous serial interface operation mode register 0 (ASIM0)
- Asynchronous serial interface reception error status register 0 (ASIS0)
- Baud rate generator control register 0 (BRGC0)
- Port mode register 1 (PM1)
- Port register 1 (P1)

The basic procedure of setting an operation in the UART mode is as follows.

- <1> Set the BRGC0 register (see Figure 13-4).
- <2> Set bits 1 to 4 (SL0, CL0, PS00, and PS01) of the ASIM0 register (see Figure 13-2).
- <3> Set bit 7 (POWER0) of the ASIM0 register to 1.
- <4> Set bit 6 (TXE0) of the ASIM0 register to 1. → Transmission is enabled.
 Set bit 5 (RXE0) of the ASIM0 register to 1. → Reception is enabled.
- <5> Write data to the TXS0 register. → Data transmission is started.

Caution Take relationship with the other party of communication when setting the port mode register and port register.

The relationship between the register settings and pins is shown below.

Table 13-2. Relationship Between Register Settings and Pins

POWER0	TXE0	RXE0	PM10	P10	PM11	P11	UART0	Pin Function	
							Operation	TxD0/SCK10/P10	RxD0/SI10/P11
0	0	0	× ^{Note}	× ^{Note}	× ^{Note}	× ^{Note}	Stop	SCK10/P10	SI10/P11
1	0	1	× ^{Note}	× ^{Note}	1	×	Reception	SCK10/P10	RxD0
	1	0	0	1	× ^{Note}	× ^{Note}	Transmission	TxD0	SI10/P11
	1	1	0	1	1	×	Transmission/ reception	TxD0	RxD0

Note Can be set as port function.

Remark ×: don't care

POWER0: Bit 7 of asynchronous serial interface operation mode register 0 (ASIM0)

TXE0: Bit 6 of ASIM0

RXE0: Bit 5 of ASIM0

PM1×: Port mode register

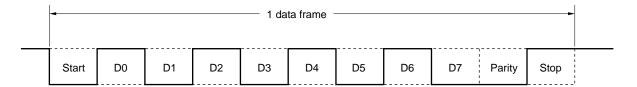
P1×: Port output latch

(2) Communication operation

(a) Format and waveform example of normal transmit/receive data

Figures 13-6 and 13-7 show the format and waveform example of the normal transmit/receive data.

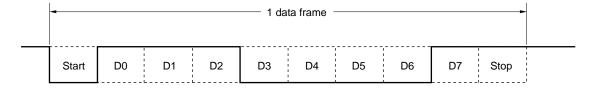
Figure 13-6. Format of Normal UART Transmit/Receive Data


One data frame consists of the following bits.

- Start bit ... 1 bit
- Character bits ... 7 or 8 bits (LSB first)
- Parity bit ... Even parity, odd parity, 0 parity, or no parity
- Stop bit ... 1 or 2 bits

The character bit length, parity, and stop bit length in one data frame are specified by asynchronous serial interface operation mode register 0 (ASIM0).

Figure 13-7. Example of Normal UART Transmit/Receive Data Waveform


1. Data length: 8 bits, Parity: Even parity, Stop bit: 1 bit, Communication data: 55H

2. Data length: 7 bits, Parity: Odd parity, Stop bit: 2 bits, Communication data: 36H

3. Data length: 8 bits, Parity: None, Stop bit: 1 bit, Communication data: 87H

(b) Parity types and operation

The parity bit is used to detect a bit error in communication data. Usually, the same type of parity bit is used on both the transmission and reception sides. With even parity and odd parity, a 1-bit (odd number) error can be detected. With zero parity and no parity, an error cannot be detected.

(i) Even parity

Transmission

Transmit data, including the parity bit, is controlled so that the number of bits that are "1" is even. The value of the parity bit is as follows.

If transmit data has an odd number of bits that are "1": 1
If transmit data has an even number of bits that are "1": 0

Reception

The number of bits that are "1" in the receive data, including the parity bit, is counted. If it is odd, a parity error occurs.

(ii) Odd parity

Transmission

Unlike even parity, transmit data, including the parity bit, is controlled so that the number of bits that are "1" is odd.

If transmit data has an odd number of bits that are "1": 0
If transmit data has an even number of bits that are "1": 1

Reception

The number of bits that are "1" in the receive data, including the parity bit, is counted. If it is even, a parity error occurs.

(iii) 0 parity

The parity bit is cleared to 0 when data is transmitted, regardless of the transmit data.

The parity bit is not detected when the data is received. Therefore, a parity error does not occur regardless of whether the parity bit is "0" or "1".

(iv) No parity

No parity bit is appended to the transmit data.

Reception is performed assuming that there is no parity bit when data is received. Because there is no parity bit, a parity error does not occur.

(c) Transmission

The TxD0 pin outputs a high level when bit 7 (POWER0) of asynchronous serial interface operation mode register 0 (ASIM0) is set to 1. If bit 6 (TXE0) of ASIM0 is then set to 1, transmission is enabled. Transmission can be started by writing transmit data to transmit shift register 0 (TXS0). The start bit, parity bit, and stop bit are automatically appended to the data.

When transmission is started, the start bit is output from the TxD0 pin, followed by the rest of the data in order starting from the LSB. When transmission is completed, the parity and stop bits set by ASIM0 are appended and a transmission completion interrupt request (INTST0) is generated.

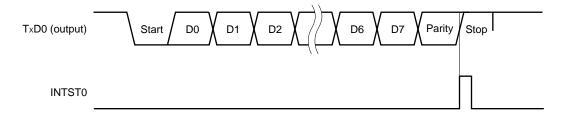

Transmission is stopped until the data to be transmitted next is written to TXS0.

Figure 13-8 shows the timing of the transmission completion interrupt request (INTST0). This interrupt occurs as soon as the last stop bit has been output.

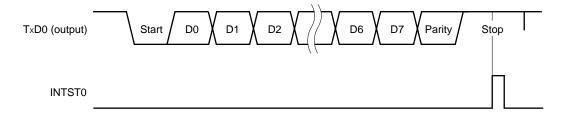

Caution After transmit data is written to TXS0, do not write the next transmit data before the transmission completion interrupt signal (INTST0) is generated.

Figure 13-8. Transmission Completion Interrupt Request Timing

1. Stop bit length: 1

2. Stop bit length: 2

(d) Reception

RXB0

Reception is enabled and the RxD0 pin input is sampled when bit 7 (POWER0) of asynchronous serial interface operation mode register 0 (ASIM0) is set to 1 and then bit 5 (RXE0) of ASIM0 is set to 1.

The 5-bit counter of the baud rate generator starts counting when the falling edge of the RxD0 pin input is detected. When the set value of baud rate generator control register 0 (BRGC0) has been counted, the RxD0 pin input is sampled again (∇ in Figure 13-9). If the RxD0 pin is low level at this time, it is recognized as a start bit.

When the start bit is detected, reception is started, and serial data is sequentially stored in receive shift register 0 (RXS0) at the set baud rate. When the stop bit has been received, the reception completion interrupt (INTSR0) is generated and the data of RXS0 is written to receive buffer register 0 (RXB0). If an overrun error (OVE0) occurs, however, the receive data is not written to RXB0.

Even if a parity error (PE0) occurs while reception is in progress, reception continues to the reception position of the stop bit, and an error interrupt (INTSR0) is generated after completion of reception.

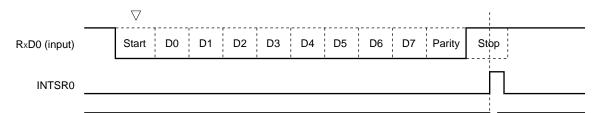


Figure 13-9. Reception Completion Interrupt Request Timing

- Cautions 1. Be sure to read receive buffer register 0 (RXB0) even if a reception error occurs.

 Otherwise, an overrun error will occur when the next data is received, and the reception error status will persist.
 - Reception is always performed with the "number of stop bits = 1". The second stop bit is ignored.
 - 3. Be sure to read asynchronous serial interface reception error status register 0 (ASIS0) before reading RXB0.

(e) Reception error

Three types of errors may occur during reception: a parity error, framing error, or overrun error. If the error flag of asynchronous serial interface reception error status register 0 (ASIS0) is set as a result of data reception, a reception error interrupt request (INTSR0) is generated.

Which error has occurred during reception can be identified by reading the contents of ASIS0 in the reception error interrupt servicing (INTSR0) (see **Figure 13-3**).

The contents of ASIS0 are reset to 0 when ASIS0 is read.

Table 13-3. Cause of Reception Error

Reception Error	Cause
Parity error	The parity specified for transmission does not match the parity of the receive data.
Framing error	Stop bit is not detected.
Overrun error	Reception of the next data is completed before data is read from receive buffer register 0 (RXB0).

(f) Noise filter of receive data

The RxD0 signal is sampled using the base clock output by the prescaler block.

If two sampled values are the same, the output of the match detector changes, and the data is sampled as input data.

Because the circuit is configured as shown in Figure 13-10, the internal processing of the reception operation is delayed by two clocks from the external signal status.

RxD0/SI10/P11

In Q Internal signal A In Q Internal signal B Match detector

Figure 13-10. Noise Filter Circuit

13.4.3 Dedicated baud rate generator

The dedicated baud rate generator consists of a source clock selector and a 5-bit programmable counter, and generates a serial clock for transmission/reception of UART0.

Separate 5-bit counters are provided for transmission and reception.

(1) Configuration of baud rate generator

· Base clock

The clock selected by bits 7 and 6 (TPS01 and TPS00) of baud rate generator control register 0 (BRGC0) is supplied to each module when bit 7 (POWER0) of asynchronous serial interface operation mode register 0 (ASIM0) is 1. This clock is called the base clock and its frequency is called fxclk0. The base clock is fixed to low level when POWER0 = 0.

· Transmission counter

This counter stops operation, cleared to 0, when bit 7 (POWER0) or bit 6 (TXE0) of asynchronous serial interface operation mode register 0 (ASIM0) is 0.

It starts counting when POWER0 = 1 and TXE0 = 1.

The counter is cleared to 0 when the first data transmitted is written to transmit shift register 0 (TXS0).

· Reception counter

This counter stops operation, cleared to 0, when bit 7 (POWER0) or bit 5 (RXE0) of asynchronous serial interface operation mode register 0 (ASIM0) is 0.

It starts counting when the start bit has been detected.

The counter stops operation after one frame has been received, until the next start bit is detected.

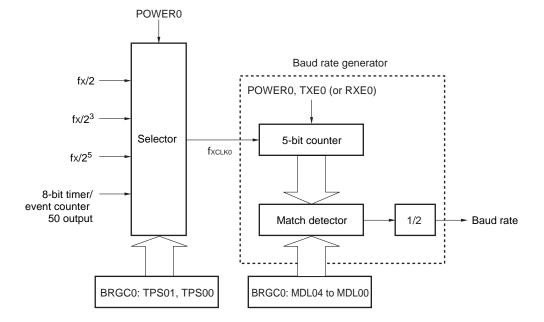


Figure 13-11. Configuration of Baud Rate Generator

Remark POWER0: Bit 7 of asynchronous serial interface operation mode register 0 (ASIM0)

TXE0: Bit 6 of ASIM0 RXE0: Bit 5 of ASIM0

BRGC0: Baud rate generator control register 0

(2) Generation of serial clock

A serial clock can be generated by using baud rate generator control register 0 (BRGC0). Select the clock to be input to the 5-bit counter by using bits 7 and 6 (TPS01 and TPS00) of BRGC0. Bits 4 to 0 (MDL04 to MDL00) of BRGC0 can be used to select the division value of the 5-bit counter.

(a) Baud rate

The baud rate can be calculated by the following expression.

• Baud rate =
$$\frac{f_{XCLK0}}{2 \times k}$$
 [bps]

fxclko: Frequency of base clock selected by the TPS01 and TPS00 bits of the BRGC0 register k: Value set by the MDL04 to MDL00 bits of the BRGC0 register (k = 8, 9, 10, ..., 31)

(b) Error of baud rate

The baud rate error can be calculated by the following expression.

• Error (%) =
$$\left(\frac{\text{Actual baud rate (baud rate with error)}}{\text{Desired baud rate (correct baud rate)}} - 1\right) \times 100 \, [\%]$$

- Cautions 1. Keep the baud rate error during transmission to within the permissible error range at the reception destination.
 - 2. Make sure that the baud rate error during reception satisfies the range shown in (4) Permissible baud rate range during reception.

Example: Frequency of base clock =
$$2.5 \text{ MHz} = 2,500,000 \text{ Hz}$$

Set value of MDL04 to MDL00 bits of BRGC0 register = $10000B \text{ (k} = 16)$
Target baud rate = $76,800 \text{ bps}$
Baud rate = $2.5 \text{ M/(2} \times 16)$
= $2,500,000/(2 \times 16) = 78,125 \text{ [bps]}$
Error = $(78,125/76,800 - 1) \times 100$
= 1.725 [\%]

(3) Example of setting baud rate

Table 13-4. Set Data of Baud Rate Generator

Baud Rate		fx =	10.0 MHz		fx = 8.38 MHz				fx = 4.19 MHz			
[bps]	TPS01, TPS00	k	Calculated Value	ERR[%]	TPS01, TPS00	k	Calculated Value	ERR[%]	TPS01, TPS00	k	Calculated Value	ERR[%]
2400	1	ı	_	ı	1	ı	_	1	3	27	2425	1.03
4800	ĺ	ı	-	ı	3	27	4850	1.03	3	14	4676	-2.58
9600	3	16	9766	1.73	3	14	9353	-2.58	2	27	9699	1.03
10400	3	15	10417	0.16	3	13	10072	-3.15	2	25	10475	0.72
19200	3	8	19531	1.73	2	27	19398	1.03	2	14	18705	-2.58
31250	2	20	31250	0	2	17	30809	-1.41	-	1	_	_
38400	2	16	39063	1.73	2	14	38796	-2.58	2	27	38796	1.03
76800	2	8	78125	1.73	1	27	77593	1.03	1	14	74821	-2.58
115200	1	22	113636	-1.36	1	18	116389	1.03	1	9	116389	1.03
153600	1	16	156250	1.73	1	14	149643	-2.58	_	ı	_	_
230400	1	11	227273	-1.36	1	9	232778	1.03	_	-	_	_

Remark TPS01, TPS00: Bits 7 and 6 of baud rate generator control register 0 (BRGC0) (setting of base clock (fxclk0))

k: Value set by the MDL04 to MDL00 bits of BRGC0 (k = 8, 9, 10, ..., 31)

fx: High-speed system clock oscillation frequency

ERR: Baud rate error

(4) Permissible baud rate range during reception

The permissible error from the baud rate at the transmission destination during reception is shown below.

Caution Make sure that the baud rate error during reception is within the permissible error range, by using the calculation expression shown below.

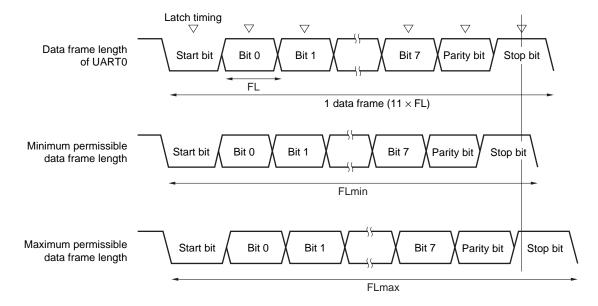


Figure 13-12. Permissible Baud Rate Range During Reception

As shown in Figure 13-12, the latch timing of the receive data is determined by the counter set by baud rate generator control register 0 (BRGC0) after the start bit has been detected. If the last data (stop bit) meets this latch timing, the data can be correctly received.

Assuming that 11-bit data is received, the theoretical values can be calculated as follows.

 $FL = (Brate)^{-1}$

Brate: Baud rate of UART0 k: Set value of BRGC0 FL: 1-bit data length

Margin of latch timing: 2 clocks

Minimum permissible data frame length: FLmin =
$$11 \times FL - \frac{k-2}{2k} \times FL = \frac{21k+2}{2k}$$
 FL

Therefore, the maximum receivable baud rate at the transmission destination is as follows.

BRmax =
$$(FLmin/11)^{-1} = \frac{22k}{21k + 2}$$
 Brate

Similarly, the maximum permissible data frame length can be calculated as follows.

$$\frac{10}{11} \times FLmax = 11 \times FL - \frac{k+2}{2 \times k} \times FL = \frac{21k-2}{2 \times k} FL$$

$$FLmax = \frac{21k - 2}{20k} FL \times 11$$

Therefore, the minimum receivable baud rate at the transmission destination is as follows.

BRmin =
$$(FLmax/11)^{-1} = \frac{20k}{21k - 2}$$
 Brate

The permissible baud rate error between UART0 and the transmission destination can be calculated from the above minimum and maximum baud rate expressions, as follows.

Table 13-5. Maximum/Minimum Permissible Baud Rate Error

Division Ratio (k)	Maximum Permissible Baud Rate Error	Minimum Permissible Baud Rate Error		
8	+3.53%	-3.61%		
16	+4.14%	-4.19%		
24	+4.34%	-4.38%		
31	+4.44%	-4.47%		

- **Remarks 1.** The permissible error of reception depends on the number of bits in one frame, input clock frequency, and division ratio (k). The higher the input clock frequency and the higher the division ratio (k), the higher the permissible error.
 - 2. k: Set value of BRGC0

CHAPTER 14 SERIAL INTERFACE UART6

14.1 Functions of Serial Interface UART6

Serial interface UART6 has the following two modes.

(1) Operation stop mode

This mode is used when serial communication is not executed and can enable a reduction in the power consumption.

For details, see 14.4.1 Operation stop mode.

(2) Asynchronous serial interface (UART) mode

This mode supports the LIN (Local Interconnect Network)-bus. The functions of this mode are outlined below. For details, see 14.4.2 Asynchronous serial interface (UART) mode and 14.4.3 Dedicated baud rate generator.

- Two-pin configuration TxD6: Transmit data output pin
 - RxD6: Receive data input pin
- Data length of communication data can be selected from 7 or 8 bits.
- Dedicated internal 8-bit baud rate generator allowing any baud rate to be set
- Transmission and reception can be performed independently.
- Twelve operating clock inputs selectable
- MSB- or LSB-first communication selectable
- · Inverted transmission operation
- Synchronous break field transmission from 13 to 20 bits
- More than 11 bits can be identified for synchronous break field reception (SBF reception flag provided).
- Cautions 1. The TxD6 output inversion function inverts only the transmission side and not the reception side. To use this function, the reception side must be ready for reception of inverted data.
 - 2. If clock supply to serial interface UART6 is not stopped (e.g., in the HALT mode), normal operation continues. If clock supply to serial interface UART6 is stopped (e.g., in the STOP mode), each register stops operating, and holds the value immediately before clock supply was stopped. The TxD6 pin also holds the value immediately before clock supply was stopped and outputs it. However, the operation is not guaranteed after clock supply is resumed. Therefore, reset the circuit so that POWER6 = 0, RXE6 = 0, and TXE6 = 0.
 - 3. If data is continuously transmitted, the communication timing from the stop bit to the next start bit is extended two operating clocks of the macro. However, this does not affect the result of communication because the reception side initializes the timing when it has detected a start bit. Do not use the continuous transmission function if UART6 is used in the LIN communication operation.

Remark LIN stands for Local Interconnect Network and is a low-speed (1 to 20 kbps) serial communication protocol intended to aid the cost reduction of an automotive network.

LIN communication is single-master communication, and up to 15 slaves can be connected to one master.

The LIN slaves are used to control the switches, actuators, and sensors, and these are connected to the LIN master via the LIN network.

Normally, the LIN master is connected to a network such as CAN (Controller Area Network).

In addition, the LIN bus uses a single-wire method and is connected to the nodes via a transceiver that complies with ISO9141.

In the LIN protocol, the master transmits a frame with baud rate information and the slave receives it and corrects the baud rate error. Therefore, communication is possible when the baud rate error in the slave is $\pm 15\%$ or less.

Figures 14-1 and 14-2 outline the transmission and reception operations of LIN.

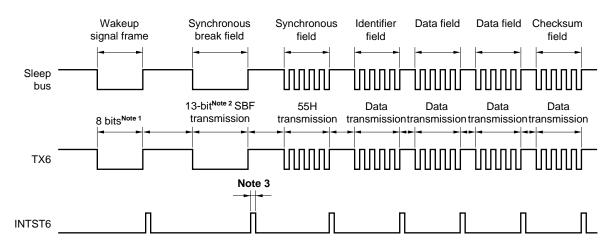


Figure 14-1. LIN Transmission Operation

- **Notes 1.** The wakeup signal frame is substituted by 80H transmission in the 8-bit mode.
 - The synchronous break field is output by hardware. The output width is the bit length set by bits 4 to 2
 (SBL62 to SBL60) of asynchronous serial interface control register 6 (ASICL6) (see 14.4.2 (2) (h) SBF
 transmission).
 - 3. INTST6 is output on completion of each transmission. It is also output when SBF is transmitted.

Remark The interval between each field is controlled by software.

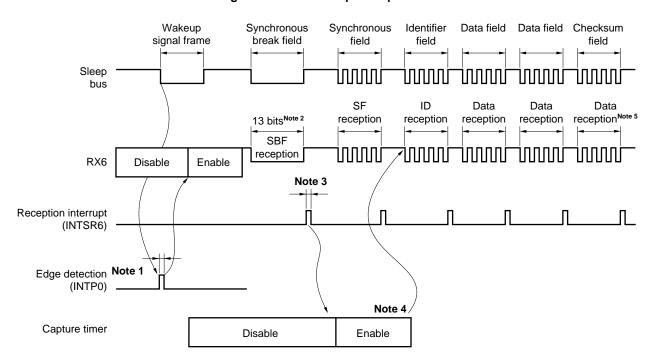


Figure 14-2. LIN Reception Operation

- **Notes 1.** The wakeup signal is detected at the edge of the pin, and enables UART6 and sets the SBF reception mode.
 - 2. Reception continues until the STOP bit is detected. When an SBF with low-level data of 11 bits or more has been detected, it is assumed that SBF reception has been completed correctly, and an interrupt signal is output. If an SBF with low-level data of less than 11 bits has been detected, it is assumed that an SBF reception error has occurred. The interrupt signal is not output and the SBF reception mode is restored.
 - 3. If SBF reception has been completed correctly, an interrupt signal is output. This SBF reception completion interrupt enables the capture timer. Detection of errors OVE6, PE6, and FE6 is suppressed, and error detection processing of UART communication and data transfer of the shift register and RXB6 is not performed. The shift register holds the reset value FFH.
 - **4.** Calculate the baud rate error from the bit length of the synchronous field, disable UART6 after SF reception, and then re-set baud rate generator control register 6 (BRGC6).
 - **5.** Distinguish the checksum field by software. Also perform processing by software to initialize UART6 after reception of the checksum field and to set the SBF reception mode again.

To perform a LIN receive operation, use a configuration like the one shown in Figure 14-3.

The wakeup signal transmitted from the LIN master is received by detecting the edge of the external interrupt (INTP0). The length of the synchronous field transmitted from the LIN master can be measured using the external event capture operation of 16-bit timer/event counter 00, and the baud rate error can be calculated.

The input source of the reception port input (RxD6) can be input to the external interrupt (INTP0) and 16-bit timer/event counter 00 by port input switch control (ISC0/ISC1), without connecting RxD6 and INTP0/TI000 externally.

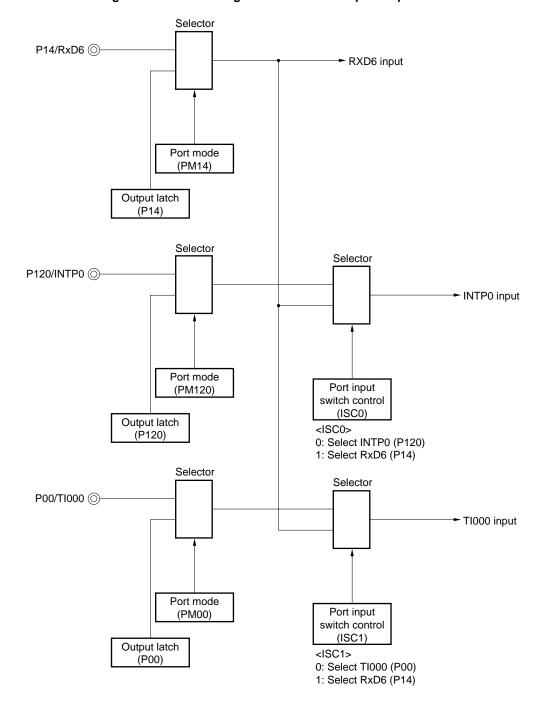


Figure 14-3. Port Configuration for LIN Reception Operation

Remark ISC0, ISC1: Bits 0 and 1 of the input switch control register (ISC) (see Figure 14-11)

The peripheral functions used in the LIN communication operation are shown below.

- <Peripheral functions used>
- External interrupt (INTP0); wakeup signal detection
 - Use: Detects the wakeup signal edges and detects start of communication.
- 16-bit timer/event counter 00 (TI000); baud rate error detection
 - Use: Detects the baud rate error (measures the TI000 input edge interval in the capture mode) by detecting the sync field (SF) length and divides it by the number of bits.
- Serial interface UART6

14.2 Configuration of Serial Interface UART6

Serial interface UART6 includes the following hardware.

Table 14-1. Configuration of Serial Interface UART6

Item	Configuration
Registers	Receive buffer register 6 (RXB6) Receive shift register 6 (RXS6) Transmit buffer register 6 (TXB6) Transmit shift register 6 (TXS6)
Control registers	Asynchronous serial interface operation mode register 6 (ASIM6) Asynchronous serial interface reception error status register 6 (ASIS6) Asynchronous serial interface transmission status register 6 (ASIF6) Clock selection register 6 (CKSR6) Baud rate generator control register 6 (BRGC6) Asynchronous serial interface control register 6 (ASICL6) Input switch control register (ISC) Port mode register 1 (PM1) Port register 1 (P1)

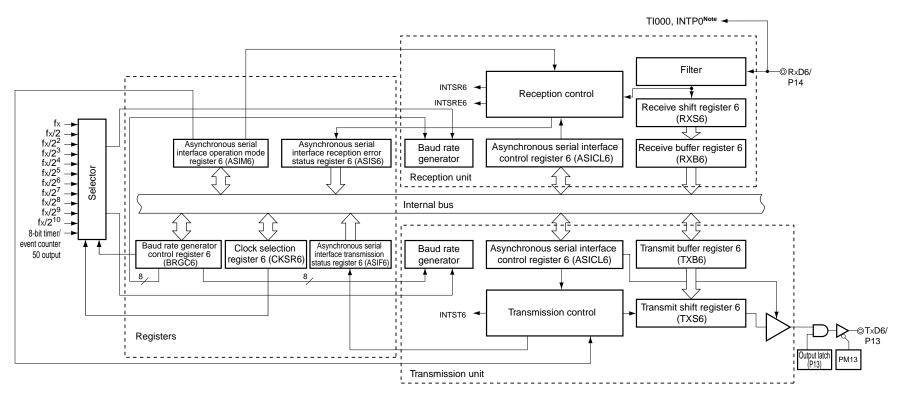


Figure 14-4. Block Diagram of Serial Interface UART6

Note Selectable with input switch control register (ISC).

User's Manual U16899EJ3V0UD

(1) Receive buffer register 6 (RXB6)

This 8-bit register stores parallel data converted by receive shift register 6 (RXS6).

Each time 1 byte of data has been received, new receive data is transferred to this register from RXS6. If the data length is set to 7 bits, data is transferred as follows.

- In LSB-first reception, the receive data is transferred to bits 0 to 6 of RXB6 and the MSB of RXB6 is always 0.
- In MSB-first reception, the receive data is transferred to bits 1 to 7 of RXB6 and the LSB of RXB6 is always 0. If an overrun error (OVE6) occurs, the receive data is not transferred to RXB6.

RXB6 can be read by an 8-bit memory manipulation instruction. No data can be written to this register.

RESET input sets this register to FFH.

(2) Receive shift register 6 (RXS6)

This register converts the serial data input to the RxD6 pin into parallel data.

RXS6 cannot be directly manipulated by a program.

(3) Transmit buffer register 6 (TXB6)

This buffer register is used to set transmit data. Transmission is started when data is written to TXB6.

This register can be read or written by an 8-bit memory manipulation instruction.

RESET input sets this register to FFH.

- Cautions 1. Do not write data to TXB6 when bit 1 (TXBF6) of asynchronous serial interface transmission status register 6 (ASIF6) is 1.
 - 2. Do not refresh (write the same value to) TXB6 by software during a communication operation (when bit 7 (POWER6) and bit 6 (TXE6) of asynchronous serial interface operation mode register 6 (ASIM6) are 1 or when bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 are 1).

(4) Transmit shift register 6 (TXS6)

This register transmits the data transferred from TXB6 from the TxD6 pin as serial data. Data is transferred from TXB6 immediately after TXB6 is written for the first transmission, or immediately before INTST6 occurs after one frame was transmitted for continuous transmission. Data is transferred from TXB6 and transmitted from the TxD6 pin at the falling edge of the base clock.

TXS6 cannot be directly manipulated by a program.

14.3 Registers Controlling Serial Interface UART6

Serial interface UART6 is controlled by the following nine registers.

- Asynchronous serial interface operation mode register 6 (ASIM6)
- Asynchronous serial interface reception error status register 6 (ASIS6)
- Asynchronous serial interface transmission status register 6 (ASIF6)
- Clock selection register 6 (CKSR6)
- Baud rate generator control register 6 (BRGC6)
- Asynchronous serial interface control register 6 (ASICL6)
- Input switch control register (ISC)
- Port mode register 1 (PM1)
- Port register 1 (P1)

(1) Asynchronous serial interface operation mode register 6 (ASIM6)

This 8-bit register controls the serial communication operations of serial interface UART6.

This register can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 01H.

Remark ASIM6 can be refreshed (the same value is written) by software during a communication operation (when bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1 or bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 = 1).

Figure 14-5. Format of Asynchronous Serial Interface Operation Mode Register 6 (ASIM6) (1/2)

Address: FF50H After reset: 01H R/W

Symbol ASIM6

<7>	<6>	<5>	4	3	2	1	0
POWER6	TXE6	RXE6	PS61	PS60	CL6	SL6	ISRM6

POWER6	Enables/disables operation of internal operation clock
O ^{Note 1}	Disables operation of the internal operation clock (fixes the clock to low level) and asynchronously resets the internal circuit ^{Note 2} .
1 Note 3	Enables operation of the internal operation clock

TXE6	Enables/disables transmission						
0	Disables transmission (synchronously resets the transmission circuit).						
1	Enables transmission						

- **Notes 1.** The output of the TxD6 pin goes high and the input from the RxD6 pin is fixed to the high level when POWER6 = 0.
 - 2. Asynchronous serial interface reception error status register 6 (ASIS6), asynchronous serial interface transmission status register 6 (ASIF6), bit 7 (SBRF6) and bit 6 (SBRT6) of asynchronous serial interface control register 6 (ASICL6), and receive buffer register 6 (RXB6) are reset.
 - **3.** Operation of the 8-bit counter output is enabled at the second base clock after 1 is written to the POWER6 bit.

Figure 14-5. Format of Asynchronous Serial Interface Operation Mode Register 6 (ASIM6) (2/2)

RXE6	Enables/disables reception						
0	Disables reception (synchronously resets the reception circuit).						
1	Enables reception						

PS61	PS60	Transmission operation	Reception operation		
0	0	Does not output parity bit.	Reception without parity		
0	1	Outputs 0 parity.	Reception as 0 parity ^{Note}		
1	0	Outputs odd parity.	Judges as odd parity.		
1	1	Outputs even parity.	Judges as even parity.		

CL6	Specifies character length of transmit/receive data						
0	Character length of data = 7 bits						
1	Character length of data = 8 bits						

SL6	Specifies number of stop bits of transmit data
0	Number of stop bits = 1
1	Number of stop bits = 2

ISRM6	Enables/disables occurrence of reception completion interrupt in case of error
0	"INTSRE6" occurs in case of error (at this time, INTSR6 does not occur).
1	"INTSR6" occurs in case of error (at this time, INTSRE6 does not occur).

Note If "reception as 0 parity" is selected, the parity is not judged. Therefore, bit 2 (PE6) of asynchronous serial interface reception error status register 6 (ASIS6) is not set and the error interrupt does not occur.

- Cautions 1. At startup, set POWER6 to 1 and then set TXE6 to 1. To stop the operation, clear TXE6 to 0, and then clear POWER6 to 0.
 - 2. At startup, set POWER6 to 1 and then set RXE6 to 1. To stop the operation, clear RXE6 to 0, and then clear POWER6 to 0.
 - 3. Set POWER6 to 1 and then set RXE6 to 1 while a high level is input to the RxD6 pin. If POWER6 is set to 1 and RXE6 is set to 1 while a low level is input, reception is started.
 - 4. Clear the TXE6 and RXE6 bits to 0 before rewriting the PS61, PS60, and CL6 bits.
 - 5. Fix the PS61 and PS60 bits to 0 when UART6 is used in the LIN communication operation.
 - 6. Make sure that TXE6 = 0 when rewriting the SL6 bit. Reception is always performed with "the number of stop bits = 1", and therefore, is not affected by the set value of the SL6 bit.
 - 7. Make sure that RXE6 = 0 when rewriting the ISRM6 bit.

(2) Asynchronous serial interface reception error status register 6 (ASIS6)

This register indicates an error status on completion of reception by serial interface UART6. It includes three error flag bits (PE6, FE6, OVE6).

This register is read-only by an 8-bit memory manipulation instruction.

RESET input or clearing bit 7 (POWER6) or bit 5 (RXE6) of ASIM6 to 0 clears this register to 00H. 00H is read when this register is read.

Figure 14-6. Format of Asynchronous Serial Interface Reception Error Status Register 6 (ASIS6)

Address: FF53H After reset: 00H R

Symbol	7	6	5	4	3	2	1	0
ASIS6	0	0	0	0	0	PE6	FE6	OVE6

PE6 Status flag indicating parity error					
0	0 If POWER6 = 0 and RXE6 = 0, or if ASIS6 register is read				
1	1 If the parity of transmit data does not match the parity bit on completion of reception				

FE6	Status flag indicating framing error			
0 If POWER6 = 0 and RXE6 = 0, or if ASIS6 register is read				
1	If the stop bit is not detected on completion of reception			

OVE6	Status flag indicating overrun error						
0	0 If POWER6 = 0 and RXE6 = 0, or if ASIS6 register is read						
1	If receive data is set to the RXB6 register and the next reception operation is completed before the data is read.						

Cautions 1. The operation of the PE6 bit differs depending on the set values of the PS61 and PS60 bits of asynchronous serial interface operation mode register 6 (ASIM6).

- 2. The first bit of the receive data is checked as the stop bit, regardless of the number of stop bits.
- 3. If an overrun error occurs, the next receive data is not written to receive buffer register 6 (RXB6) but discarded.
- 4. If data is read from ASIS6, a wait cycle is generated. Do not read data from ASIS6 when the CPU is operating on the subsystem clock and the high-speed system clock is stopped. For details, see CHAPTER 33 CAUTIONS FOR WAIT.

(3) Asynchronous serial interface transmission status register 6 (ASIF6)

This register indicates the status of transmission by serial interface UART6. It includes two status flag bits (TXBF6 and TXSF6).

Transmission can be continued without disruption even during an interrupt period, by writing the next data to the TXB6 register after data has been transferred from the TXB6 register to the TXS6 register.

This register is read-only by an 8-bit memory manipulation instruction.

RESET input or clearing bit 7 (POWER6) or bit 6 (TXE6) of ASIM6 to 0 clears this register to 00H.

Figure 14-7. Format of Asynchronous Serial Interface Transmission Status Register 6 (ASIF6)

Address: FF55H After reset: 00H R Symbol 7 6 5 3 2 1 0 ASIF6 0 0 0 0 0 0 TXBF6 TXSF6

TXBF6	Transmit buffer data flag				
0	0 If POWER6 = 0 or TXE6 = 0, or if data is transferred to transmit shift register 6 (TXS6)				
1	If data is written to transmit buffer register 6 (TXB6) (if data exists in TXB6)				

TXSF6	Transmit shift register data flag					
0	If POWER6 = 0 or TXE6 = 0, or if the next data is not transferred from transmit buffer register 6					
	(TXB6) after completion of transfer					
1	If data is transferred from transmit buffer register 6 (TXB6) (if data transmission is in progress)					

- Cautions 1. To transmit data continuously, write the first transmit data (first byte) to the TXB6 register. After that, be sure to check that the TXBF6 flag is "0". If so, write the next transmit data (second byte) to the TXB6 register. If data is written to the TXB6 register while the TXBF6 flag is "1", the transmit data cannot be guaranteed.
 - 2. To initialize the transmission unit upon completion of continuous transmission, be sure to check that the TXSF6 flag is "0" after generation of the transmission completion interrupt, and then execute initialization. If initialization is executed while the TXSF6 flag is "1", the transmit data cannot be guaranteed.

(4) Clock selection register 6 (CKSR6)

This register selects the base clock of serial interface UART6.

CKSR6 can be set by an 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Remark CKSR6 can be refreshed (the same value is written) by software during a communication operation (when bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1 or bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 = 1).

Figure 14-8. Format of Clock Selection Register 6 (CKSR6)

Address: FF56H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
CKSR6	0	0	0	0	TPS63	TPS62	TPS61	TPS60

TPS63	TPS62	TPS61	TPS60	Base clock (fxclk6) selection Note 1
0	0	0	0	fx (10 MHz)
0	0	0	1	fx/2 (5 MHz)
0	0	1	0	fx/2 ² (2.5 MHz)
0	0	1	1	fx/2 ³ (1.25 MHz)
0	1	0	0	fx/2 ⁴ (625 kHz)
0	1	0	1	fx/2 ⁵ (312.5 kHz)
0	1	1	0	fx/2 ⁶ (156.25 kHz)
0	1	1	1	fx/2 ⁷ (78.13 kHz)
1	0	0	0	fx/2 ⁸ (39.06 kHz)
1	0	0	1	fx/2 ⁹ (19.53 kHz)
1	0	1	0	fx/2 ¹⁰ (9.77 kHz)
1	0	1	1	TM50 output ^{Note 2}
	Other that	an above		Setting prohibited

Notes 1. Be sure to set the base clock so that the following condition is satisfied.

- V_{DD} = 4.0 to 5.5 V: Base clock \leq 10 MHz
- V_{DD} = 3.3 to 4.0 V: Base clock ≤ 8.38 MHz
- V_{DD} = 2.7 to 3.3 V: Base clock ≤ 5 MHz
- V_{DD} = 2.5 to 2.7 V: Base clock ≤ 2.5 MHz (standard products, (A) grade products only)
- 2. Note the following points when selecting the TM50 output as the base clock.
 - PWM mode (TMC506 = 1)

Start the operation of 8-bit timer/event counter 50 first and then set the count clock to make the duty = 50%.

• Mode in which the count clock is cleared and started upon a match of TM50 and CR50 (TMC506 = 0) Start the operation of 8-bit timer/event counter 50 first and then enable the timer F/F inversion operation (TMC501 = 1).

It is not necessary to enable the TO50 pin as a timer output pin in any mode.

- Cautions 1. When the internal oscillation clock is selected as the clock to be supplied to the CPU, the clock of the internal oscillator is divided and supplied as the count clock. If the base clock is the internal oscillation clock, the operation of serial interface UART6 is not guaranteed.
 - 2. Make sure POWER6 = 0 when rewriting TPS63 to TPS60.

<R>

Remarks 1. Figures in parentheses are for operation with fx = 10 MHz

2. fx: High-speed system clock oscillation frequency

3. TMC506: Bit 6 of 8-bit timer mode control register 50 (TMC50)

TMC501: Bit 1 of TMC50

(5) Baud rate generator control register 6 (BRGC6)

This register sets the division value of the 8-bit counter of serial interface UART6.

BRGC6 can be set by an 8-bit memory manipulation instruction.

RESET input sets this register to FFH.

Remark BRGC6 can be refreshed (the same value is written) by software during a communication operation (when bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1 or bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 = 1).

Figure 14-9. Format of Baud Rate Generator Control Register 6 (BRGC6)

Address: FF57H After reset: FFH R/W

 Symbol
 7
 6
 5
 4
 3
 2
 1
 0

 BRGC6
 MDL67
 MDL66
 MDL65
 MDL64
 MDL63
 MDL62
 MDL61
 MDL60

MDL67	MDL66	MDL65	MDL64	MDL63	MDL62	MDL61	MDL60	k	Output clock selection of 8-bit counter
0	0	0	0	0	×	×	×	×	Setting prohibited
0	0	0	0	1	0	0	0	8	fхськ6/8
0	0	0	0	1	0	0	1	9	fxclk6/9
0	0	0	0	1	0	1	0	10	fxclk6/10
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
		•		•	•	•	•	•	•
1	1	1	1	1	1	0	0	252	fхське/252
1	1	1	1	1	1	0	1	253	fхське/253
1	1	1	1	1	1	1	0	254	fхськ6/254
1	1	1	1	1	1	1	1	255	fxclк6/255

Cautions 1. Make sure that bit 6 (TXE6) and bit 5 (RXE6) of the ASIM6 register = 0 when rewriting the MDL67 to MDL60 bits.

2. The baud rate is the output clock of the 8-bit counter divided by 2.

Remarks 1. fxclk6: Frequency of base clock selected by the TPS63 to TPS60 bits of CKSR6 register

2. k: Value set by MDL67 to MDL60 bits (k = 8, 9, 10, ..., 255)

3. \times : Don't care

(6) Asynchronous serial interface control register 6 (ASICL6)

This register controls the serial communication operations of serial interface UART6.

ASICL6 can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 16H.

Caution ASICL6 can be refreshed (the same value is written) by software during a communication operation (when bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1 or bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 = 1). Note, however, that communication is started by the refresh operation because bit 6 (SBRT6) of ASICL6 is cleared to 0 when communication is completed (when an interrupt signal is generated).

Figure 14-10. Format of Asynchronous Serial Interface Control Register 6 (ASICL6) (1/2)

Address: FF58H After reset: 16H R/WNote Symbol <7> <6> 5 4 3 2 1 0 ASICL6 TXDLV6 SBRF6 SBRT6 SBTT6 SBL62 SBL61 SBL60 DIR6

SBRF6	SBF reception status flag					
0 If POWER6 = 0 and RXE6 = 0 or if SBF reception has been completed correctly						
1	SBF reception in progress					

SBRT6	SBF reception trigger
0	_
1	SBF reception trigger

SBTT6	SBF transmission trigger
0	_
1	SBF transmission trigger

Note Bit 7 is read-only.

Figure 14-10. Format of Asynchronous Serial Interface Control Register 6 (ASICL6) (2/2)

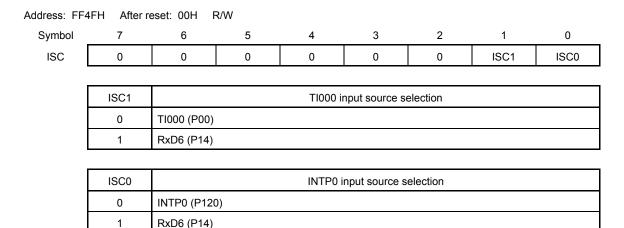
SBL62	SBL61	SBL60	SBF transmission output width control	
1	0	1	SBF is output with 13-bit length.	
1	1	0	SBF is output with 14-bit length.	
1	1	1	SBF is output with 15-bit length.	
0	0	0	SBF is output with 16-bit length.	
0	0	1	SBF is output with 17-bit length.	
0	1	0	SBF is output with 18-bit length.	
0	1	1	SBF is output with 19-bit length.	
1	0	0	SBF is output with 20-bit length.	

DIR6	First-bit specification
0	MSB
1	LSB

TXDLV6	Enables/disables inverting TxD6 output			
0	Normal output of TxD6			
1	Inverted output of TxD6			

Cautions 1. In the case of an SBF reception error, return the mode to the SBF reception mode. The status of the SBRF6 flag is held (1).

- 2. Before setting the SBRT6 bit, make sure that bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 = 1.
- 3. The read value of the SBRT6 bit is always 0. SBRT6 is automatically cleared to 0 after SBF reception has been correctly completed.
- 4. Before setting the SBTT6 bit to 1, make sure that bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 =
- 5. The read value of the SBTT6 bit is always 0. SBTT6 is automatically cleared to 0 at the end of SBF transmission.
- 6. Before rewriting the DIR6 and TXDLV6 bits, clear the TXE6 and RXE6 bits to 0.
- 7. When using the 78K0/KE1+ to evaluate the program of a mask ROM version of the 78K0/KE1, set the SBTT6, SBL62, SBL61, and SBL60 bits to 0, 1, 0, 1, respectively.


(7) Input switch control register (ISC)

The input switch control register (ISC) is used to receive a status signal transmitted from the master during LIN (Local Interconnect Network) reception. The input source is switched by setting ISC.

This register can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Figure 14-11. Format of Input Switch Control Register (ISC)

(8) Port mode register 1 (PM1)

This register sets port 1 input/output in 1-bit units.

When using the P13/TxD6 pin for serial interface data output, clear PM13 to 0 and set the output latch of P13 to 1.

When using the P14/RxD6 pin for serial interface data input, set PM14 to 1. The output latch of P14 at this time may be 0 or 1.

PM1 can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to FFH.

Figure 14-12. Format of Port Mode Register 1 (PM1)

Address:	FF21H Af	ter reset: FF	H R/W					
Symbol	7	6	5	4	3	2	1	0
PM1	PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10

PM1n P1n pin I/O mode selection (n = 0 to 7)					
0 Output mode (output buffer on)					
1 Input mode (output buffer off)					

14.4 Operation of Serial Interface UART6

Serial interface UART6 has the following two modes.

- · Operation stop mode
- Asynchronous serial interface (UART) mode

14.4.1 Operation stop mode

In this mode, serial communication cannot be executed; therefore, the power consumption can be reduced. In addition, the pins can be used as ordinary port pins in this mode. To set the operation stop mode, clear bits 7, 6, and 5 (POWER6, TXE6, and RXE6) of ASIM6 to 0.

(1) Register used

The operation stop mode is set by asynchronous serial interface operation mode register 6 (ASIM6).

ASIM6 can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 01H.

Address: FF50H After reset: 01H R/W

Symbol	<7>	<6>	<5>	4	3	2	1	0
ASIM6	POWER6	TXE6	RXE6	PS61	PS60	CL6	SL6	ISRM6

Р	OWER6	Enables/disables operation of internal operation clock
	O ^{Note 1}	Disables operation of the internal operation clock (fixes the clock to low level) and asynchronously resets the internal circuit ^{Note 2} .

	TXE6	Enables/disables transmission
Ī	0	Disables transmission operation (synchronously resets the transmission circuit).

RXE6	Enables/disables reception
0	Disables reception (synchronously resets the reception circuit).

- **Notes 1.** The output of the $T \times D6$ pin goes high and the input from the $R \times D6$ pin is fixed to high level when POWER6 = 0.
 - 2. Asynchronous serial interface reception error status register 6 (ASIS6), asynchronous serial interface transmission status register 6 (ASIF6), bit 7 (SBRF6) and bit 6 (SBRT6) of asynchronous serial interface control register 6 (ASICL6), and receive buffer register 6 (RXB6) are reset.

Caution Clear POWER6 to 0 after clearing TXE6 and RXE6 to 0 to set the operation stop mode.

To start the operation, set POWER6 to 1, and then set TXE6 and RXE6 to 1.

Remark To use the RxD6/P14 and TxD6/P13 pins as general-purpose port pins, see CHAPTER 4 PORT FUNCTIONS.

14.4.2 Asynchronous serial interface (UART) mode

In this mode, data of 1 byte is transmitted/received following a start bit, and a full-duplex operation can be performed.

A dedicated UART baud rate generator is incorporated, so that communication can be executed at a wide range of baud rates.

(1) Registers used

- Asynchronous serial interface operation mode register 6 (ASIM6)
- Asynchronous serial interface reception error status register 6 (ASIS6)
- Asynchronous serial interface transmission status register 6 (ASIF6)
- Clock selection register 6 (CKSR6)
- Baud rate generator control register 6 (BRGC6)
- Asynchronous serial interface control register 6 (ASICL6)
- Input switch control register (ISC)
- Port mode register 1 (PM1)
- Port register 1 (P1)

The basic procedure of setting an operation in the UART mode is as follows.

- <1> Set the CKSR6 register (see Figure 14-8).
- <2> Set the BRGC6 register (see Figure 14-9).
- <3> Set bits 0 to 4 (ISRM6, SL6, CL6, PS60, PS61) of the ASIM6 register (see Figure 14-5).
- <4> Set bits 0 and 1 (TXDLV6, DIR6) of the ASICL6 register (see Figure 14-10).
- <5> Set bit 7 (POWER6) of the ASIM6 register to 1.
- <6> Set bit 6 (TXE6) of the ASIM6 register to 1. → Transmission is enabled.
 Set bit 5 (RXE6) of the ASIM6 register to 1. → Reception is enabled.
- <7> Write data to transmit buffer register 6 (TXB6). → Data transmission is started.

Caution Take relationship with the other party of communication when setting the port mode register and port register.

The relationship between the register settings and pins is shown below.

Table 14-2. Relationship Between Register Settings and Pins

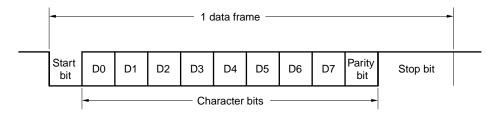
POWER6	TXE6	RXE6	PM13	P13	PM14	P14	UART6	Pin Fu	ınction
							Operation	TxD6/P13	RxD6/P14
0	0	0	× ^{Note}	× ^{Note}	× ^{Note}	× ^{Note}	Stop	P13	P14
1	0	1	× ^{Note}	× ^{Note}	1	×	Reception	P13	RxD6
	1	0	0	1	× ^{Note}	× ^{Note}	Transmission	TxD6	P14
	1	1	0	1	1	×	Transmission/ reception	TxD6	RxD6

Note Can be set as port function.

Remark ×: don't care

POWER6: Bit 7 of asynchronous serial interface operation mode register 6 (ASIM6)

TXE6: Bit 6 of ASIM6
RXE6: Bit 5 of ASIM6
PM1×: Port mode register
P1×: Port output latch


(2) Communication operation

(a) Format and waveform example of normal transmit/receive data

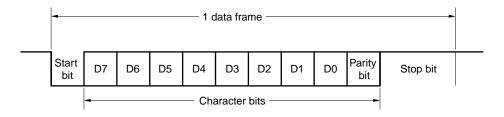

Figures 14-13 and 14-14 show the format and waveform example of the normal transmit/receive data.

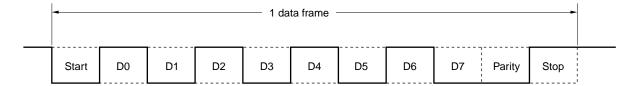
Figure 14-13. Format of Normal UART Transmit/Receive Data

1. LSB-first transmission/reception

2. MSB-first transmission/reception

One data frame consists of the following bits.

- Start bit ... 1 bit
- Character bits ... 7 or 8 bits
- Parity bit ... Even parity, odd parity, 0 parity, or no parity
- Stop bit ... 1 or 2 bits


The character bit length, parity, and stop bit length in one data frame are specified by asynchronous serial interface operation mode register 6 (ASIM6).

Whether data is communicated with the LSB or MSB first is specified by bit 1 (DIR6) of asynchronous serial interface control register 6 (ASICL6).


Whether the TxD6 pin outputs normal or inverted data is specified by bit 0 (TXDLV6) of ASICL6.

Figure 14-14. Example of Normal UART Transmit/Receive Data Waveform

1. Data length: 8 bits, LSB first, Parity: Even parity, Stop bit: 1 bit, Communication data: 55H

2. Data length: 8 bits, MSB first, Parity: Even parity, Stop bit: 1 bit, Communication data: 55H


3. Data length: 8 bits, MSB first, Parity: Even parity, Stop bit: 1 bit, Communication data: 55H, TxD6 pin inverted output

4. Data length: 7 bits, LSB first, Parity: Odd parity, Stop bit: 2 bits, Communication data: 36H

5. Data length: 8 bits, LSB first, Parity: None, Stop bit: 1 bit, Communication data: 87H

(b) Parity types and operation

The parity bit is used to detect a bit error in communication data. Usually, the same type of parity bit is used on both the transmission and reception sides. With even parity and odd parity, a 1-bit (odd number) error can be detected. With zero parity and no parity, an error cannot be detected.

Caution Fix the PS61 and PS60 bits to 0 when the device is incorporated in LIN.

(i) Even parity

Transmission

Transmit data, including the parity bit, is controlled so that the number of bits that are "1" is even. The value of the parity bit is as follows.

If transmit data has an odd number of bits that are "1": 1
If transmit data has an even number of bits that are "1": 0

Reception

The number of bits that are "1" in the receive data, including the parity bit, is counted. If it is odd, a parity error occurs.

(ii) Odd parity

Transmission

Unlike even parity, transmit data, including the parity bit, is controlled so that the number of bits that are "1" is odd.

If transmit data has an odd number of bits that are "1": 0
If transmit data has an even number of bits that are "1": 1

Reception

The number of bits that are "1" in the receive data, including the parity bit, is counted. If it is even, a parity error occurs.

(iii) 0 parity

The parity bit is cleared to 0 when data is transmitted, regardless of the transmit data.

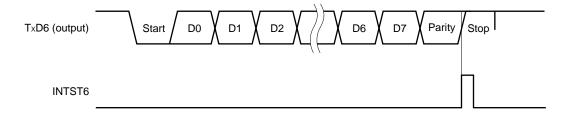
The parity bit is not detected when the data is received. Therefore, a parity error does not occur regardless of whether the parity bit is "0" or "1".

(iv) No parity

No parity bit is appended to the transmit data.

Reception is performed assuming that there is no parity bit when data is received. Because there is no parity bit, a parity error does not occur.

(c) Normal transmission


The TxD6 pin outputs a high level when bit 7 (POWER6) of asynchronous serial interface operation mode register 6 (ASIM6) is set to 1. If bit 6 (TXE6) of ASIM6 is then set to 1, transmission is enabled. Transmission can be started by writing transmit data to transmit buffer register 6 (TXB6). The start bit, parity bit, and stop bit are automatically appended to the data.

When transmission is started, the data in TXB6 is transferred to transmit shift register 6 (TXS6). After that, the data is sequentially output from TXS6 to the TxD6 pin. When transmission is completed, the parity and stop bits set by ASIM6 are appended and a transmission completion interrupt request (INTST6) is generated. Transmission is stopped until the data to be transmitted next is written to TXB6.

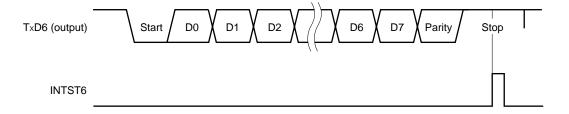

Figure 14-15 shows the timing of the transmission completion interrupt request (INTST6). This interrupt occurs as soon as the last stop bit has been output.

Figure 14-15. Normal Transmission Completion Interrupt Request Timing

1. Stop bit length: 1

2. Stop bit length: 2

(d) Continuous transmission

The next transmit data can be written to transmit buffer register 6 (TXB6) as soon as transmit shift register 6 (TXS6) has started its shift operation. Consequently, even while the INTST6 interrupt is being serviced after transmission of one data frame, data can be continuously transmitted and an efficient communication rate can be realized. In addition, the TXB6 register can be efficiently written twice (2 bytes) without having to wait for the transmission time of one data frame, by reading bit 0 (TXSF6) of asynchronous serial interface transmission status register 6 (ASIF6) when the transmission completion interrupt has occurred.

To transmit data continuously, be sure to reference the ASIF6 register to check the transmission status and whether the TXB6 register can be written, and then write the data.

- Cautions 1. The TXBF6 and TXSF6 flags of the ASIF6 register change from "10" to "11", and to "01" during continuous transmission. To check the status, therefore, do not use a combination of the TXBF6 and TXSF6 flags for judgment. Read only the TXBF6 flag when executing continuous transmission.
 - 2. When the device is incorporated in a LIN, the continuous transmission function cannot be used. Make sure that asynchronous serial interface transmission status register 6 (ASIF6) is 00H before writing transmit data to transmit buffer register 6 (TXB6).

TXBF6	Writing to TXB6 Register
0	Writing enabled
1	Writing disabled

Caution To transmit data continuously, write the first transmit data (first byte) to the TXB6 register. Be sure to check that the TXBF6 flag is "0". If so, write the next transmit data (second byte) to the TXB6 register. If data is written to the TXB6 register while the TXBF6 flag is "1", the transmit data cannot be guaranteed.

The communication status can be checked using the TXSF6 flag.

TXSF6	Transmission Status
0	Transmission is completed.
1	Transmission is in progress.

- Cautions 1. To initialize the transmission unit upon completion of continuous transmission, be sure to check that the TXSF6 flag is "0" after generation of the transmission completion interrupt, and then execute initialization. If initialization is executed while the TXSF6 flag is "1", the transmit data cannot be guaranteed.
 - 2. During continuous transmission, an overrun error may occur, which means that the next transmission was completed before execution of INTST6 interrupt servicing after transmission of one data frame. An overrun error can be detected by developing a program that can count the number of transmit data and by referencing the TXSF6 flag.

Figure 14-16 shows an example of the continuous transmission processing flow.

Set registers. Write TXB6. Transfer Yes executed necessary number of times? No No Read ASIF6 TXBF6 = 0? Yes Write TXB6. Transmission No completion interrupt occurs? Yes Transfer Yes executed necessary number of times' No Read ASIF6 No TXSF6 = 0? Yes Completion of transmission processing

Figure 14-16. Example of Continuous Transmission Processing Flow

Remark TXB6: Transmit buffer register 6

ASIF6: Asynchronous serial interface transmission status register 6

TXBF6: Bit 1 of ASIF6 (transmit buffer data flag)

TXSF6: Bit 0 of ASIF6 (transmit shift register data flag)

Figure 14-17 shows the timing of starting continuous transmission, and Figure 14-18 shows the timing of ending continuous transmission.

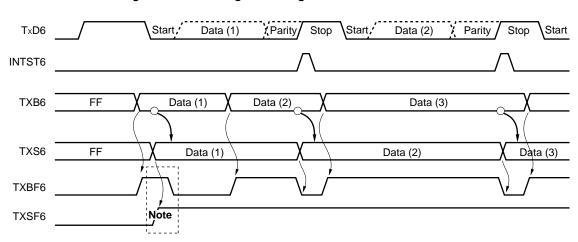


Figure 14-17. Timing of Starting Continuous Transmission

Note When ASIF6 is read, there is a period in which TXBF6 and TXSF6 = 1, 1. Therefore, judge whether writing is enabled using only the TXBF6 bit.

Remark TxD6: TxD6 pin (output)

INTST6: Interrupt request signalTXB6: Transmit buffer register 6TXS6: Transmit shift register 6

ASIF6: Asynchronous serial interface transmission status register 6

TXBF6: Bit 1 of ASIF6 TXSF6: Bit 0 of ASIF6

TxD6 Stop Data (n - 1) Parity Stop Start . Data (n) Parity Stop INTST6 TXB6 Data (n) TXS6 Data (n - 1) Data (n) TXBF6 TXSF6 POWER6 or TXE6

Figure 14-18. Timing of Ending Continuous Transmission

Remark TxD6: TxD6 pin (output)

INTST6: Interrupt request signal TXB6: Transmit buffer register 6 TXS6: Transmit shift register 6

ASIF6: Asynchronous serial interface transmission status register 6

TXBF6: Bit 1 of ASIF6
TXSF6: Bit 0 of ASIF6

POWER6: Bit 7 of asynchronous serial interface operation mode register 6 (ASIM6) TXE6: Bit 6 of asynchronous serial interface operation mode register 6 (ASIM6)

(e) Normal reception

Reception is enabled and the RxD6 pin input is sampled when bit 7 (POWER6) of asynchronous serial interface operation mode register 6 (ASIM6) is set to 1 and then bit 5 (RXE6) of ASIM6 is set to 1.

The 8-bit counter of the baud rate generator starts counting when the falling edge of the RxD6 pin input is detected. When the set value of baud rate generator control register 6 (BRGC6) has been counted, the RxD6 pin input is sampled again (▽ in Figure 14-19). If the RxD6 pin is low level at this time, it is recognized as a start bit.

When the start bit is detected, reception is started, and serial data is sequentially stored in the receive shift register (RXS6) at the set baud rate. When the stop bit has been received, the reception completion interrupt (INTSR6) is generated and the data of RXS6 is written to receive buffer register 6 (RXB6). If an overrun error (OVE6) occurs, however, the receive data is not written to RXB6.

Even if a parity error (PE6) occurs while reception is in progress, reception continues to the reception position of the stop bit, and an error interrupt (INTSR6/INTSRE6) is generated on completion of reception.

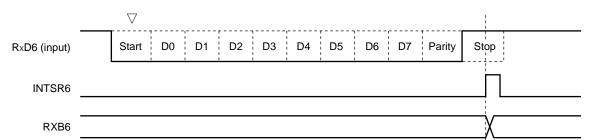


Figure 14-19. Reception Completion Interrupt Request Timing

- Cautions 1. Be sure to read receive buffer register 6 (RXB6) even if a reception error occurs.

 Otherwise, an overrun error will occur when the next data is received, and the reception error status will persist.
 - Reception is always performed with the "number of stop bits = 1". The second stop bit is ignored.
 - 3. Be sure to read asynchronous serial interface reception error status register 6 (ASIS6) before reading RXB6.

(f) Reception error

Three types of errors may occur during reception: a parity error, framing error, or overrun error. If the error flag of asynchronous serial interface reception error status register 6 (ASIS6) is set as a result of data reception, a reception error interrupt request (INTSR6/INTSRE6) is generated.

Which error has occurred during reception can be identified by reading the contents of ASIS6 in the reception error interrupt servicing (INTSR6/INTSRE6) (see **Figure 14-6**).

The contents of ASIS6 are reset to 0 when ASIS6 is read.

Table 14-3. Cause of Reception Error

Reception Error	Cause
Parity error	The parity specified for transmission does not match the parity of the receive data.
Framing error	Stop bit is not detected.
Overrun error	Reception of the next data is completed before data is read from receive buffer register 6 (RXB6).

The error interrupt can be separated into reception completion interrupt (INTSR6) and error interrupt (INTSRE6) by clearing bit 0 (ISRM6) of asynchronous serial interface operation mode register 6 (ASIM6) to 0.

1. If ISRM6 is cleared to 0 (reception completion interrupt (INTSR6) and error interrupt (INTSRE6) are

Figure 14-20. Reception Error Interrupt

(a) No error during reception

(b) Error during reception

INTSR6

INTSR6 INTSR6 INTSRE6

2. If ISRM6 is set to 1 (error interrupt is included in INTSR6)

(a) No error during reception

INTSR6

INTSR6

INTSRE6

(g) Noise filter of receive data

The RxD6 signal is sampled with the base clock output by the prescaler block.

If two sampled values are the same, the output of the match detector changes, and the data is sampled as input data.

Because the circuit is configured as shown in Figure 14-21, the internal processing of the reception operation is delayed by two clocks from the external signal status.

Base clock

RxD6/P14 ⊚ Internal signal A In Q Internal signal B Match detector

Figure 14-21. Noise Filter Circuit

(h) SBF transmission

When the device is incorporated in LIN, the SBF (Synchronous Break Field) transmission control function is used for transmission. For the transmission operation of LIN, see **Figure 14-1 LIN Transmission Operation**.

The TxD6 pin outputs a high level when bit 7 (POWER6) of asynchronous serial interface mode register 6 (ASIM6) is set to 1. Transmission is enabled when bit 6 (TXE6) of ASIM6 is set to 1 next time, and SBF transmission operation is started when bit 5 (SBTT6) of asynchronous serial interface control register 6 (ASICL6) is set to 1.

After transmission has been started, the low levels of bits 13 to 20 (set by bits 4 to 2 (SBL62 to SBL60) of ASICL6) are output. When SBF transmission is complete, a transmission completion interrupt request (INTST6) is issued, and SBTT6 is automatically cleared. After SBF transmission is completed, the normal transmission mode is restored.

SBF transmission is stopped until the data to be transmitted next is written to transmit buffer register 6 (TXB6) or SBTT6 is set to 1.

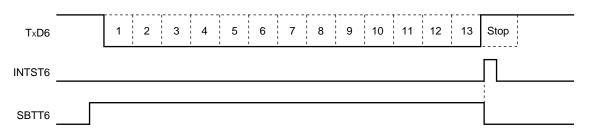


Figure 14-22. SBF Transmission

Remark TxD6: TxD6 pin (output)

INTST6: Transmission completion interrupt request

SBTT6: Bit 5 of asynchronous serial interface control register 6 (ASICL6)

(i) SBF reception

When the device is incorporated in LIN, the SBF (Synchronous Break Field) reception control function is used for reception. For the reception operation of LIN, see **Figure 14-2 LIN Reception Operation**.

Reception is enabled when bit 7 (POWER6) of asynchronous serial interface operation mode register 6 (ASIM6) is set to 1 and then bit 5 (RXE6) of ASIM6 is set to 1. SBF reception is enabled when bit 6 (SBRT6) of asynchronous serial interface control register 6 (ASICL6) is set to 1. In the SBF reception enabled status, the RxD6 pin is sampled and the start bit is detected in the same manner as the normal reception enable status.

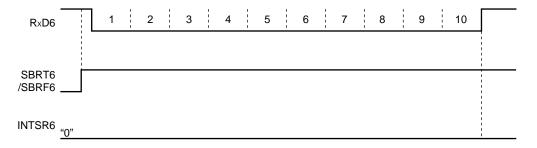

When the start bit has been detected, reception is started, and serial data is sequentially stored in the receive shift register 6 (RXS6) at the set baud rate. When the stop bit is received and if the width of SBF is 11 bits or more, a reception completion interrupt request (INTSR6) is generated as normal processing. At this time, the SBRF6 and SBRT6 bits are automatically cleared, and SBF reception ends. Detection of errors, such as OVE6, PE6, and FE6 (bits 0 to 2 of asynchronous serial interface reception error status register 6 (ASIS6)) is suppressed, and error detection processing of UART communication is not performed. In addition, data transfer between receive shift register 6 (RXS6) and receive buffer register 6 (RXB6) is not performed, and the reset value of FFH is retained. If the width of SBF is 10 bits or less, an interrupt does not occur as error processing after the stop bit has been received, and the SBF reception mode is restored. In this case, the SBRF6 and SBRT6 bits are not cleared.

Figure 14-23. SBF Reception

1. Normal SBF reception (stop bit is detected with a width of more than 10.5 bits)

2. SBF reception error (stop bit is detected with a width of 10.5 bits or less)

Remark RxD6: RxD6 pin (input)

SBRT6: Bit 6 of asynchronous serial interface control register 6 (ASICL6)

SBRF6: Bit 7 of ASICL6

INTSR6: Reception completion interrupt request

14.4.3 Dedicated baud rate generator

The dedicated baud rate generator consists of a source clock selector and an 8-bit programmable counter, and generates a serial clock for transmission/reception of UART6.

Separate 8-bit counters are provided for transmission and reception.

(1) Configuration of baud rate generator

· Base clock

The clock selected by bits 3 to 0 (TPS63 to TPS60) of clock selection register 6 (CKSR6) is supplied to each module when bit 7 (POWER6) of asynchronous serial interface operation mode register 6 (ASIM6) is 1. This clock is called the base clock and its frequency is called fxclk6. The base clock is fixed to low level when POWER6 = 0.

· Transmission counter

This counter stops operation, cleared to 0, when bit 7 (POWER6) or bit 6 (TXE6) of asynchronous serial interface operation mode register 6 (ASIM6) is 0.

It starts counting when POWER6 = 1 and TXE6 = 1.

The counter is cleared to 0 when the first data transmitted is written to transmit buffer register 6 (TXB6).

If data are continuously transmitted, the counter is cleared to 0 again when one frame of data has been completely transmitted. If there is no data to be transmitted next, the counter is not cleared to 0 and continues counting until POWER6 or TXE6 is cleared to 0.

· Reception counter

This counter stops operation, cleared to 0, when bit 7 (POWER6) or bit 5 (RXE6) of asynchronous serial interface operation mode register 6 (ASIM6) is 0.

It starts counting when the start bit has been detected.

The counter stops operation after one frame has been received, until the next start bit is detected.

POWER6 fx Baud rate generator fx/2 $fx/2^2$ POWER6, TXE6 (or RXE6) fx/2³ $fx/2^4$ fx/2⁵ Selector 8-bit counter $fx/2^6$ fxclk6 fx/2⁷ $fx/2^{8}$ fx/2⁹ fx/2¹⁰ Baud rate Match detector 1/2 8-bit timer/ event counter 50 output BRGC6: MDL67 to MDL60 CKSR6: TPS63 to TPS60

Figure 14-24. Configuration of Baud Rate Generator

Remark POWER6: Bit 7 of asynchronous serial interface operation mode register 6 (ASIM6)

TXE6: Bit 6 of ASIM6 RXE6: Bit 5 of ASIM6

CKSR6: Clock selection register 6

BRGC6: Baud rate generator control register 6

(2) Generation of serial clock

A serial clock can be generated by using clock selection register 6 (CKSR6) and baud rate generator control register 6 (BRGC6).

Select the clock to be input to the 8-bit counter by using bits 3 to 0 (TPS63 to TPS60) of CKSR6.

Bits 7 to 0 (MDL67 to MDL60) of BRGC6 can be used to select the division value of the 8-bit counter.

(a) Baud rate

The baud rate can be calculated by the following expression.

• Baud rate =
$$\frac{f_{XCLK6}}{2 \times k}$$
 [bps]

fxclk6: Frequency of base clock selected by TPS63 to TPS60 bits of CKSR6 register

k: Value set by MDL67 to MDL60 bits of BRGC6 register (k = 8, 9, 10, ..., 255)

(b) Error of baud rate

The baud rate error can be calculated by the following expression.

• Error (%) =
$$\left(\frac{\text{Actual baud rate (baud rate with error)}}{\text{Desired baud rate (correct baud rate)}} - 1\right) \times 100 \, [\%]$$

- Cautions 1. Keep the baud rate error during transmission to within the permissible error range at the reception destination.
 - 2. Make sure that the baud rate error during reception satisfies the range shown in (4) Permissible baud rate range during reception.

Example: Frequency of base clock = 10 MHz = 10,000,000 Hz

Set value of MDL67 to MDL60 bits of BRGC6 register = 00100001B (k = 33)

Target baud rate = 153600 bps

Baud rate =
$$10 \text{ M/}(2 \times 33)$$

= $10000000/(2 \times 33) = 151,515 \text{ [bps]}$

Error =
$$(151515/153600 - 1) \times 100$$

= -1.357 [%]

(3) Example of setting baud rate

Table 14-4. Set Data of Baud Rate Generator

Baud Rate		fx =	10.0 MHz			fx =	8.38 MHz		fx = 4.19 MHz			
[bps]	TPS63 to TPS60	k	Calculated Value	ERR[%]	TPS63 to TPS60	k	Calculated Value	ERR[%]	TPS63 to TPS60	k	Calculated Value	ERR[%]
600	6H	130	601	0.16	6H	109	601	0.11	5H	109	601	0.11
1200	5H	130	1202	0.16	5H	109	1201	0.11	4H	109	1201	0.11
2400	4H	130	2404	0.16	4H	109	2403	0.11	3H	109	2403	0.11
4800	3H	130	4808	0.16	3H	109	4805	0.11	2H	109	4805	0.11
9600	2H	130	9615	0.16	2H	109	9610	0.11	1H	109	9610	0.11
10400	2H	120	10417	0.16	2H	101	10371	0.28	1H	101	10475	-0.28
19200	1H	130	19231	0.16	1H	109	19220	0.11	0H	109	19220	0.11
31250	1H	80	31250	0.00	0H	134	31268	0.06	0H	67	31268	0.06
38400	0H	130	38462	0.16	0H	109	38440	0.11	0H	55	38090	-0.80
76800	0H	65	76923	0.16	0H	55	76182	-0.80	0H	27	77593	1.03
115200	0H	43	116279	0.94	0H	36	116389	1.03	0H	18	116389	1.03
153600	0H	33	151515	-1.36	0H	27	155185	1.03	0H	14	149643	-2.58
230400	0H	22	227272	-1.36	0H	18	232778	1.03	0H	9	232778	1.03

Remark TPS63 to TPS60: Bits 3 to 0 of clock selection register 6 (CKSR6) (setting of base clock (fxclk6))

k: Value set by MDL67 to MDL60 bits of baud rate generator control register 6

(BRGC6) (k = 8, 9, 10, ..., 255)

fx: High-speed system clock oscillation frequency

ERR: Baud rate error

(4) Permissible baud rate range during reception

The permissible error from the baud rate at the transmission destination during reception is shown below.

Caution Make sure that the baud rate error during reception is within the permissible error range, by using the calculation expression shown below.

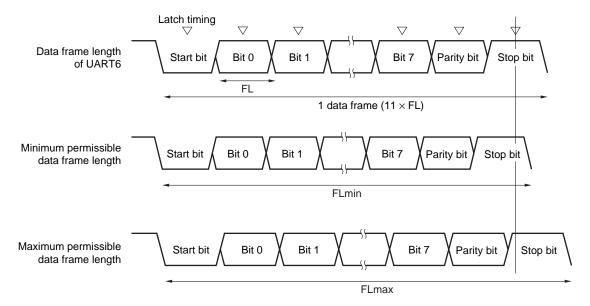


Figure 14-25. Permissible Baud Rate Range During Reception

As shown in Figure 14-25, the latch timing of the receive data is determined by the counter set by baud rate generator control register 6 (BRGC6) after the start bit has been detected. If the last data (stop bit) meets this latch timing, the data can be correctly received.

Assuming that 11-bit data is received, the theoretical values can be calculated as follows.

 $FL = (Brate)^{-1}$

Brate: Baud rate of UART6 k: Set value of BRGC6 FL: 1-bit data length

Margin of latch timing: 2 clocks

Minimum permissible data frame length: FLmin =
$$11 \times FL - \frac{k-2}{2k} \times FL = \frac{21k+2}{2k}$$
 FL

Therefore, the maximum receivable baud rate at the transmission destination is as follows.

BRmax =
$$(FLmin/11)^{-1} = \frac{22k}{21k + 2}$$
 Brate

Similarly, the maximum permissible data frame length can be calculated as follows.

$$\frac{10}{11} \times FLmax = 11 \times FL - \frac{k+2}{2 \times k} \times FL = \frac{21k-2}{2 \times k} FL$$

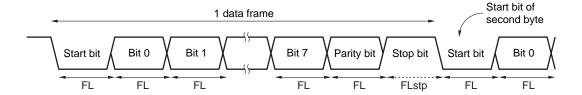
$$FLmax = \frac{21k - 2}{20k} FL \times 11$$

Therefore, the minimum receivable baud rate at the transmission destination is as follows.

BRmin =
$$(FLmax/11)^{-1} = \frac{20k}{21k - 2}$$
 Brate

The permissible baud rate error between UART6 and the transmission destination can be calculated from the above minimum and maximum baud rate expressions, as follows.

Table 14-5. Maximum/Minimum Permissible Baud Rate Error


Division Ratio (k)	Maximum Permissible Baud Rate Error	Minimum Permissible Baud Rate Error
8	+3.53%	-3.61%
20	+4.26%	-4.31%
50	+4.56%	-4.58%
100	+4.66%	-4.67%
255	+4.72%	-4.73%

- **Remarks 1.** The permissible error of reception depends on the number of bits in one frame, input clock frequency, and division ratio (k). The higher the input clock frequency and the higher the division ratio (k), the higher the permissible error.
 - 2. k: Set value of BRGC6

(5) Data frame length during continuous transmission

When data is continuously transmitted, the data frame length from a stop bit to the next start bit is extended by two clocks of base clock from the normal value. However, the result of communication is not affected because the timing is initialized on the reception side when the start bit is detected.

Figure 14-26. Data Frame Length During Continuous Transmission

Where the 1-bit data length is FL, the stop bit length is FLstp, and base clock frequency is fxclk6, the following expression is satisfied.

Therefore, the data frame length during continuous transmission is:

CHAPTER 15 SERIAL INTERFACES CSI10 AND CSI11

The μ PD78F0132H incorporate serial interface CSI10, and the μ PD78F0133H, 78F0134H, 78F0136H, 78F0138H, and 78F0138HD incorporate serial interfaces CSI10 and CSI11.

15.1 Functions of Serial Interfaces CSI10 and CSI11

Serial interfaces CSI10 and CSI11 have the following two modes.

- · Operation stop mode
- 3-wire serial I/O mode

(1) Operation stop mode

This mode is used when serial communication is not performed and can enable a reduction in the power consumption.

For details, see 15.4.1 Operation stop mode.

(2) 3-wire serial I/O mode (MSB/LSB-first selectable)

This mode is used to communicate 8-bit data using three lines: a serial clock line (SCK1n) and two serial data lines (SI1n and SO1n).

The processing time of data communication can be shortened in the 3-wire serial I/O mode because transmission and reception can be simultaneously executed.

In addition, whether 8-bit data is communicated with the MSB or LSB first can be specified, so this interface can be connected to any device.

The 3-wire serial I/O mode is used for connecting peripheral ICs and display controllers with a clocked serial interface.

For details, see 15.4.2 3-wire serial I/O mode.

15.2 Configuration of Serial Interfaces CSI10 and CSI11

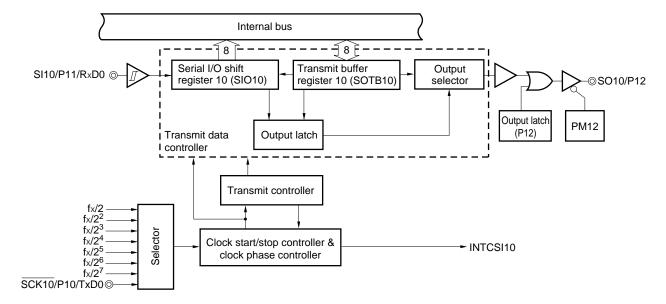

Serial interfaces CSI10 and CSI11 include the following hardware.

Table 15-1. Configuration of Serial Interfaces CSI10 and CSI11

Item	Configuration
Registers	Transmit buffer register 1n (SOTB1n) Serial I/O shift register 1n (SIO1n)
Control registers	Serial operation mode register 1n (CSIM1n) Serial clock selection register 1n (CSIC1n) Port mode register 0 (PM0) or port mode register 1 (PM1) Port register 0 (P0) or port register 1 (P1)

Remark n = 0: μ PD78F0132H n = 0, 1: μ PD78F0133H, 78F0134H, 78F0136H, 78F0138HD

Figure 15-1. Block Diagram of Serial Interface CSI10

Internal bus 8 È 8 Serial I/O shift Transmit buffer Output SI11/P03 @ register 11 (SIO11) register 11 (SOTB11) selector Output latch Transmit data Output latch (P02) controller SSI11 PM02 Transmit controller fx/2 $fx/2^2$ $fx/2^3$ Selector Clock start/stop controller & $fx/2^4$ ► INTCSI11 fx/2⁵ clock phase controller $fx/2^6$ $fx/2^7$ SCK11/P04 ⊚

Figure 15-2. Block Diagram of Serial Interface CSI11 (μPD78F0133H, 78F0134H, 78F0136H, 78F0138H, and 78F0138HD Only)

(1) Transmit buffer register 1n (SOTB1n)

This register sets the transmit data.

Transmission/reception is started by writing data to SOTB1n when bit 7 (CSIE1n) and bit 6 (TRMD1n) of serial operation mode register 1n (CSIM1n) is 1.

The data written to SOTB1n is converted from parallel data into serial data by serial I/O shift register 1n, and output to the serial output pin (SO1n).

SOTB1n can be written or read by an 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Cautions 1. Do not access SOTB1n when CSOT1n = 1 (during serial communication).

2. The SSI11 pin can be used in the slave mode. For details of the transmission/reception operation, see 15.4.2 (2) Communication operation.

(2) Serial I/O shift register 1n (SIO1n)

This is an 8-bit register that converts data from parallel data into serial data and vice versa.

This register can be read by an 8-bit memory manipulation instruction.

Reception is started by reading data from SIO1n if bit 6 (TRMD1n) of serial operation mode register 1n (CSIM1n) is 0

During reception, the data is read from the serial input pin (SI1n) to SIO1n.

RESET input clears this register to 00H.

Cautions 1. Do not access SIO1n when CSOT1n = 1 (during serial communication).

2. The SSI11 pin can be used in the slave mode. For details of the reception operation, see 15.4.2 (2) Communication operation.

Remark n = 0: μ PD78F0132H

15.3 Registers Controlling Serial Interfaces CSI10 and CSI11

Serial interfaces CSI10 and CSI11 are controlled by the following four registers.

- Serial operation mode register 1n (CSIM1n)
- Serial clock selection register 1n (CSIC1n)
- Port mode register 0 (PM0) or port mode register 1 (PM1)
- Port register 0 (P0) or port register 1 (P1)

(1) Serial operation mode register 1n (CSIM1n)

CSIM1n is used to select the operation mode and enable or disable operation.

CSIM1n can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Remark n = 0: μ PD78F0132H

n = 0, 1: μ PD78F0133H, 78F0134H, 78F0136H, 78F0138H, 78F0138HD

Figure 15-3. Format of Serial Operation Mode Register 10 (CSIM10)

Address: FF80H After reset: 00H R/WNote 1

 Symbol
 <7>
 6
 5
 4
 3
 2
 1
 0

 CSIM10
 CSIE10
 TRMD10
 0
 DIR10
 0
 0
 0
 CSOT10

CSIE10	Operation control in 3-wire serial I/O mode
0	Disables operation Note 2 and asynchronously resets the internal circuit Note 3.
1	Enables operation

TRMD10 ^N	Transmit/receive mode control	
O ^{Note 5}	Receive mode (transmission disabled).	
1	Transmit/receive mode	

DIR10 ^{Note 6}	First bit specification
0	MSB
1	LSB

	CSOT10	Communication status flag
	0	Communication is stopped.
Ī	1	Communication is in progress.

Notes 1. Bit 0 is a read-only bit.

2. When using P10/SCK10/TxD0, P11/SI10/RxD0, and P12/SO10 as general-purpose ports, set CSIM10 in the default status (00H).

- 3. Bit 0 (CSOT10) of CSIM10 and serial I/O shift register 10 (SIO10) are reset.
- **4.** Do not rewrite TRMD10 when CSOT10 = 1 (during serial communication).
- 5. The SO10 output is fixed to the low level when TRMD10 is 0. Reception is started when data is read from SIO10
- **6.** Do not rewrite DIR10 when CSOT10 = 1 (during serial communication).

Caution Be sure to clear bit 5 to 0.

<R>

331

Figure 15-4. Format of Serial Operation Mode Register 11 (CSIM11)

Address: FF88H After reset: 00H R/WNote 1

Symbol	<7>	6	5	4	3	2	1	0
CSIM11	CSIE11	TRMD11	SSE11	DIR11	0	0	0	CSOT11

CSIE11	Operation control in 3-wire serial I/O mode
0	Disables operation ^{Note 2} and asynchronously resets the internal circuit ^{Note 3} .
1	Enables operation

Ŀ	TRMD11 ^{Note 4}	Transmit/receive mode control
Ī	O ^{Note 5}	Receive mode (transmission disabled).
Ī	1	Transmit/receive mode

SSE11 ^{Notes 6, 7}	SSI11 pin use selection
0	SSI11 pin is not used
1	SSI11 pin is used

DIR11 ^{Note 8}	First bit specification
0	MSB
1	LSB

	CSOT11	Communication status flag			
	0	Communication is stopped.			
Ī	1	Communication is in progress.			

Notes 1. Bit 0 is a read-only bit.

- **2.** When using P02/SO11, P03/SI11, P04/SCK11, and P05/SSI11/TI001 as general-purpose port pins, set CSIM11 in the default status (00H).
- 3. Bit 0 (CSOT11) of CSIM11 and serial I/O shift register 11 (SIO11) are reset.
- **4.** Do not rewrite TRMD11 when CSOT11 = 1 (during serial communication).
- **5.** The SO11 output is fixed to the low level when TRMD11 is 0. Reception is started when data is read from SIO11.
- **6.** Do not rewrite SSE11 when CSOT11 = 1 (during serial communication).
- 7. Before setting this bit to 1, fix the $\overline{SSI11}$ pin input level to 0 or 1.
- **8.** Do not rewrite DIR11 when CSOT11 = 1 (during serial communication).

<R>

(2) Serial clock selection register 1n (CSIC1n)

This register specifies the timing of the data transmission/reception and sets the serial clock.

CSIC1n can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Remark n = 0: μ PD78F0132H

n = 0, 1: μ PD78F0133H, 78F0134H, 78F0136H, 78F0138HD

Figure 15-5. Format of Serial Clock Selection Register 10 (CSIC10)

Address: FF81H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
CSIC10	0	0	0	CKP10	DAP10	CKS102	CKS101	CKS100

CKP10	DAP10	Specification of data transmission/reception timing	Туре
0	0	SCK10	1
0	1	SCK10	2
1	0	SCK10	3
1	1	SCK10	4

CKS102	CKS101	CKS100	CSI10 serial clock selection ^{Note}	Mode
0	0	0	fx/2 (5 MHz)	Master mode
0	0	1	fx/2 ² (2.5 MHz)	Master mode
0	1	0	fx/2 ³ (1.25 MHz)	Master mode
0	1	1	fx/2 ⁴ (625 kHz)	Master mode
1	0	0	fx/2 ⁵ (312.5 kHz)	Master mode
1	0	1	fx/2 ⁶ (156.25 kHz)	Master mode
1	1	0	fx/2 ⁷ (78.13 kHz)	Master mode
1	1	1	External clock input to SCK10	Slave mode

Note Set the serial clock so that the following conditions are satisfied.

- V_{DD} = 4.0 to 5.5 V: Serial clock ≤ 5 MHz
- V_{DD} = 3.3 to 4.0 V: Serial clock \leq 4.19 MHz
- V_{DD} = 2.7 to 3.3 V: Serial clock \leq 2.5 MHz
- V_{DD} = 2.5 to 2.7 V: Serial clock ≤ 1.25 MHz (standard products, (A) grade products only)

- Cautions 1. When the internal oscillation clock is selected as the clock supplied to the CPU, the clock of the internal oscillator is divided and supplied as the serial clock. At this time, the operation of serial interface CSI10 is not guaranteed.
 - 2. Do not write to CSIC10 while CSIE10 = 1 (operation enabled).
 - 3. When using P10/SCK10/TxD0, P11/SI10/RxD0, and P12/SO10 as general-purpose ports, set CSIC10 in the default status (00H).
 - 4. The phase type of the data clock is type 1 after reset.
- **Remarks 1.** Figures in parentheses are for operation with fx = 10 MHz
 - 2. fx: High-speed system clock oscillation frequency

Figure 15-6. Format of Serial Clock Selection Register 11 (CSIC11)

Address: FF89H After reset: 00H R/W Symbol 5 4 3 2 1 0 CSIC11 0 0 0 CKP11 DAP11 CKS112 CKS111 CKS110

CKP11	DAP11	Specification of data transmission/reception timing	Туре
0	0	SCK11	1
0	1	SCK11	2
1	0	SCK11	3
1	1	SCK11	4

CKS112	CKS111	CKS110	CSI11 serial clock selection Note	Mode
0	0	0	fx/2 (5 MHz)	Master mode
0	0	1	fx/2 ² (2.5 MHz)	Master mode
0	1	0	fx/2 ³ (1.25 MHz)	Master mode
0	1	1	fx/2 ⁴ (625 kHz)	Master mode
1	0	0	fx/2 ⁵ (312.5 kHz)	Master mode
1	0	1	fx/2 ⁶ (156.25 kHz)	Master mode
1	1	0	fx/2 ⁷ (78.13 kHz)	Master mode
1	1	1	External clock input to SCK11	Slave mode

<R>

Note Set the serial clock so that the following conditions are satisfied.

- V_{DD} = 4.0 to 5.5 V: Serial clock ≤ 5 MHz
- V_{DD} = 3.3 to 4.0 V: Serial clock ≤ 4.19 MHz
- V_{DD} = 2.7 to 3.3 V: Serial clock ≤ 2.5 MHz

<R>

<R>

- V_{DD} = 2.5 to 2.7 V: Serial clock ≤ 1.25 MHz (standard products, (A) grade products only)
- Cautions 1. When the internal oscillation clock is selected as the clock supplied to the CPU, the clock of the internal oscillator is divided and supplied as the serial clock. At this time, the operation of serial interface CSI10 is not guaranteed.
 - 2. Do not write to CSIC11 while CSIE11 = 1 (operation enabled).
 - 3. When using P02/SO11, P03/SI11, and P04/SCK11 as general-purpose port pins, set CSIC11 in the default status (00H).
 - 4. The phase type of the data clock is type 1 after reset.
- **Remarks 1.** Figures in parentheses are for operation with fx = 10 MHz
 - 2. fx: High-speed system clock oscillation frequency

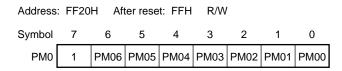
335

(3) Port mode registers 0 and 1 (PM0, PM1)

These registers set port 0 and 1 input/output in 1-bit units.

When using P10/SCK10 and P04/SCK11^{Note} as the clock output pins of the serial interface, clear PM10 and PM04 to 0 and set the output latches of P10 and P04 to 1.

When using P12/SO10 and P02/SO11^{Note} as the data output pins of the serial interface, clear PM12 and PM02, and the output latches of P12 and P02 to 0.


When using P10/SCK10 and P04/SCK11^{Note} as the clock input pins of the serial interface, P11/SI10/RxD0 and P03/SI11^{Note} as the data input pins, and P05/SSI11/TI001 as the chip select input pin, set PM10, PM04, PM11, PM03, and PM05 to 1. At this time, the output latches of P10, P04, P11, P03, and P05 may be 0 or 1.

PM0 and PM1 can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets these registers to FFH.

Note μ PD78F0133H, 78F0134H, 78F0136H, 78F0138H, and 78F0138HD only.

Figure 15-7. Format of Port Mode Register 0 (PM0)

PM0n	P0n pin I/O mode selection (n = 0 to 6)
0	Output mode (output buffer on)
1	Input mode (output buffer off)

Figure 15-8. Format of Port Mode Register 1 (PM1)

Address: FF21H After reset: FFH R/W

Symbol 7 6 5 4 3 2 1 0

PM1 PM17 PM16 PM15 PM14 PM13 PM12 PM11 PM10

PM1n	P1n pin I/O mode selection (n = 0 to 7)		
0 Output mode (output buffer on)			
1	Input mode (output buffer off)		

15.4 Operation of Serial Interfaces CSI10 and CSI11

Serial interfaces CSI10 and CSI11 can be used in the following two modes.

- · Operation stop mode
- 3-wire serial I/O mode

15.4.1 Operation stop mode

Serial communication is not executed in this mode. Therefore, the power consumption can be reduced. In addition, the P10/ $\overline{SCK10}$ /TxD0, P11/SI10/RxD0, P12/SO10, P02/SO11 $^{\text{Note}}$, P03/SI11 $^{\text{Note}}$, and P04/ $\overline{SCK11}^{\text{Note}}$ pins can be used as ordinary I/O port pins in this mode.

Note μ PD78F0133H, 78F0134H, 78F0136H, 78F0138H, and 78F0138HD only

(1) Register used

The operation stop mode is set by serial operation mode register 1n (CSIM1n).

To set the operation stop mode, clear bit 7 (CSIE1n) of CSIM1n to 0.

(a) Serial operation mode register 1n (CSIM1n)

CSIM1n can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears CSIM1n to 00H.

Remark n = 0: μ PD78F0132H

n = 0, 1: μ PD78F0133H, 78F0134H, 78F0136H, 78F0138HD

• Serial operation mode register 10 (CSIM10)

Address: FF80H After reset: 00H R/W

Symbol	
CSIM10	

<7>	6	5	4	3	2	1	0
CSIE10	TRMD10	0	DIR10	0	0	0	CSOT10

CSIE10	Operation control in 3-wire serial I/O mode
0	Disables operation Note 1 and asynchronously resets the internal circuit Note 2.

- Notes 1. When using P10/SCK10/TxD0, P11/SI10/RxD0, and P12/SO10 as general-purpose port pins, set CSIM10 in the default status (00H).
 - 2. Bit 0 (CSOT10) of CSIM10 and serial I/O shift register 10 (SIO10) are reset.
 - Serial operation mode register 11 (CSIM11)

Address: FF88H After reset: 00H R/W

Symbol CSIM11

<7>	6	5	4	3	2	1	0
CSIE11	TRMD11	SSE11	DIR11	0	0	0	CSOT11

CSIE11	Operation control in 3-wire serial I/O mode
0	Disables operation ^{Note 1} and asynchronously resets the internal circuit ^{Note 2} .

- Notes 1. When using P02/SO11, P03/SI11, P04/SCK11, and P05/SSI11/TI001 as general-purpose port pins, set CSIM11 in the default status (00H).
 - 2. Bit 0 (CSOT11) of CSIM11 and serial I/O shift register 11 (SIO11) are reset.

15.4.2 3-wire serial I/O mode

The 3-wire serial I/O mode is used for connecting peripheral ICs and display controllers with a clocked serial interface.

In this mode, communication is executed by using three lines: the serial clock (SCK1n), serial output (SO1n), and serial input (SI1n) lines.

(1) Registers used

- Serial operation mode register 1n (CSIM1n)
- Serial clock selection register 1n (CSIC1n)
- Port mode register 0 (PM0) or port mode register 1 (PM1)
- Port register 0 (P0) or port register 1 (P1)

The basic procedure of setting an operation in the 3-wire serial I/O mode is as follows.

- <1> Set the CSIC1n register (see Figures 15-5 and 15-6).
- <2> Set bits 0 and 4 to 6 (CSOT1n, DIR1n, SSE11 (serial interface CSI11 only), and TRMD1n) of the CSIM1n register (see Figures 15-3 and 15-4).
- <3> Set bit 7 (CSIE1n) of the CSIM1n register to 1. \rightarrow Transmission/reception is enabled.
- <4> Write data to transmit buffer register 1n (SOTB1n). → Data transmission/reception is started. Read data from serial I/O shift register 1n (SIO1n). → Data reception is started.

Caution Take relationship with the other party of communication when setting the port mode register and port register.

Remark n = 0: μ PD78F0132H

The relationship between the register settings and pins is shown below.

Table 15-2. Relationship Between Register Settings and Pins (1/2)

(a) Serial interface CSI10

CSIE10	TRMD10	PM11	P11	PM12	P12	PM10	P10	CSI10		Pin Function	
								Operation	SI10/RxD0/ P11	SO10/P12	SCK10/ TxD0/P10
0	×	x ^{Note 1}	× ^{Note 1}	Stop	RxD0/P11	P12	TxD0/ P10 ^{Note 2}				
1	0	1	×	× ^{Note 1}	× ^{Note 1}	1	×	Slave reception ^{Note 3}	SI10	P12	SCK10 (input) ^{Note 3}
1	1	× ^{Note 1}	× ^{Note 1}	0	0	1	×	Slave transmission ^{Note 3}	RxD0/P11	SO10	SCK10 (input) ^{Note 3}
1	1	1	×	0	0	1	×	Slave transmission/ reception ^{Note 3}	SI10	SO10	SCK10 (input) ^{Note 3}
1	0	1	×	× ^{Note 1}	× ^{Note 1}	0	1	Master reception	SI10	P12	SCK10 (output)
1	1	× ^{Note 1}	× ^{Note 1}	0	0	0	1	Master transmission	RxD0/P11	SO10	SCK10 (output)
1	1	1	×	0	0	0	1	Master transmission/ reception	SI10	SO10	SCK10 (output)

Notes 1. Can be set as port function.

2. To use P10/SCK10/TxD0 as port pins, clear CKP10 to 0.

3. To use the slave mode, set CKS102, CKS101, and CKS100 to 1, 1, 1.

Remark ×: don't care

CSIE10: Bit 7 of serial operation mode register 10 (CSIM10)

TRMD10: Bit 6 of CSIM10

CKP10: Bit 4 of serial clock selection register 10 (CSIC10)

CKS102, CKS101, CKS100: Bits 2 to 0 of CSIC10

PM1×: Port mode register

P1×: Port output latch

Table 15-2. Relationship Between Register Settings and Pins (2/2)

(b) Serial interface CSI11 (µPD78F0133H, 78F0134H, 78F0136H, 78F0138H and 78F0138HD only)

CSIE11	TRMD11	SSE11	PM03	P03	PM02	P02	PM04	P04	PM05	P05	CSI11	Pin Function			
											Operation	SI11/ P03	SO11/ P02	SCK11/ P04	SSI11/ TI001/P05
0	×	×	× ^{Note 1}	Stop	P03	P02	P04 Note 2	TI001/ P05							
1	0	0	1	×	× ^{Note 1}	× ^{Note 1}	1	×	× ^{Note 1}	× ^{Note 1}	Slave reception Note 3	SI11	P02	SCK11 (input)	TI001/ P05
		1							1	×				Note 3	
1	1	0	× ^{Note 1}	× ^{Note 1}	0	0	1	×	× ^{Note 1}	× ^{Note 1}	Slave transmission ^{Note 3}	P03	SO11	SCK11 (input)	TI001/ P05
		1							1	×				Note 3	SSI11
1	1	0	1	×	0	0	1	×	× ^{Note 1}	× ^{Note 1}	Slave transmission/	SI11	SO11	SCK11 (input)	TI001/ P05
		1							1	×	receptionNote 3			Note 3	SSI11
1	0	0	1	×	× ^{Note 1}	× ^{Note 1}	0	1	× ^{Note 1}	× ^{Note 1}	Master reception	SI11	P02	SCK11 (output)	TI001/ P05
1	1	0	× ^{Note 1}	× ^{Note 1}	0	0	0	1	× ^{Note 1}	× ^{Note 1}	Master transmission	P03	SO11	SCK11 (output)	TI001/ P05
1	1	0	1	×	0	0	0	1	× ^{Note 1}	× ^{Note 1}	Master transmission/ reception	SI11	SO11	SCK11 (output)	TI001/ P05

Notes 1. Can be set as port function.

2. To use P04/SCK11 as port pins, clear CKP11 to 0.

3. To use the slave mode, set CKS112, CKS111, and CKS110 to 1, 1, 1.

Remark ×: don't care

CSIE11: Bit 7 of serial operation mode register 11 (CSIM11)

TRMD11: Bit 6 of CSIM11

CKP11: Bit 4 of serial clock selection register 11 (CSIC11)

CKS112, CKS111, CKS110: Bits 2 to 0 of CSIC11

PM0×: Port mode register

P0×: Port output latch

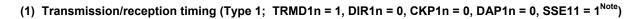
(2) Communication operation

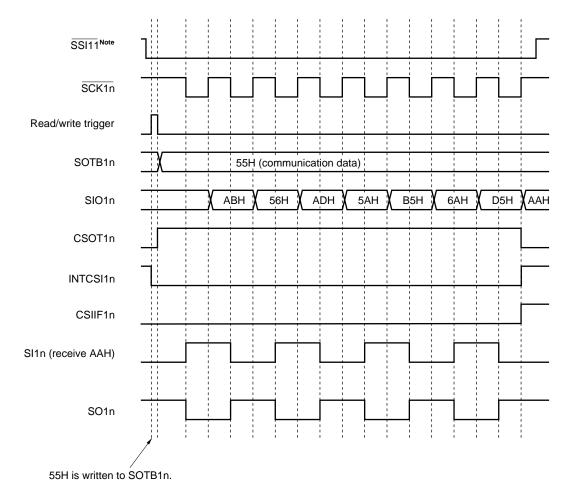
In the 3-wire serial I/O mode, data is transmitted or received in 8-bit units. Each bit of the data is transmitted or received in synchronization with the serial clock.

Data can be transmitted or received if bit 6 (TRMD1n) of serial operation mode register 1n (CSIM1n) is 1. Transmission/reception is started when a value is written to transmit buffer register 1n (SOTB1n). In addition, data can be received when bit 6 (TRMD1n) of serial operation mode register 1n (CSIM1n) is 0.

Reception is started when data is read from serial I/O shift register 1n (SIO1n).

However, communication is performed as follows if bit 5 (SSE11) of CSIM11 is 1 when serial interface CSI11 is in the slave mode.

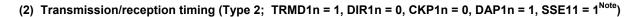

- <1> Low level input to the SSI11 pin
 - → Transmission/reception is started when SOTB11 is written, or reception is started when SIO11 is read.
- <2> High level input to the SSI11 pin
 - → Transmission/reception or reception is held, therefore, even if SOTB11 is written or SIO11 is read, transmission/reception or reception will not be started.
- <3> Data is written to SOTB11 or data is read from SIO11 while a high level is input to the SSI11 pin, then a low level is input to the SSI11 pin
 - → Transmission/reception or reception is started.
- <4> A high level is input to the SSI11 pin during transmission/reception or reception
 - → Transmission/reception or reception is suspended.

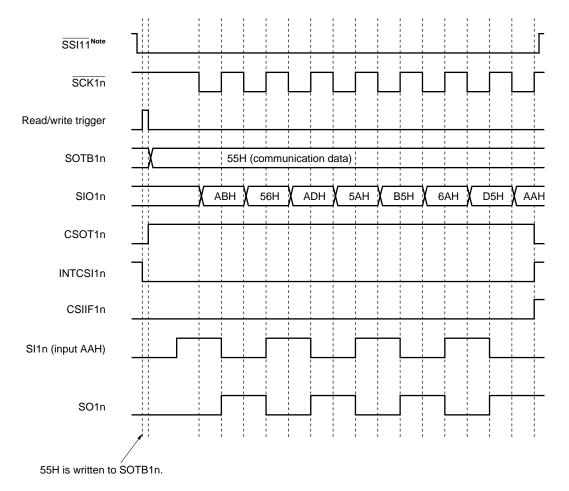

After communication has been started, bit 0 (CSOT1n) of CSIM1n is set to 1. When communication of 8-bit data has been completed, a communication completion interrupt request flag (CSIIF1n) is set, and CSOT1n is cleared to 0. Then the next communication is enabled.

- Cautions 1. Do not access the control register and data register when CSOT1n = 1 (during serial communication).
 - When using serial interface CSI11, wait for the duration of at least one clock before the clock operation is started to change the level of the SSI11 pin in the slave mode; otherwise, malfunctioning may occur.

Remark n = 0: μ PD78F0132H

Figure 15-9. Timing in 3-Wire Serial I/O Mode (1/2)

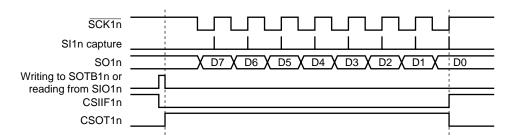




Note The SSE11 flag and SSI11 pin are available only for serial interface CSI11, and are used in the slave mode.

Remark n = 0: μ PD78F0132H

Figure 15-9. Timing in 3-Wire Serial I/O Mode (2/2)



Note The SSE11 flag and SSI11 pin are available only for serial interface CSI11, and are used in the slave mode.

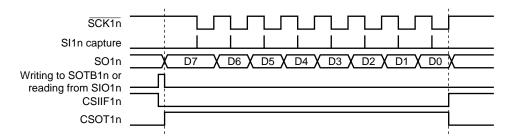
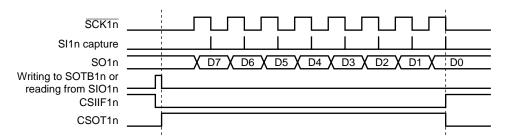
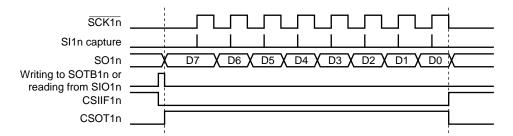

Remark n = 0: μ PD78F0132H

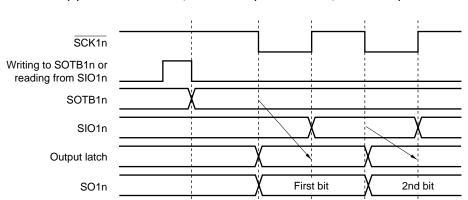
Figure 15-10. Timing of Clock/Data Phase


(a) Type 1; CKP1n = 0, DAP1n = 0


(b) Type 2; CKP1n = 0, DAP1n = 1

(c) Type 3; CKP1n = 1, DAP1n = 0

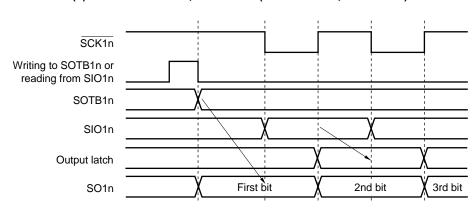
(d) Type 4; CKP1n = 1, DAP1n = 1



Remark n = 0: μ PD78F0132H

(3) Timing of output to SO1n pin (first bit)

When communication is started, the value of transmit buffer register 1n (SOTB1n) is output from the SO1n pin. The output operation of the first bit at this time is described below.


Figure 15-11. Output Operation of First Bit

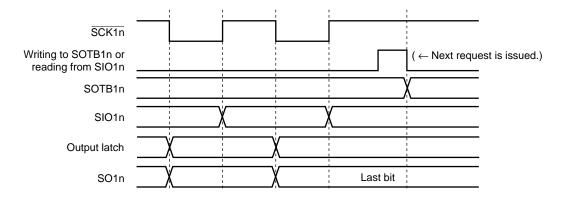
(1) When CKP1n = 0, DAP1n = 0 (or CKP1n = 1, DAP1n = 0)

The first bit is directly latched by the SOTB1n register to the output latch at the falling (or rising) edge of $\overline{SCK1n}$, and output from the SO1n pin via an output selector. Then, the value of the SOTB1n register is transferred to the SIO1n register at the next rising (or falling) edge of $\overline{SCK1n}$, and shifted one bit. At the same time, the first bit of the receive data is stored in the SIO1n register via the SI1n pin.

The second and subsequent bits are latched by the SIO1n register to the output latch at the next falling (or rising) edge of SCK1n, and the data is output from the SO1n pin.

(2) When CKP1n = 0, DAP1n = 1 (or CKP1n = 1, DAP1n = 1)

The first bit is directly latched by the SOTB1n register at the falling edge of the write signal of the SOTB1n register or the read signal of the SIO1n register, and output from the SO1n pin via an output selector. Then, the value of the SOTB1n register is transferred to the SIO1n register at the next falling (or rising) edge of $\overline{SCK1n}$, and shifted one bit. At the same time, the first bit of the receive data is stored in the SIO1n register via the SI1n pin. The second and subsequent bits are latched by the SIO1n register to the output latch at the next rising (or falling) edge of $\overline{SCK1n}$, and the data is output from the SO1n pin.


Remark n = 0: μ PD78F0132H

(4) Output value of SO1n pin (last bit)


After communication has been completed, the SO1n pin holds the output value of the last bit.

Figure 15-12. Output Value of SO1n Pin (Last Bit)

(1) Type 1; when CKP1n = 0 and DAP1n = 0 (or CKP1n = 1, DAP1n = 0)

(2) Type 2; when CKP1n = 0 and DAP1n = 1 (or CKP1n = 1, DAP1n = 1)

Remark n = 0: μ PD78F0132H

(5) SO1n output

The status of the SO1n output is as follows if bit 7 (CSIE1n) of serial operation mode register 1n (CSIM1n) is cleared to 0.

Table 15-3. SO1n Output Status

TRMD1n	DAP1n	DIR1n	SO1n Output ^{Note 1}
TRMD1n = 0 ^{Note 2}	_	_	Outputs low level ^{Note 2}
TRMD1n = 1	DAP1n = 0	-	Value of SO1n latch (low-level output)
	DAP1n = 1	DIR1n = 0	Value of bit 7 of SOTB1n
		DIR1n = 1	Value of bit 0 of SOTB1n

Notes 1. The actual output of the SO10/P12 or SO11/P02 pin is determined according to PM12 and P12 or PM02 and P02, as well as the SO1n output.

2. Status after reset

Caution If a value is written to TRMD1n, DAP1n, and DIR1n, the output value of SO1n changes.

Remark n = 0: μ PD78F0132H

CHAPTER 16 MULTIPLIER/DIVIDER

16.1 Functions of Multiplier/Divider

The multiplier/divider has the following functions.

- 16 bits × 16 bits = 32 bits (multiplication)
- 32 bits ÷ 16 bits = 32 bits, 16-bit remainder (division)

16.2 Configuration of Multiplier/Divider

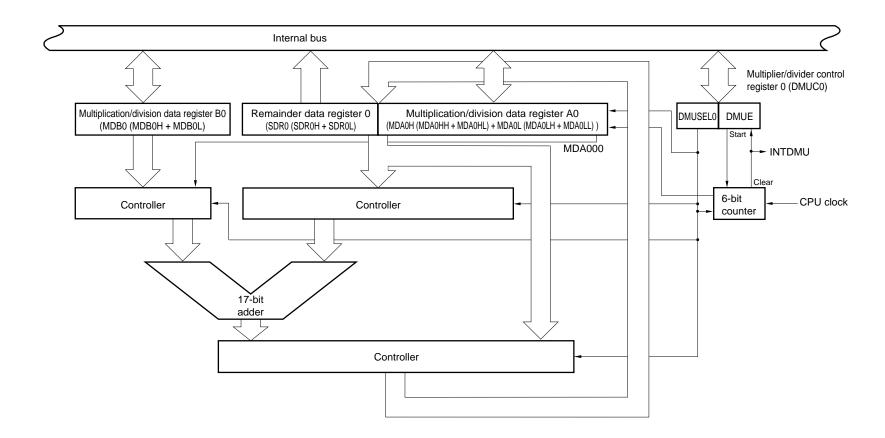
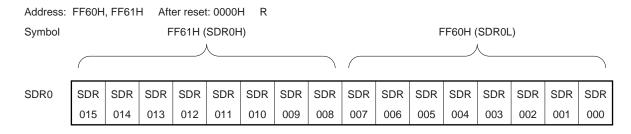

The multiplier/divider includes the following hardware.

Table 16-1. Configuration of Multiplier/Divider

Item	Configuration
Registers	Remainder data register 0 (SDR0) Multiplication/division data registers A0 (MDA0H, MDA0L) Multiplication/division data registers B0 (MDB0)
Control register	Multiplier/divider control register 0 (DMUC0)

Figure 16-1 shows the block diagram of the multiplier/divider.

Figure 16-1. Block Diagram of Multiplier/Divider

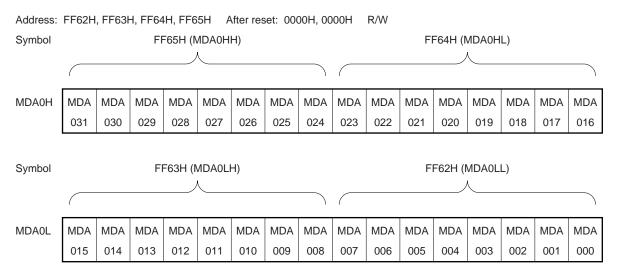

(1) Remainder data register 0 (SDR0)

SDR0 is a 16-bit register that stores a remainder. This register stores 0 in the multiplication mode and the remainder of an operation result in the division mode.

This register can be read by an 8-bit or 16-bit memory manipulation instruction.

RESET input clears this register to 0000H.

Figure 16-2. Format of Remainder Data Register 0 (SDR0)



- Cautions 1. The value read from SDR0 during operation processing (while bit 7 (DMUE) of multiplier/divider control register 0 (DMUC0) is 1) is not guaranteed.
 - 2. SDR0 is reset when the operation is started (when DMUE is set to 1).

(2) Multiplication/division data register A0 (MDA0H, MDA0L)

MDA0 is a 32-bit register that sets a 16-bit multiplier A in the multiplication mode and a 32-bit dividend in the division mode, and stores the 32-bit result of the operation (higher 16 bits: MDA0H, lower 16 bits: MDA0L).

Figure 16-3. Format of Multiplication/Division Data Register A0 (MDA0H, MDA0L)

- Cautions 1. MDA0H is cleared to 0 when an operation is started in the multiplication mode (when multiplier/divider control register 0 (DMUC0) is set to 81H).
 - Do not change the value of MDA0 during operation processing (while bit 7 (DMUE) of multiplier/divider control register 0 (DMUC0) is 1). Even in this case, the operation is executed, but the result is undefined.
 - 3. The value read from MDA0 during operation processing (while DMUE is 1) is not guaranteed.

The functions of MDA0 when an operation is executed are shown in the table below.

Table 16-2. Functions of MDA0 During Operation Execution

DMUSEL0	Operation Mode	Setting	Operation Result
0	Division mode	Dividend	Division result (quotient)
1	Multiplication mode	Higher 16 bits: 0, Lower 16 bits: Multiplier A	Multiplication result (product)

The register configuration differs between when multiplication is executed and when division is executed, as follows.

Register configuration during multiplication

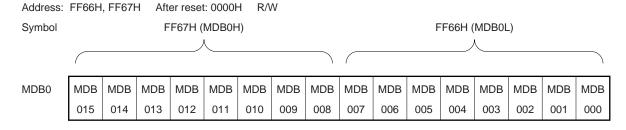
· Register configuration during division

MDA0 (bits 31 to 0)
$$\div$$
 MDB0 (bits 15 to 0) = MDA0 (bits 31 to 0) ... SDR0 (bits 15 to 0)

MDA0 fetches the calculation result as soon as the clock is input, when bit 7 (DMUE) of multiplier/divider control register 0 (DMUC0) is set to 1.

MDA0H and MDA0L can be set by an 8-bit or 16-bit memory manipulation instruction.

RESET input clears this register to 0000H.


(3) Multiplication/division data register B0 (MDB0)

MDB0 is a register that stores a 16-bit multiplier B in the multiplication mode and a 16-bit divisor in the division mode.

This register can be set by an 8-bit or 16-bit memory manipulation instruction.

RESET input clears this register to 0000H.

Figure 16-4. Format of Multiplication/Division Data Register B0 (MDB0)

- Cautions 1. Do not change the value of MDB0 during operation processing (while bit 7 (DMUE) of multiplier/divider control register 0 (DMUC0) is 1). Even in this case, the operation is executed, but the result is undefined.
 - 2. Do not clear MDB0 to 0000H in the division mode. If set, undefined operation results are stored in MDA0 and SDR0.

16.3 Register Controlling Multiplier/Divider

The multiplier/divider is controlled by multiplier/divider control register 0 (DMUC0).

(1) Multiplier/divider control register 0 (DMUC0)

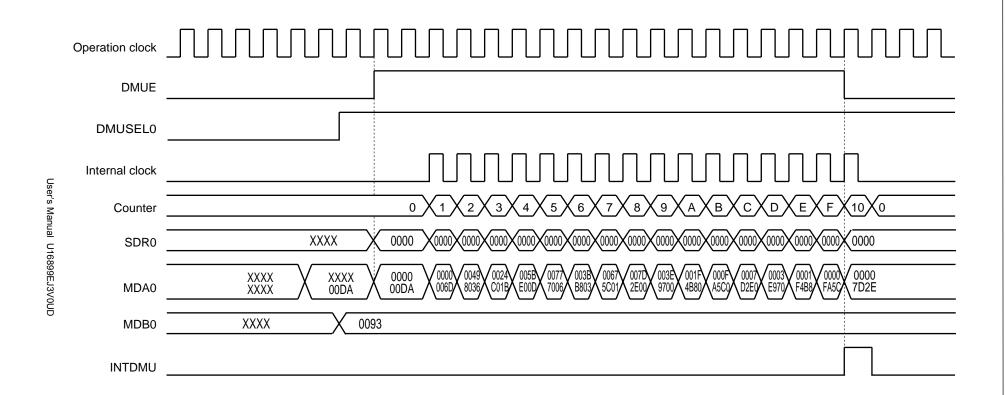
DMUC0 is an 8-bit register that controls the operation of the multiplier/divider. This register can be read by a 1-bit or 8-bit memory manipulation instruction. RESET input clears this register to 00H.

Figure 16-5. Format of Multiplier/Divider Control Register 0 (DMUC0)

<7>	6	5	4	3	2	1	0
DMUE	0	0	0	0	0	0	DMUSEL0
1							
		DMUE 0	DMUE 0 0	DMUE 0 0 0	DMUE 0 0 0 0	DMUE 0 0 0 0 0	DMUE 0 0 0 0 0

DMUE ^{Note}	Operation start/stop
0	Stops operation
1	Starts operation

DMUSEL0	Operation mode (multiplication/division) selection
0	Division mode
1	Multiplication mode


Note When DMUE is set to 1, the operation is started. DMUE is automatically cleared to 0 after the operation is complete.

- Cautions 1. If DMUE is cleared to 0 during operation processing (when DMUE is 1), the operation result is not guaranteed. If the operation is completed while the clearing instruction is being executed, the operation result is guaranteed, provided that the interrupt flag is set.
 - Do not change the value of DMUSEL0 during operation processing (while DMUE is 1). If it is changed, undefined operation results are stored in multiplication/division data register A0 (MDA0) and remainder data register 0 (SDR0).
 - 3. If DMUE is cleared to 0 during operation processing (while DMUE is 1), the operation processing is stopped. To execute the operation again, set multiplication/division data register A0 (MDA0), multiplication/division data register B0 (MDB0), and multiplier/divider control register 0 (DMUC0), and start the operation (by clearing DMUE to 1).

16.4 Operations of Multiplier/Divider

16.4.1 Multiplication operation

- · Initial setting
 - 1. Set operation data to multiplication/division data register A0L (MDA0L) and multiplication/division data register B0 (MDB0).
- 2. Set bits 0 (DMUSEL0) and 7 (DMUE) of multiplier/divider control register 0 (DMUC0) to 1. Operation will start.
- During operation
- 3. The operation will be completed when 16 internal clocks have been issued after the start of the operation (intermediate data is stored in the MDA0L and MDA0H registers during operation, and therefore the read values of these registers are not guaranteed).
- End of operation
- 4. The operation result data is stored in the MDA0L and MDA0H registers.
- 5. DMUE is cleared to 0 (end of operation).
- 6. After the operation, an interrupt request signal (INTDMU) is generated.
- Next operation
- 7. To execute multiplication next, start from the initial setting in 16.4.1 Multiplication operation.
- 8. To execute division next, start from the initial setting in 16.4.2 Division operation.

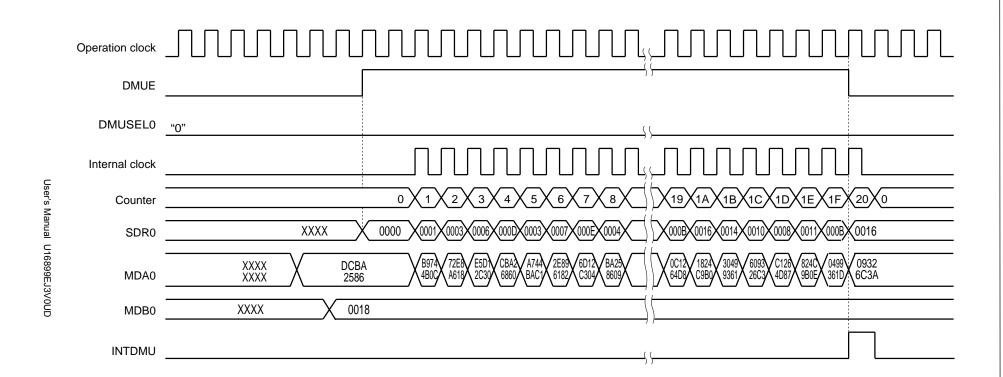
16.4.2 Division operation

• Initial setting

- 1. Set operation data to multiplication/division data register A0 (MDA0L and MDA0H) and multiplication/division data register B0 (MDB0).
- 2. Set bits 0 (DMUSEL0) and 7 (DMUE) of multiplier/divider control register 0 (DMUC0) to 0 and 1, respectively. Operation will start.

• During operation

3. The operation will be completed when 32 internal clocks have been issued after the start of the operation (intermediate data is stored in the MDA0L and MDA0H registers and remainder data register 0 (SDR0) during operation, and therefore the read values of these registers are not guaranteed).


• End of operation

- 4. The result data is stored in the MDA0L, MDA0H, and SDR0 registers.
- 5. DMUE is cleared to 0 (end of operation).
- 6. After the operation, an interrupt request signal (INTDMU) is generated.

• Next operation

- 7. To execute multiplication next, start from the initial setting in 16.4.1 Multiplication operation.
- 8. To execute division next, start from the initial setting in 16.4.2 Division operation.

Figure 16-7. Timing Chart of Division Operation (DCBA2586H ÷ 0018H)

CHAPTER 17 INTERRUPT FUNCTIONS

17.1 Interrupt Function Types

The following two types of interrupt functions are used.

(1) Maskable interrupts

These interrupts undergo mask control. Maskable interrupts can be divided into a high interrupt priority group and a low interrupt priority group by setting the priority specification flag registers (PR0L, PR0H, PR1L, PR1H). Multiple interrupt servicing can be applied to low-priority interrupts when high-priority interrupts are generated. If two or more interrupts with the same priority are generated simultaneously, each interrupt is serviced according to its predetermined priority (see **Table 17-1**).

A standby release signal is generated and STOP and HALT modes are released.

Nine external interrupt requests and 19 (16 in the μ PD78F0132H) internal interrupt requests are provided as maskable interrupts.

(2) Software interrupt

This is a vectored interrupt generated by executing the BRK instruction. It is acknowledged even when interrupts are disabled. The software interrupt does not undergo interrupt priority control.

17.2 Interrupt Sources and Configuration

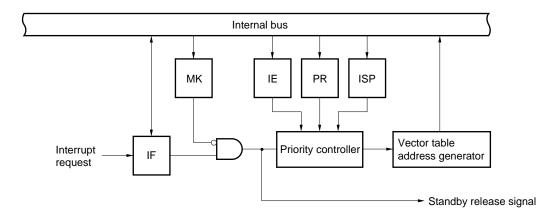
A total of 29 (26 in the μ PD78F0132H) interrupt sources exist for maskable and software interrupts. In addition, maximum total of 5 reset sources are also provided (see **Table 17-1**).

Table 17-1. Interrupt Source List (1/2)

Interrupt	Interrupt Default		Interrupt Source	Internal/	Vector	Basic
Туре	Priority ^{Note 1}	Name	Trigger	External	Table Address	Configuration Type ^{Note 2}
Maskable	0	INTLVI	Low-voltage detection Note 3	Internal	0004H	(A)
	1	INTP0	Pin input edge detection	External	0006H	(B)
	2	INTP1			H8000	
	3	INTP2			000AH	
	4	INTP3			000CH	
	5	INTP4			000EH	
	6	INTP5			0010H	
	7	INTSRE6	UART6 reception error generation	Internal	0012H	(A)
	8	INTSR6	End of UART6 reception		0014H	
	9	INTST6	End of UART6 transmission		0016H	
	10	INTCSI10/ INTST0	End of CSI10 communication/end of UART0 transmission		0018H	
	11	INTTMH1	Match between TMH1 and CMP01 (when compare register is specified)		001AH	
	12	INTTMH0	Match between TMH0 and CMP00 (when compare register is specified)		001CH	
	13	INTTM50	Match between TM50 and CR50 (when compare register is specified)		001EH	
	14	INTTM000	Match between TM00 and CR000 (when compare register is specified), TI010 pin valid edge detection (when capture register is specified)		0020H	
	15	INTTM010	Match between TM00 and CR010 (when compare register is specified), TI000 pin valid edge detection (when capture register is specified)		0022H	
	16	INTAD	End of A/D conversion		0024H	
	17	INTSR0	End of UART0 reception or reception error generation		0026H	
	18	INTWTI	Watch timer reference time interval signal		0028H	
	19	INTTM51	Match between TM51 and CR51 (when compare register is specified)		002AH	
	20	INTKR	Key interrupt detection	External	002CH	(C)
	21	INTWT	Watch timer overflow	Internal	002EH	(A)
	22	INTP6	Pin input edge detection	External	0030H	(B)
	23	INTP7			0032H	

Notes 1. The default priority is the priority applicable when two or more maskable interrupt are generated simultaneously. 0 is the highest priority, and 27 is the lowest.

- 2. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 17-1.
- 3. When bit 1 (LVIMD) of the low-voltage detection register (LVIM) is set to 0.


Table 17-1. Interrupt Source List (2/2)

Interrupt	Default		Interrupt Source	Internal/	Vector	Basic	
Туре	Priority ^{Note 1}	Name Trigger E		External	Table Address	Configuration Type ^{Note 2}	
Maskable	24	INTDMU	End of multiply/divide operation	Internal	0034H	(A)	
	25	INTCSI11 ^{Note 3}	End of CSI11 communication		0036H		
	26	INTTM001 ^{Note 3}			0038H		
	27 INTTM011 ^{Note 3}		Match between TM01 and CR011 (when compare register is specified), Tl001 pin valid edge detection (when capture register is specified)		003AH		
Software	_	BRK	BRK instruction execution	-	003EH	(D)	
Reset	_	RESET	Reset input	-	0000H	-	
		POC	Power-on clear				
		LVI	Low-voltage detection ^{Note 4}				
		Clock monitor	High-speed system clock oscillation stop detection				
		WDT	WDT overflow				

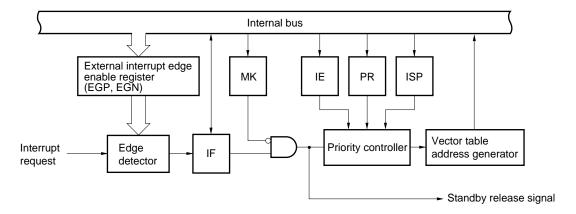
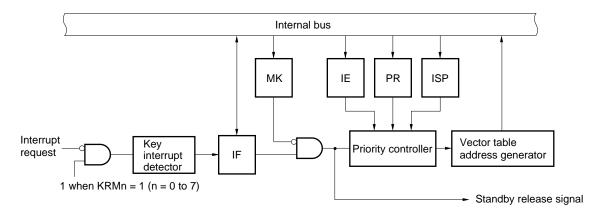

- **Notes 1.** The default priority is the priority applicable when two or more maskable interrupt are generated simultaneously. 0 is the highest priority, and 27 is the lowest.
 - 2. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 17-1.
 - 3. The interrupt sources INTCSI11, INTTM001, and INTTM011 are available only in the μ PD78F0133H, 78F0134H, 78F0136H, 78F0138H, and 78F0138HD.
 - **4.** When bit 1 (LVIMD) of the low-voltage detection register (LVIM) is set to 1.

Figure 17-1. Basic Configuration of Interrupt Function (1/2)

(A) Internal maskable interrupt


(B) External maskable interrupt (INTP0 to INTP7)

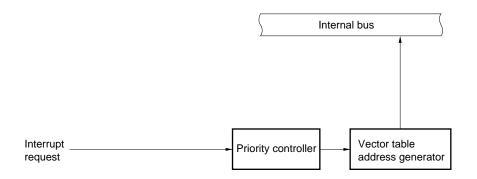

IF: Interrupt request flagIE: Interrupt enable flagISP: In-service priority flagMK: Interrupt mask flagPR: Priority specification flag

Figure 17-1. Basic Configuration of Interrupt Function (2/2)

(C) External maskable interrupt (INTKR)

(D) Software interrupt

IF: Interrupt request flag
IE: Interrupt enable flag
ISP: In-service priority flag
MK: Interrupt mask flag
PR: Priority specification flag
KRM: Key return mode register

17.3 Registers Controlling Interrupt Functions

The following 6 types of registers are used to control the interrupt functions.

- Interrupt request flag register (IF0L, IF0H, IF1L, IF1H)
- Interrupt mask flag register (MK0L, MK0H, MK1L, MK1H)
- Priority specification flag register (PR0L, PR0H, PR1L, PR1H)
- External interrupt rising edge enable register (EGP)
- External interrupt falling edge enable register (EGN)
- Program status word (PSW)

Table 17-2 shows a list of interrupt request flags, interrupt mask flags, and priority specification flags corresponding to interrupt request sources.

Table 17-2. Flags Corresponding to Interrupt Request Sources

Interrupt	Interrupt R	Request Flag	Interrupt	Mask Flag	Priority Specification Flag		
Request		Register		Register		Register	
INTLVI	LVIIF	IF0L	LVIMK	MK0L	LVIPR	PR0L	
INTP0	PIF0		РМК0]	PPR0		
INTP1	PIF1		PMK1]	PPR1		
INTP2	PIF2		PMK2		PPR2		
INTP3	PIF3		РМК3		PPR3		
INTP4	PIF4		PMK4		PPR4		
INTP5	PIF5		PMK5]	PPR5		
INTSRE6	SREIF6		SREMK6		SREPR6		
INTSR6	SRIF6	IF0H	SRMK6	МК0Н	SRPR6	PR0H	
INTST6	STIF6		STMK6		STPR6		
INTCSI10	DUALIF0 ^{Note 1}		DUALMK0 ^{Note 2}		DUALPR0 ^{Note 2}		
INTST0							
INTTMH1	TMIFH1		TMMKH1		TMPRH1		
INTTMH0	TMIFH0		TMMKH0		TMPRH0		
INTTM50	TMIF50		TMMK50		TMPR50		
INTTM000	TMIF000		TMMK000		TMPR000		
INTTM010	TMIF010		TMMK010		TMPR010		
INTAD	ADIF	IF1L	ADMK	MK1L	ADPR	PR1L	
INTSR0	SRIF0		SRMK0		SRPR0		
INTWTI	WTIIF		WTIMK		WTIPR		
INTTM51	TMIF51		TMMK51		TMPR51		
INTKR	KRIF		KRMK		KRPR		
INTWT	WTIF		WTMK		WTPR		
INTP6	PIF6		PMK6		PPR6		
INTP7	PIF7		PMK7		PPR7		
INTDMU	DMUIF	IF1H	DMUMK	MK1H	DMUPR	PR1H	
INTCSI11 ^{Note 3}	CSIIF11 ^{Note 3}		CSIMK11 ^{Note 3}		CSIPR11 ^{Note 3}		
INTTM001 ^{Note 3}	TMIF001 ^{Note 3}		TMMK001 ^{Note 3}		TMPR001 ^{Note 3}		
INTTM011 ^{Note 3}	TMIF011 ^{Note 3}		TMMK011 ^{Note 3}		TMPR011Note 3		

Notes 1. If either of the two types of interrupt sources is generated, these flags are set (1).

- **2.** Both types of interrupt sources are supported.
- **3.** μ PD78F0133H, 78F0134H, 78F0136H, 78F0138H, and 78F0138HD only.

(1) Interrupt request flag registers (IF0L, IF0H, IF1L, IF1H)

The interrupt request flags are set to 1 when the corresponding interrupt request is generated or an instruction is executed. They are cleared to 0 when an instruction is executed upon acknowledgment of an interrupt request or upon RESET input.

When an interrupt is acknowledged, the interrupt request flag is automatically cleared and then the interrupt routine is entered.

IF0L, IF0H, IF1L, and IF1H are set by a 1-bit or 8-bit memory manipulation instruction. When IF0L and IF0H, and IF1L and IF1H are combined to form 16-bit registers IF0 and IF1, they are read with a 16-bit memory manipulation instruction.

RESET input clears these registers to 00H.

Figure 17-2. Format of Interrupt Request Flag Registers (IF0L, IF0H, IF1L, IF1H)

Address: FFE0H After reset: 00H R/W									
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>	
IF0L	SREIF6	PIF5	PIF4	PIF3	PIF2	PIF1	PIF0	LVIIF	
Address: FFE1H After reset: 00H R/W									
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>	
IF0H	TMIF010	TMIF000	TMIF50	TMIFH0	TMIFH1	DUALIF0	STIF6	SRIF6	
Address: FF	E2H After re	eset: 00H I	R/W						
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>	
IF1L	PIF7	PIF6	WTIF	KRIF	TMIF51	WTIIF	SRIF0	ADIF	
Address: FF	E3H After re	eset: 00H I	R/W						
Symbol	7	6	5	4	<3>	<2>	<1>	<0>	
IF1H	0	0	0	0	TMIF011 ^{Note}	TMIF001 ^{Note}	CSIIF11 ^{Note}	DMUIF	
	XXIFX			Inte	errupt request	flag			
	0	No interrupt	request signa	l is generated	<u> </u>				
	1	Interrupt req	uest is genera	ated, interrupt	request status	s			

Note μ PD78F0133H, 78F0134H, 78F0136H, 78F0138H, and 78F0138HD only. Be sure to clear this bit to 0 for the μ PD78F0132H.

Cautions 1. Be sure to clear bits 4 to 7 of IF1H to 0.

2. When operating a timer, serial interface, or A/D converter after standby release, operate it once after clearing the interrupt request flag. An interrupt request flag may be set by noise.

Caution 3. Use the 1-bit memory manipulation instruction (CLR1) for manipulating the flag of the interrupt request flag register. A 1-bit manipulation instruction such as "IF0L.0 = 0;" and "_asm("clr1 IF0L, 0");" should be used when describing in C language, because assembly instructions after compilation must be 1-bit memory manipulation instructions (CLR1).

If an 8-bit memory manipulation instruction "IF0L & = 0xfe;" is described in C language, for example, it is converted to the following three assembly instructions after compilation:

```
mov a, IF0L
and a, #0FEH
mov IF0L, a
```

In this case, at the timing between "mov a, IF0L" and "mov IF0L, a", if the request flag of another bit of the identical interrupt request flag register (IF0L) is set to 1, it is cleared to 0 by "mov IF0L, a". Therefore, care must be exercised when using an 8-bit memory manipulation instruction in C language.

(2) Interrupt mask flag registers (MK0L, MK0H, MK1L, MK1H)

The interrupt mask flags are used to enable/disable the corresponding maskable interrupt servicing.

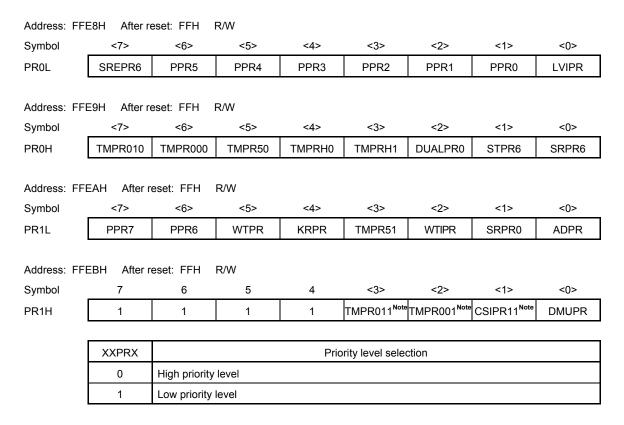
MK0L, MK0H, MK1L, and MK1H are set by a 1-bit or 8-bit memory manipulation instruction. When MK0L and MK0H, and MK1L and MK1H are combined to form 16-bit registers MK0 and MK1, they are set with a 16-bit memory manipulation instruction.

RESET input sets MK0L, MK0H, and MK1L to FFH and sets MK1H to DFH.

Figure 17-3. Format of Interrupt Mask Flag Registers (MK0L, MK0H, MK1L, MK1H)

Symbol <7> <6> <5> <4> <3> <2> <1> <0> MK0L SREMK6 PMK5 PMK4 PMK3 PMK2 PMK1 PMK0 LVIMK Address: FFE5H After reset: FFH R/W Symbol <7> <6> <5> <4> <3> <2> <1> <0>
Address: FFE5H After reset: FFH R/W Symbol <7> <6> <5> <4> <3> <2> <1> <0>
Symbol <7> <6> <5> <4> <3> <2> <1> <0>
Symbol <7> <6> <5> <4> <3> <2> <1> <0>
THE RESERVE THE RE
MK0H TMMK010 TMMK000 TMMK50 TMMKH0 TMMKH1 DUALMK0 STMK6 SRMK6
Address: FFE6H After reset: FFH R/W
Symbol <7> <6> <5> <4> <3> <2> <1> <0>
MK1L PMK7 PMK6 WTMK KRMK TMMK51 WTIMK SRMK0 ADMK
Address: FFE7H After reset: DFH R/W
Symbol 7 6 5 4 <3> <2> <1> <0>
MK1H 1 1 0 1 TMMK011 ^{Not} TMMK001 ^{Not} CSIMK11 ^{Note} DMUMI
e e
XXMKX Interrupt servicing control
0 Interrupt servicing enabled
1 Interrupt servicing disabled

Note μ PD78F0133H, 78F0136H, 78F0138H, and 78F0138HD only. Be sure to set this bit to 1 for the μ PD78F0132H.


Caution Be sure to set bits 4, 6, and 7 of MK1H to 1. Be sure to clear bit 5 of MK1H to 0.

(3) Priority specification flag registers (PR0L, PR0H, PR1L, PR1H)

The priority specification flag registers are used to set the corresponding maskable interrupt priority order. PR0L, PR0H, PR1L, and PR1H are set by a 1-bit or 8-bit memory manipulation instruction. If PR0L and PR0H, and PR1L and PR1H are combined to form 16-bit registers PR0 and PR1, they are set with a 16-bit memory manipulation instruction.

RESET input sets these registers to FFH.

Figure 17-4. Format of Priority Specification Flag Registers (PR0L, PR0H, PR1L, PR1H)

Note μ PD78F0133H, 78F0134H, 78F0136H, 78F0138H, and 78F0138HD only. Be sure to set this bit to 1 for the μ PD78F0132H.

Caution Be sure to set bits 4 to 7 of PR1H to 1.

(4) External interrupt rising edge enable register (EGP), external interrupt falling edge enable register (EGN)

These registers specify the valid edge for INTP0 to INTP7.

EGP and EGN are set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears these registers to 00H.

Figure 17-5. Format of External Interrupt Rising Edge Enable Register (EGP) and External Interrupt Falling Edge Enable Register (EGN)

Address: FF48H After reset: 00H Symbol 7 6 5 3 2 0 4 1 EGP EGP7 EPG6 EGP5 EGP4 EGP3 EGP2 EGP1 EGP0 Address: FF49H After reset: 00H 7 Symbol 6 5 3 2 0 4 1 **EGN** EGN7 EGN6 EGN5 EGN4 EGN3 EGN2 EGN1 EGN0

EGPn	EGNn	INTPn pin valid edge selection (n = 0 to 7)
0	0	Edge detection disabled
0	1	Falling edge
1	0	Rising edge
1	1	Both rising and falling edges

Table 17-3 shows the ports corresponding to EGPn and EGNn.

Table 17-3. Ports Corresponding to EGPn and EGNn

Detection En	able Register	Edge Detection Port	External Request Signal	
EGP0	EGN0	P120	INTP0	
EGP1	EGN1	P30	INTP1	
EGP2	EGN2	P31	INTP2	
EGP3	EGN3	P32	INTP3	
EGP4	EGN4	P33	INTP4	
EGP5	EGN5	P16	INTP5	
EGP6	EGN6	P140	INTP6	
EGP7	EGN7	P141	INTP7	

Caution Select the port mode by clearing EGPn and EGNn to 0 because an edge may be detected when the external interrupt function is switched to the port function.

Remark n = 0 to 7

(5) Program status word (PSW)

The program status word is a register used to hold the instruction execution result and the current status for an interrupt request. The IE flag that sets maskable interrupt enable/disable and the ISP flag that controls multiple interrupt servicing are mapped to the PSW.

Besides 8-bit read/write, this register can carry out operations using bit manipulation instructions and dedicated instructions (EI and DI). When a vectored interrupt request is acknowledged, if the BRK instruction is executed, the contents of the PSW are automatically saved into a stack and the IE flag is reset to 0. If a maskable interrupt request is acknowledged, the contents of the priority specification flag of the acknowledged interrupt are transferred to the ISP flag. The PSW contents are also saved into the stack with the PUSH PSW instruction. They are restored from the stack with the RETI, RETB, and POP PSW instructions.

RESET input sets PSW to 02H.

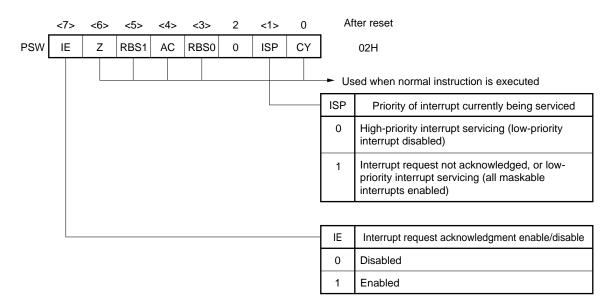


Figure 17-6. Format of Program Status Word

17.4 Interrupt Servicing Operations

17.4.1 Maskable interrupt acknowledgement

A maskable interrupt becomes acknowledgeable when the interrupt request flag is set to 1 and the mask (MK) flag corresponding to that interrupt request is cleared to 0. A vectored interrupt request is acknowledged if interrupts are in the interrupt enabled state (when the IE flag is set to 1). However, a low-priority interrupt request is not acknowledged during servicing of a higher priority interrupt request (when the ISP flag is reset to 0). The times from generation of a maskable interrupt request until interrupt servicing is performed are listed in Table 17-4 below.

For the interrupt request acknowledgement timing, see Figures 17-8 and 17-9.

Table 17-4. Time from Generation of Maskable Interrupt Until Servicing

	Minimum Time	Maximum Time ^{Note}		
When xxPR = 0	7 clocks	32 clocks		
When ××PR = 1	8 clocks	33 clocks		

Note If an interrupt request is generated just before a divide instruction, the wait time becomes longer.

Remark 1 clock: 1/fcpu (fcpu: CPU clock)

If two or more maskable interrupt requests are generated simultaneously, the request with a higher priority level specified in the priority specification flag is acknowledged first. If two or more interrupts requests have the same priority level, the request with the highest default priority is acknowledged first.

An interrupt request that is held pending is acknowledged when it becomes acknowledgeable.

Figure 17-7 shows the interrupt request acknowledgement algorithm.

If a maskable interrupt request is acknowledged, the contents are saved into the stacks in the order of PSW, then PC, the IE flag is reset (0), and the contents of the priority specification flag corresponding to the acknowledged interrupt are transferred to the ISP flag. The vector table data determined for each interrupt request is the loaded into the PC and branched.

Restoring from an interrupt is possible by using the RETI instruction.

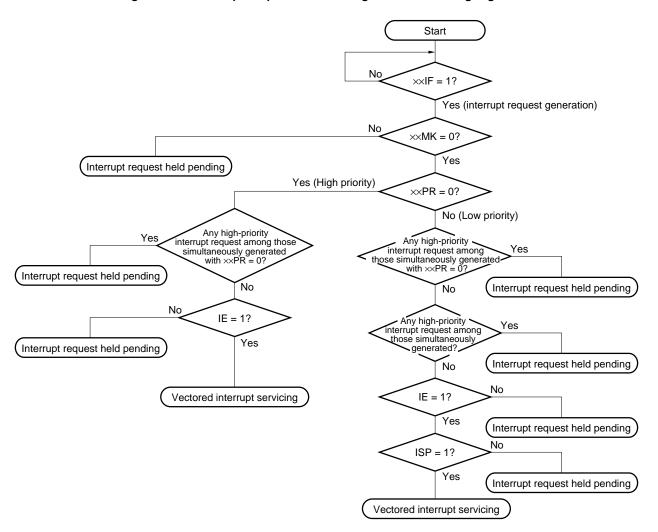


Figure 17-7. Interrupt Request Acknowledgement Processing Algorithm

xxIF: Interrupt request flagxxMK: Interrupt mask flagxxPR: Priority specification flag

IE: Flag that controls acknowledgement of maskable interrupt request (1 = Enable, 0 = Disable)

ISP: Flag that indicates the priority level of the interrupt currently being serviced (0 = high-priority interrupt servicing, 1 = No interrupt request acknowledged, or low-priority interrupt servicing)

CPU processing Instruction Instruction PSW and PC saved, jump to interrupt servicing program

×IF
(××PR = 1)

8 clocks

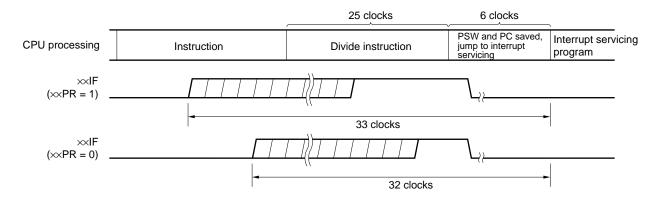

× IF
(××PR = 0)

Figure 17-8. Interrupt Request Acknowledgement Timing (Minimum Time)

Remark 1 clock: 1/fcpu (fcpu: CPU clock)

Figure 17-9. Interrupt Request Acknowledgement Timing (Maximum Time)

7 clocks

Remark 1 clock: 1/fcpu (fcpu: CPU clock)

17.4.2 Software interrupt request acknowledgement

A software interrupt acknowledge is acknowledged by BRK instruction execution. Software interrupts cannot be disabled.

If a software interrupt request is acknowledged, the contents are saved into the stacks in the order of the program status word (PSW), then program counter (PC), the IE flag is reset (0), and the contents of the vector table (003EH, 003FH) are loaded into the PC and branched.

Restoring from a software interrupt is possible by using the RETB instruction.

Caution Do not use the RETI instruction for restoring from the software interrupt.

17.4.3 Multiple interrupt servicing

Multiple interrupt servicing occurs when another interrupt request is acknowledged during execution of an interrupt. Multiple interrupt servicing does not occur unless the interrupt request acknowledgement enabled state is selected (IE = 1). When an interrupt request is acknowledged, interrupt request acknowledgement becomes disabled (IE = 0). Therefore, to enable multiple interrupt servicing, it is necessary to set (1) the IE flag with the EI instruction during interrupt servicing to enable interrupt acknowledgement.

Moreover, even if interrupts are enabled, multiple interrupt servicing may not be enabled, this being subject to interrupt priority control. Two types of priority control are available: default priority control and programmable priority control. Programmable priority control is used for multiple interrupt servicing.

In the interrupt enabled state, if an interrupt request with a priority equal to or higher than that of the interrupt currently being serviced is generated, it is acknowledged for multiple interrupt servicing. If an interrupt with a priority lower than that of the interrupt currently being serviced is generated during interrupt servicing, it is not acknowledged for multiple interrupt servicing. Interrupt requests that are not enabled because interrupts are in the interrupt disabled state or because they have a lower priority are held pending. When servicing of the current interrupt ends, the pending interrupt request is acknowledged following execution of at least one main processing instruction execution.

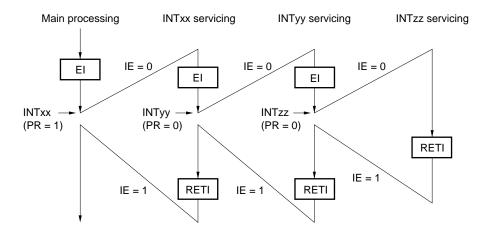
Table 17-5 shows relationship between interrupt requests enabled for multiple interrupt servicing and Figure 17-10 shows multiple interrupt servicing examples.

Table 17-5. Relationship Between Interrupt Requests Enabled for Multiple Interrupt Servicing

During Interrupt Servicing

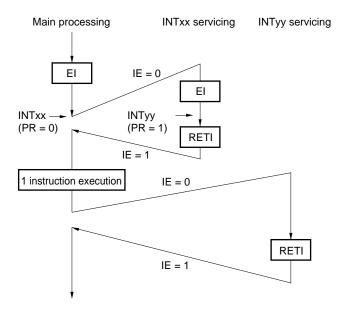
Multiple Interru		Maskable Interrupt Request				
	PR = 0		PR = 1		Interrupt	
Interrupt Being Serviced		IE = 1	IE = 0	IE = 1	IE = 0	Request
Maskable interrupt	ISP = 0	0	×	×	×	0
	ISP = 1	0	×	0	×	0
Software interrupt		0	×	0	×	0

Remarks 1. O: Multiple interrupt servicing enabled


- 2. x: Multiple interrupt servicing disabled
- 3. ISP and IE are flags contained in the PSW.
 - ISP = 0: An interrupt with higher priority is being serviced.
 - ISP = 1: No interrupt request has been acknowledged, or an interrupt with a lower priority is being serviced.
 - IE = 0: Interrupt request acknowledgement is disabled.
 - IE = 1: Interrupt request acknowledgement is enabled.
- 4. PR is a flag contained in PR0L, PR0H, PR1L, and PR1H.

PR = 0: Higher priority level

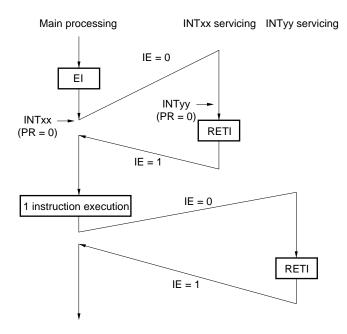
PR = 1: Lower priority level


Figure 17-10. Examples of Multiple Interrupt Servicing (1/2)

Example 1. Multiple interrupt servicing occurs twice

During servicing of interrupt INTxx, two interrupt requests, INTyy and INTzz, are acknowledged, and multiple interrupt servicing takes place. Before each interrupt request is acknowledged, the EI instruction must always be issued to enable interrupt request acknowledgment.

Example 2. Multiple interrupt servicing does not occur due to priority control


Interrupt request INTyy issued during servicing of interrupt INTxx is not acknowledged because its priority is lower than that of INTxx, and multiple interrupt servicing does not take place. The INTyy interrupt request is held pending, and is acknowledged following execution of one main processing instruction.

PR = 0: Higher priority level PR = 1: Lower priority level

IE = 0: Interrupt request acknowledgment disabled

Figure 17-10. Examples of Multiple Interrupt Servicing (2/2)

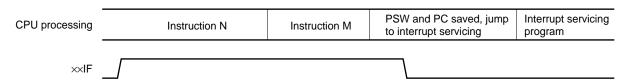
Example 3. Multiple interrupt servicing does not occur because interrupts are not enabled

Interrupts are not enabled during servicing of interrupt INTxx (EI instruction is not issued), therefore, interrupt request INTyy is not acknowledged and multiple interrupt servicing does not take place. The INTyy interrupt request is held pending, and is acknowledged following execution of one main processing instruction.

PR = 0: Higher priority level

IE = 0: Interrupt request acknowledgement disabled

17.4.4 Interrupt request hold


There are instructions where, even if an interrupt request is issued for them while another instruction is being executed, request acknowledgement is held pending until the end of execution of the next instruction. These instructions (interrupt request hold instructions) are listed below.

- · MOV PSW, #byte
- MOV A, PSW
- MOV PSW, A
- MOV1 PSW. bit, CY
- MOV1 CY, PSW. bit
- · AND1 CY, PSW. bit
- · OR1 CY, PSW. bit
- · XOR1 CY, PSW. bit
- SET1 PSW. bit
- · CLR1 PSW. bit
- RETB
- RETI
- PUSH PSW
- POP PSW
- BT PSW. bit, \$addr16
- BF PSW. bit, \$addr16
- BTCLR PSW. bit, \$addr16
- EI
- DI
- Manipulation instructions for the IF0L, IF0H, IF1L, IF1H, MK0L, MK0H, MK1L, MK1H, PR0L, PR0H, PR1L, and PR1H registers.

Caution The BRK instruction is not one of the above-listed interrupt request hold instructions. However, the software interrupt activated by executing the BRK instruction causes the IE flag to be cleared. Therefore, even if a maskable interrupt request is generated during execution of the BRK instruction, the interrupt request is not acknowledged.

Figure 17-11 shows the timing at which interrupt requests are held pending.

Figure 17-11. Interrupt Request Hold

Remarks 1. Instruction N: Interrupt request hold instruction

- 2. Instruction M: Instruction other than interrupt request hold instruction
- 3. The xxPR (priority level) values do not affect the operation of xxIF (instruction request).

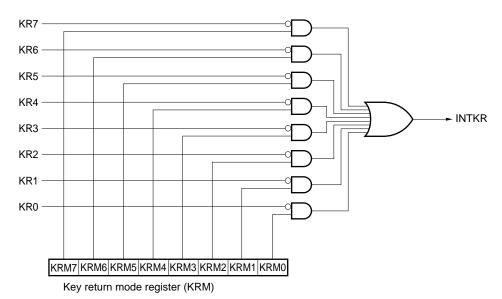
CHAPTER 18 KEY INTERRUPT FUNCTION

18.1 Functions of Key Interrupt

A key interrupt (INTKR) can be generated by setting the key return mode register (KRM) and inputting a rising edge to the key interrupt input pins (KR0 to KR7).

Table 18-1. Assignment of Key Interrupt Detection Pins

Flag	Description
KRM0	Controls KR0 signal in 1-bit units.
KRM1	Controls KR1 signal in 1-bit units.
KRM2	Controls KR2 signal in 1-bit units.
KRM3	Controls KR3 signal in 1-bit units.
KRM4	Controls KR4 signal in 1-bit units.
KRM5	Controls KR5 signal in 1-bit units.
KRM6	Controls KR6 signal in 1-bit units.
KRM7	Controls KR7 signal in 1-bit units.


18.2 Configuration of Key Interrupt

The key interrupt includes the following hardware.

Table 18-2. Configuration of Key Interrupt

Item	Configuration
Control register	Key return mode register (KRM)

Figure 18-1. Block Diagram of Key Interrupt

376

18.3 Register Controlling Key Interrupt

(1) Key return mode register (KRM)

This register controls the KRM0 to KRM7 bits using the KR0 to KR7 signals, respectively.

This register is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

1

Figure 18-2. Format of Key Return Mode Register (KRM)

Address: FF6EH After reset: 00H R/W Symbol 7 5 3 2 0 KRM KRM7 KRM6 KRM5 KRM4 KRM3 KRM2 KRM1 KRM0 KRMn Key interrupt mode control 0 Does not detect key interrupt signal

- Cautions 1. If any of the KRM0 to KRM7 bits used is set to 1, set bits 0 to 7 (PU70 to PU77) of the corresponding pull-up resistor register 7 (PU7) to 1.
 - If KRM is changed, the interrupt request flag may be set. Therefore, disable interrupts and then change the KRM register. After that, clear the interrupt request flag and then enable interrupts.
 - 3. The bits not used in the key interrupt mode can be used as normal ports.

Detects key interrupt signal

CHAPTER 19 STANDBY FUNCTION

19.1 Standby Function and Configuration

19.1.1 Standby function

Table 19-1. Relationship Between Operation Clocks in Each Operation Status

Status	High-Speed System Clock Oscillator		Internal Oscillator			Subsystem Clock	CPU Clock After	Prescaler Clock Supplied to Peripherals	
Operation Mode	MSTOP = 0 MCC = 0	MSTOP = 1 MCC = 1	Note 1		te 2	Oscillator	Release	MCM0 = 0	MCM0 = 1
Reset	Stopped		RSTOP = 0 RSTOP = 1 Stopped		Oscillating Internal oscillation clock		Stopped		
STOP			Oscillating	Oscillating	Stopped		Note 3	Stopped	
HALT	Oscillating	Stopped					Note 4	Internal oscillation clock	High- speed system clock

Notes 1. When "Cannot be stopped" is selected for internal oscillator by the option byte.

- 2. When "Can be stopped by software" is selected for internal oscillator C by the option byte.
- 3. Operates using the CPU clock at STOP instruction execution.
- **4.** Operates using the CPU clock at HALT instruction execution.

Caution The RSTOP setting is valid only when "Can be stopped by software" is set for internal oscillator by the option byte.

Remark MSTOP: Bit 7 of the main OSC control register (MOC)

MCC: Bit 7 of the processor clock control register (PCC) RSTOP: Bit 0 of the internal oscillation mode register (RCM)

MCM0: Bit 0 of the main clock mode register (MCM)

The standby function is designed to reduce the operating current of the system. The following two modes are available.

(1) HALT mode

HALT instruction execution sets the HALT mode. In the HALT mode, the CPU operation clock is stopped. If the high-speed system clock oscillator, internal oscillator, or subsystem clock oscillator is operating before the HALT mode is set, oscillation of each clock continues. In this mode, the operating current is not decreased as much as in the STOP mode, but the HALT mode is effective for restarting operation immediately upon interrupt request generation and carrying out intermittent operations.

(2) STOP mode

STOP instruction execution sets the STOP mode. In the STOP mode, the high-speed system clock oscillator stops, stopping the whole system, thereby considerably reducing the CPU operating current.

Because this mode can be released by an interrupt request, it enables intermittent operations to be carried out. However, because a wait time is required to secure the oscillation stabilization time after the STOP mode is released, select the HALT mode if it is necessary to start processing immediately upon interrupt request generation.

In either of these two modes, all the contents of registers, flags and data memory just before the standby mode is set are held. The I/O port output latches and output buffer statuses are also held.

- Cautions 1. STOP mode can be used only when CPU is operating on the high-speed system clock or internal oscillation clock. HALT mode can be used when CPU is operating on the high-speed system clock, internal oscillation clock, or subsystem clock. However, when the STOP instruction is executed during internal oscillation clock operation, the high-speed system clock oscillator stops, but internal oscillator does not stop.
 - 2. When shifting to the STOP mode, be sure to stop the peripheral hardware operation before executing STOP instruction.
 - 3. The following sequence is recommended for operating current reduction of the A/D converter when the standby function is used: First clear bit 7 (ADCS) of the A/D converter mode register (ADM) to 0 to stop the A/D conversion operation, and then execute the HALT or STOP instruction.
 - 4. If the internal oscillator is operating before the STOP mode is set, oscillation of the internal oscillation clock cannot be stopped in the STOP mode. However, when the internal oscillation clock is used as the CPU clock, the CPU operation is stopped for 17/f_R (s) after STOP mode is released.

19.1.2 Registers controlling standby function

The standby function is controlled by the following two registers.

- Oscillation stabilization time counter status register (OSTC)
- Oscillation stabilization time select register (OSTS)

Remark For the registers that start, stop, or select the clock, see CHAPTER 5 CLOCK GENERATOR.

(1) Oscillation stabilization time counter status register (OSTC)

This is the status register of the high-speed system clock oscillation stabilization time counter. If the internal oscillation clock is used as the CPU clock, the high-speed system clock oscillation stabilization time can be checked.

OSTC can be read by a 1-bit or 8-bit memory manipulation instruction.

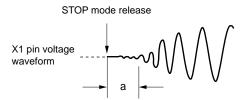

Reset release (reset by RESET input, POC, LVI, clock monitor, and WDT), the STOP instruction, MSTOP (bit 7 of MOC register) = 1, or MCC (bit 7 of PCC register) = 1 clear OSTC to 00H.

Figure 19-1. Format of Oscillation Stabilization Time Counter Status Register (OSTC)

Address: FF	A3H After	reset: 00H	R					
Symbol	7	6	5	4	3	2	1	0
OSTC	0	0	0	MOST11	MOST13	MOST14	MOST15	MOST16
	MOST11	MOST13	MOST14	MOST15	MOST16	Oscillation	stabilization t	ime status
							f _{XP} = 10 MHz	fxp = 16 MHz
	1	0	0	0	0	2 ¹¹ /f _{XP} min.	204.8 μs min.	128 μ s min.
	1	1	0	0	0	2 ¹³ /f _{XP} min.	819.2 μs min.	512 μ s min.
	1	1	1	0	0	2 ¹⁴ /f _{XP} min.	1.64 ms min.	1.02 ms min.
	1	1	1	1	0	2 ¹⁵ /f _{XP} min.	3.27 ms min.	2.04 ms min.
	1	1	1	1	1	2 ¹⁶ /f _{XP} min.	6.55 ms min.	4.09 ms min.

Cautions 1. After the above time has elapsed, the bits are set to 1 in order from MOST11 and remain 1.

- 2. If the STOP mode is entered and then released while the internal oscillation clock is being used as the CPU clock, set the oscillation stabilization time as follows.
 - Desired OSTC oscillation stabilization time ≤ Oscillation stabilization time set by OSTS The oscillation stabilization time counter counts only during the oscillation stabilization time set by OSTS. Therefore, note that only the statuses during the oscillation stabilization time set by OSTS are set to OSTC after STOP mode has been released.
- 3. The wait time when STOP mode is released does not include the time after STOP mode release until clock oscillation starts ("a" below) regardless of whether STOP mode is released by RESET input or interrupt generation.

Remark fxp: High-speed system clock oscillation frequency

(2) Oscillation stabilization time select register (OSTS)

This register is used to select the high-speed system clock oscillation stabilization wait time when STOP mode is released. The wait time set by OSTS is valid only after STOP mode is released when the high-speed system clock is selected as the CPU clock. After STOP mode is released when the internal oscillation clock is selected, check the oscillation stabilization time using OSTC.

OSTS can be set by an 8-bit memory manipulation instruction.

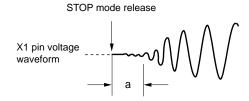

RESET input sets OSTS to 05H.

Figure 19-2. Format of Oscillation Stabilization Time Select Register (OSTS)

Address: FFA4H After reset: 05H		R/W						
Symbol	7	6	5	4	3	2	1	0
OSTS	0	0	0	0	0	OSTS2	OSTS1	OSTS0

OSTS2	OSTS1	OSTS0	Oscillation stabilization time selection				
			f _{XP} = 10 MHz		f _{XP} = 16 MHz		
0	0	1	2 ¹¹ /f _{XP}	204.8 <i>μ</i> s	128 <i>μ</i> s		
0	1	0	2 ¹³ /f _{XP}	819.2 <i>μ</i> s	512 <i>μ</i> s		
0	1	1	2 ¹⁴ /f _{XP}	1.64 ms	1.02 ms		
1	0	0	2 ¹⁵ /f _{XP}	3.27 ms	2.04 ms		
1	0	1	2 ¹⁶ /f _{XP}	6.55 ms	4.09 ms		
0	Other than above		Setting prohibited				

- Cautions 1. To set the STOP mode when the high-speed system clock is used as the CPU clock, set OSTS before executing a STOP instruction.
 - 2. Before setting OSTS, confirm with OSTC that the desired oscillation stabilization time has elapsed.
 - 3. If the STOP mode is entered and then released while the internal oscillation clock is being used as the CPU clock, set the oscillation stabilization time as follows.
 - Desired OSTC oscillation stabilization time ≤ Oscillation stabilization time set by OSTS The oscillation stabilization time counter counts only during the oscillation stabilization time set by OSTS. Therefore, note that only the statuses during the oscillation stabilization time set by OSTS are set to OSTC after STOP mode has been released.
 - 4. The wait time when STOP mode is released does not include the time after STOP mode release until clock oscillation starts ("a" below) regardless of whether STOP mode is released by RESET input or interrupt generation.

Remark fxp: High-speed system clock oscillation frequency

19.2 Standby Function Operation

19.2.1 HALT mode

(1) HALT mode

The HALT mode is set by executing the HALT instruction. HALT mode can be set regardless of whether the CPU clock before the setting was the high-speed system clock, internal oscillation clock, or subsystem clock. The operating statuses in the HALT mode are shown below.

Table 19-2. Operating Statuses in HALT Mode (1/2)

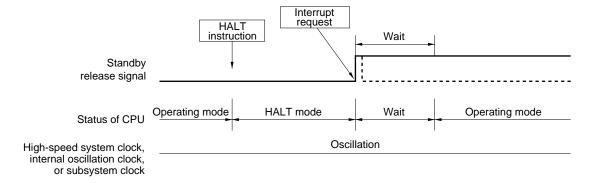
HALT Mode Setting		When HALT Instruction Is Executed While CPU Is Operating on High-Speed System Clock				When HALT Instruction Is Executed While CPU Is Operating on Internal Oscillation Clock				
		When Internal Oscillator Oscillation Continues Oscillation St		nal Oscillator	When High-S	Speed System tion Continues	System When High-Speed System			
Item		When Subsystem Clock Used	When Subsystem Clock Not Used	When Subsystem Clock Used	When Subsystem Clock Not	When Subsystem Clock Used	When Subsystem Clock Not	When Subsystem Clock Used	When Subsystem Clock Not	
System c	lock	Clock supply		stopped	Used		Used		Used	
CPU		Clock supply to the CPU is stopped Operation stopped								
Port (latcl	h)		• •	vas set is retair	ned					
16-bit tim	er/event counter 00	Operable				Operation not	t guaranteed			
16-bit tim	er/event counter 01Note 2	Operable				Operation not	t guaranteed			
	r/event counter 50	Operable				1 '	Operation not guaranteed when count clock other than TI50 is selected			
8-bit timer/event counter 51		Operable				Operation not guaranteed when count clock other than TI51 is selected				
8-bit timer H0		Operable				Operation not guaranteed when count clock other than TM50 output is selected during 8-bit timer/event counter 50 operation				
8-bit time	8-bit timer H1		Operable				Operation not guaranteed when count clock other than f _R /2 ⁷ is selected			
Watch tim	Watch timer		Operable Note 3	Operable	Operable Note 3	Operable Note 4	Operation not guaranteed	Operable Note 4	Operation not guaranteed	
Watch- dog	Internal oscillator cannot be stopped Note 5	Operable –				Operable				
timer Internal oscillator can be stopped Note 5		Operation stopped								
A/D conv	erter	Operable				Operation not guaranteed				
Serial	UART0	Operable				Operation not guaranteed when serial clock other than				
interface	UART6	Operable				TM50 output is selected during TM50 operation				
CSI10		Operable				Operation not guaranteed when serial clock other than external SCK10 is selected				
CSI11Note 2		Operable				Operation not guaranteed when serial clock other than external SCK11 is selected				
Clock monitor		Operable Operation stopped			Operable Operation stopped					
Multiplier/divider		Operable Operation not guaranteed								
Power-on	Power-on-clear function		Operable							
Low-voltage detection function		Operable								
External i	External interrupt		Operable							

- **Notes 1.** When "Stopped by software" is selected for internal oscillator by the option byte and internal oscillator is stopped by software (for option bytes, see **CHAPTER 24 OPTION BYTE**).
 - **2.** μ PD78F0133H, 78F0134H, 78F0136H, 78F0138H, and 78F0138HD only.
 - 3. Operable when the high-speed system clock is selected.
 - **4.** Operation not guaranteed when other than subsystem clock is selected.
 - **5.** "Internal oscillator cannot be stopped" or "internal oscillator can be stopped by software" can be selected by the option byte.

Table 19-2. Operating Statuses in HALT Mode (2/2)

	HALT Mode Setting	When HALT Instruction Is Executed While CPU Is Operating on Subsystem Clock							
		When High-Speed System	Clock Oscillation Continues	When High-Speed System Clock Oscillation Stopped					
Item		When Internal Oscillator Oscillation Continues	When Internal Oscillator Oscillation Stopped ^{Note 1}	When Internal Oscillator Oscillation Continues	When Internal Oscillator Oscillation Stopped ^{Note 1}				
System cloc	k	Clock supply to the CPU is stopped							
CPU		Operation stopped							
Port (latch)		Status before HALT mode was set is retained							
16-bit timer/event counter 00		Operable		Operation stopped					
16-bit timer/		Operable		Operation stopped					
event counte	er 01 ^{Note 2}								
8-bit timer/e	vent counter 50	Operable		Operable only when TI50 is	selected as the count clock				
8-bit timer/e	vent counter 51	Operable		Operable only when TI51 is	selected as the count clock				
8-bit timer H0		Operable		Operable only when TM50 output is selected as the count clock during 8-bit timer/event counter 50 operation					
8-bit timer H1		Operable	Operable only when the high-speed system clock is selected as the count clock	Operable only when f _R /2 ⁷ is selected as the count clock	Operation stopped				
Watch timer		Operable		Operable only when subsystem clock is selected					
Watchdog timer	Internal oscillator cannot be stopped Note 3	Operable	-	Operable	_				
	Internal oscillator can be stopped ^{Note 3}	Operation stopped							
A/D converte	er	Operable		Not operable					
Serial	UART0	Operable		Operable only when TM50 output is selected as the					
interface	UART6	Operable		serial clock during TM50 operation					
	CSI10	Operable		Operable only when external \$\overline{SCK10}\$ is selected as the serial clock					
CSI11 ^{Note 2}		Operable		Operable only when external SCK11 is selected as the serial clock					
Clock monitor		Operable Operation stopped							
Multiplier/divider		Operable		Operation stopped					
Power-on-clear function		Operable							
Low-voltage detection function		Operable							
External interrupt		Operable							

- **Notes 1.** When "Stopped by software" is selected for internal oscillator by the option byte and internal oscillator is stopped by software (for option bytes, see **CHAPTER 24 OPTION BYTE**).
 - **2.** μ PD78F0133H, 78F0134H, 78F0136H, 78F0138H, and 78F0138HD only.
 - **3.** "Internal oscillator cannot be stopped" or "internal oscillator can be stopped by software" can be selected by the option byte.

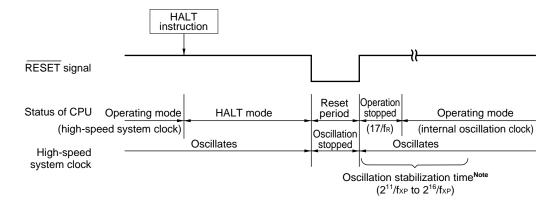

(2) HALT mode release

The HALT mode can be released by the following two sources.

(a) Release by unmasked interrupt request

When an unmasked interrupt request is generated, the HALT mode is released. If interrupt acknowledgement is enabled, vectored interrupt servicing is carried out. If interrupt acknowledgement is disabled, the next address instruction is executed.

Figure 19-3. HALT Mode Release by Interrupt Request Generation


- **Remarks 1.** The broken lines indicate the case when the interrupt request which has released the standby mode is acknowledged.
 - 2. The wait time is as follows:
 - When vectored interrupt servicing is carried out: 8 or 9 clocks
 - · When vectored interrupt servicing is not carried out: 2 or 3 clocks

(b) Release by RESET input

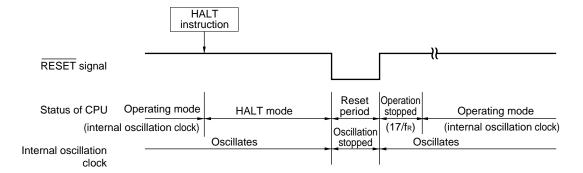
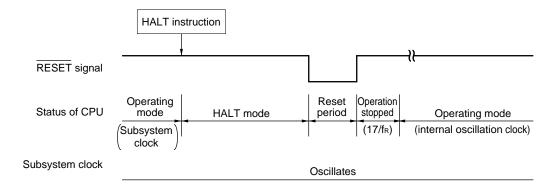

When the $\overline{\text{RESET}}$ signal is input, HALT mode is released, and then, as in the case with a normal reset operation, the program is executed after branching to the reset vector address.

Figure 19-4. HALT Mode Release by RESET Input (1/2)

(1) When high-speed system clock is used as CPU clock

(2) When internal oscillation clock is used as CPU clock



Remarks 1. fxp: High-speed system clock oscillation frequency

2. fr.: Internal oscillation clock oscillation frequency

Figure 19-4. HALT Mode Release by RESET Input (2/2)

(3) When subsystem clock is used as CPU clock

Remark fr.: Internal oscillation clock oscillation frequency

Table 19-3. Operation in Response to Interrupt Request in HALT Mode

Release Source	MK××	PR××	ΙE	ISP	Operation
Maskable interrupt request	0	0	0	×	Next address instruction execution
	0	0	1	×	Interrupt servicing execution
	0	1	0	1	Next address
	0	1	×	0	instruction execution
	0	1	1	1	Interrupt servicing execution
	1	×	×	×	HALT mode held
RESET input	-	-	×	×	Reset processing

x: don't care

19.2.2 STOP mode

(1) STOP mode setting and operating statuses

The STOP mode is set by executing the STOP instruction, and it can be set when the CPU clock before the setting was the high-speed system clock or internal oscillation clock.

Caution Because the interrupt request signal is used to release the standby mode, if there is an interrupt source with the interrupt request flag set and the interrupt mask flag reset, the standby mode is immediately released if set. Thus, the STOP mode is reset to the HALT mode immediately after execution of the STOP instruction and the system returns to the operating mode as soon as the wait time set using the oscillation stabilization time select register (OSTS) has elapsed.

The operating statuses in the STOP mode are shown below.

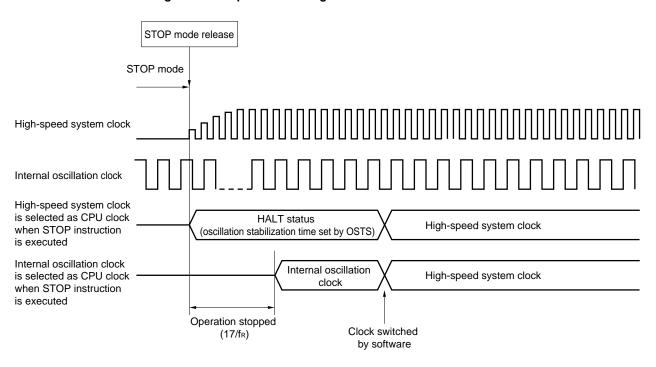
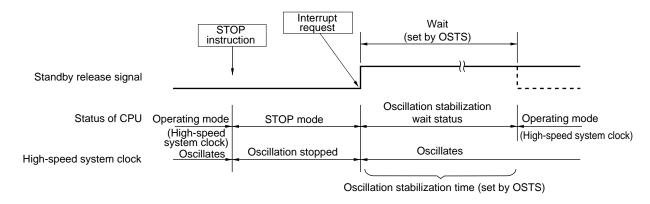

When STOP Instruction Is Executed While CPU Is Operating on High-Speed STOP Mode Setting When STOP Instruction Is Executed System Clock While CPU Is Operating on Internal Oscillation Clock When Internal Oscillator When Internal Oscillator Oscillation Stopped Note 1 Oscillation Continues Item When Subsystem | When Subsystem Clock Not Used Clock Used Clock Not Used Clock Not Used Clock Used Clock Used Only high-speed system clock oscillator oscillation is stopped. Clock supply to the CPU is stopped. System clock CPU Operation stopped Port (latch) Status before STOP mode was set is retained 16-bit timer/event counter 00 Operation stopped 16-bit timer/event counter 01Note 2 Operation stopped 8-bit timer/event counter 50 Operable only when TI50 is selected as the count clock Operable only when TI51 is selected as the count clock 8-bit timer/event counter 51 8-bit timer H0 Operable only when TM50 output is selected as the count clock during 8-bit timer/event counter 50 operation Operable Note 3 Operable Note 3 8-bit timer H1 Operation stopped Operable Note 4 Operable Note 4 Operable Note 4 Watch timer Operation stopped Operation stopped Operation stopped Watch-Operable Operable Internal oscillator cannot be stopped Note 5 timer Internal oscillator can Operation stopped be stopped^{Note 5} A/D converter Operation stopped Serial interface UART0 Operable only when TM50 output is selected as the serial clock during TM50 operation **UART6** CSI10 Operable only when external SCK10 is selected as the serial clock CSI11Note 2 Operable only when external SCK11 is selected as the serial clock Clock monitor Operation stopped Multiplier/divider Operation stopped Power-on-clear function Operable Low-voltage detection function Operable External interrupt Operable

Table 19-4. Operating Statuses in STOP Mode

- **Notes 1.** When "Stopped by software" is selected for internal oscillator by the option byte and internal oscillator is stopped by software (for option bytes, see **CHAPTER 24 OPTION BYTE**).
 - **2.** μ PD78F0133H, 78F0134H, 78F0136H, 78F0138H, and 78F0138HD only.
 - **3.** Operable only when $f_R/2^7$ is selected as the count clock.
 - **4.** Operable when the subsystem clock is selected.
 - **5.** "Internal oscillator cannot be stopped" or "internal oscillator can be stopped by software" can be selected by the option byte.

(2) STOP mode release

Figure 19-5. Operation Timing When STOP Mode Is Released


The STOP mode can be released by the following two sources.

(a) Release by unmasked interrupt request

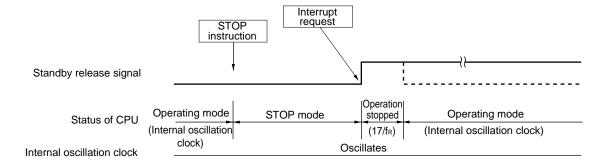
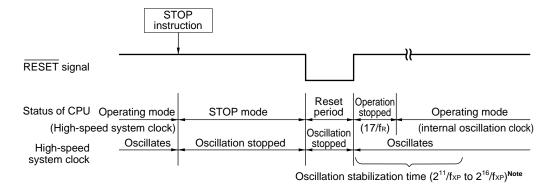

When an unmasked interrupt request is generated, the STOP mode is released. After the oscillation stabilization time has elapsed, if interrupt acknowledgment is enabled, vectored interrupt servicing is carried out. If interrupt acknowledgment is disabled, the next address instruction is executed.

Figure 19-6. STOP Mode Release by Interrupt Request Generation

(1) When high-speed system clock is used as CPU clock

(2) When internal oscillation clock is used as CPU clock

Remarks 1. The broken lines indicate the case when the interrupt request that has released the standby mode is acknowledged.


2. fr.: Internal oscillation clock oscillation frequency

(b) Release by RESET input

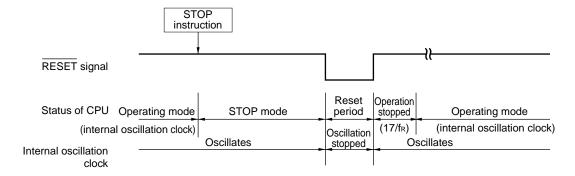

When the $\overline{\text{RESET}}$ signal is input, STOP mode is released and a reset operation is performed after the oscillation stabilization time has elapsed.

Figure 19-7. STOP Mode Release by RESET Input

(1) When high-speed system clock is used as CPU clock

(2) When internal oscillation clock is used as CPU clock

Remarks 1. fxp: High-speed system clock oscillation frequency

2. fr.: Internal oscillation clock oscillation frequency

Table 19-5. Operation in Response to Interrupt Request in STOP Mode

Release Source	$MK \times \times$	$PR \times \times$	ΙE	ISP	Operation
Maskable interrupt request	0	0	0	×	Next address instruction execution
	0	0	1	×	Interrupt servicing execution
	0	1	0	1	Next address
	0	1	×	0	instruction execution
	0	1	1	1	Interrupt servicing execution
	1	×	×	×	STOP mode held
RESET input	-	_	×	×	Reset processing

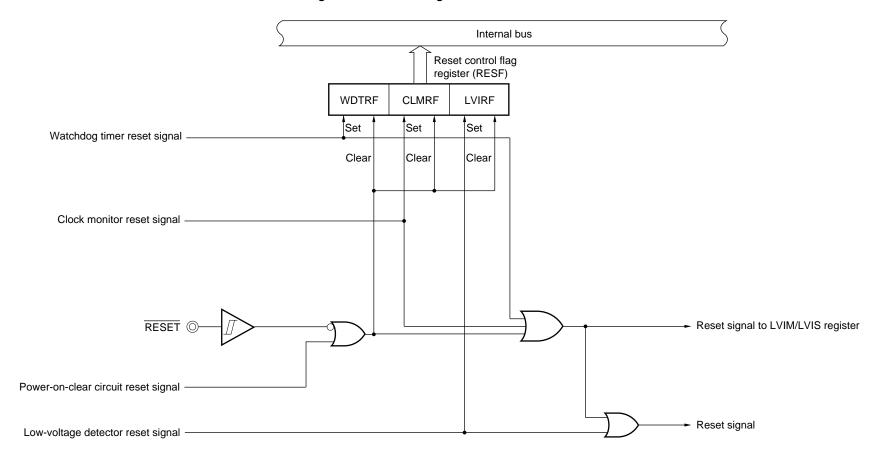
×: don't care

CHAPTER 20 RESET FUNCTION

The following five operations are available to generate a reset signal.

- (1) External reset input via RESET pin
- (2) Internal reset by watchdog timer program loop detection
- (3) Internal reset by clock monitor high-speed system clock oscillation stop detection
- (4) Internal reset by comparison of supply voltage and detection voltage of power-on-clear (POC) circuit
- (5) Internal reset by comparison of supply voltage and detection voltage of low-power-supply detector (LVI)

External and internal resets have no functional differences. In both cases, program execution starts at the address at 0000H and 0001H when the reset signal is input.


A reset is applied when a low level is input to the RESET pin, the watchdog timer overflows, high-speed system clock oscillation stop is detected by the clock monitor, or by POC and LVI circuit voltage detection, and each item of hardware is set to the status shown in Table 20-1. Each pin is high impedance during reset input or during the oscillation stabilization time just after reset release, except for P130, which is low-level output.

When a high level is input to the RESET pin, the reset is released and program execution starts using the internal oscillation clock after the CPU clock operation has stopped for 17/f_R (s). A reset generated by the watchdog timer and clock monitor sources is automatically released after the reset, and program execution starts using the internal oscillation clock after the CPU clock operation has stopped for 17/f_R (s) (see **Figures 20-2** to **20-4**). Reset by POC and LVI circuit power supply detection is automatically released when V_{DD} > V_{POC} or V_{DD} > V_{LVI} after the reset, and program execution starts using the internal oscillation clock after the CPU clock operation has stopped for 17/f_R (s) (see **CHAPTER 22 POWER-ON-CLEAR CIRCUIT** and **CHAPTER 23 LOW-VOLTAGE DETECTOR**).

- Cautions 1. For an external reset, input a low level for 10 μ s or more to the RESET pin.
 - 2. During reset input, the high-speed system clock and internal oscillation clock stop oscillating.
 - When the STOP mode is released by a reset, the STOP mode contents are held during reset input. However, the port pins become high-impedance, except for P130, which is set to lowlevel output.

User's Manual U16899EJ3V0UD

Figure 20-1. Block Diagram of Reset Function

Caution An LVI circuit internal reset does not reset the LVI circuit.

Remarks 1. LVIM: Low-voltage detection register

2. LVIS: Low-voltage detection level selection register

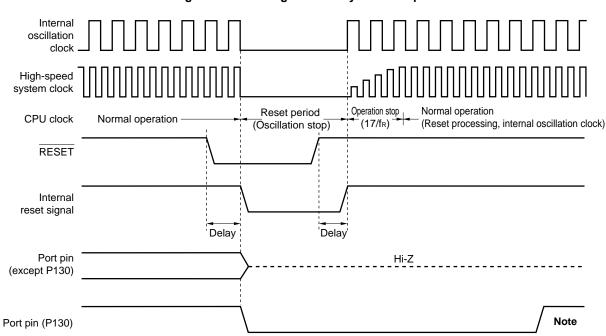


Figure 20-2. Timing of Reset by RESET Input

Note Set P130 to high-level output by software.

Remark When reset is effected, P130 outputs a low level. If P130 is set to output a high level before reset is effected, the output signal of P130 can be dummy-output as the CPU reset signal.

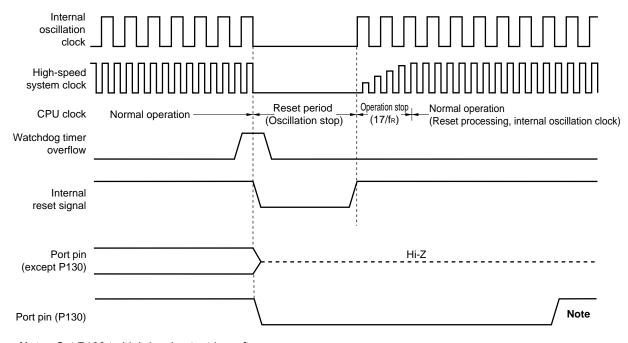


Figure 20-3. Timing of Reset Due to Watchdog Timer Overflow

Note Set P130 to high-level output by software.

Caution A watchdog timer internal reset resets the watchdog timer.

Remark When reset is effected, P130 outputs a low level. If P130 is set to output a high level before reset is effected, the output signal of P130 can be dummy-output as the CPU reset signal.

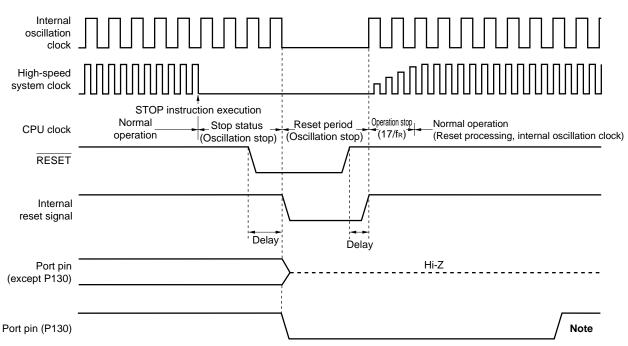


Figure 20-4. Timing of Reset in STOP Mode by RESET Input

Note Set P130 to high-level output by software.

- **Remarks 1.** When reset is effected, P130 outputs a low level. If P130 is set to output a high level before reset is effected, the output signal of P130 can be dummy-output as the CPU reset signal.
 - 2. For the reset timing of the power-on-clear circuit and low-voltage detector, see CHAPTER 22 POWER-ON-CLEAR CIRCUIT and CHAPTER 23 LOW-VOLTAGE DETECTOR.

Table 20-1. Hardware Statuses After Reset Acknowledgment (1/3)

	Hardware	Status After Reset Acknowledgment ^{Note 1}
Program counter (PC)	The contents of the reset vector table (0000H, 0001H) are set.	
Stack pointer (SP)		Undefined
Program status word (PSW)	02H
RAM	Data memory	Undefined ^{Note 2}
	General-purpose registers	Undefined ^{Note 2}
Port registers (P0 to P	7, P12 to P14) (output latches)	00H (undefined only for P2)
Port mode registers (F	PM0, PM1, PM3 to PM7, PM12, PM14)	FFH
Pull-up resistor option	registers (PU0, PU1, PU3 to PU5, PU7, PU12, PU14)	00H
Input switch control re-	gister (ISC)	00H
Internal memory size s	switching register (IMS)	CFH
Internal expansion RA	M size switching register (IXS)	0CH
Processor clock contro	ol register (PCC)	00H
Internal oscillation mod	de register (RCM)	00H
Main clock mode regis	ter (MCM)	00H
Main OSC control regi	ster (MOC)	00H
Oscillation stabilization	n time select register (OSTS)	05H
Oscillation stabilization	n time counter status register (OSTC)	00H
16-bit timer/event	Timer counters 00, 01 (TM00, TM01)	0000H
counters 00, 01 ^{Note 3}	Capture/compare registers 000, 010, 001, 011 (CR000, CR010, CR001, CR011)	0000H
	Mode control registers 00, 01 (TMC00, TMC01)	00H
	Prescaler mode registers 00, 01 (PRM00, PRM01)	00H
	Capture/compare control registers 00, 01 (CRC00, CRC01)	00H
	Timer output control registers 00, 01 (TOC00, TOC01)	00H
8-bit timer/event	Timer counters 50, 51 (TM50, TM51)	00H
counters 50, 51	Compare registers 50, 51 (CR50, CR51)	00H
	Timer clock selection registers 50, 51 (TCL50, TCL51)	00H
	Mode control registers 50, 51 (TMC50, TMC51)	00H
8-bit timers H0, H1	Compare registers 00, 10, 01, 11 (CMP00, CMP10, CMP01, CMP11)	00H
	Mode registers (TMHMD0, TMHMD1)	00H
	Carrier control register 1 (TMCYC1) ^{Note 4}	00H
Watch timer	Operation mode register (WTM)	00H

- **Notes 1.** During reset input or oscillation stabilization time wait, only the PC contents among the hardware statuses become undefined. All other hardware statuses remain unchanged after reset.
 - 2. When a reset is executed in the standby mode, the pre-reset status is held even after reset.
 - 3. 16-bit timer/event counter 01 is available only for the μ PD78F0133H, 78F0134H, 78F0136H, 78F0138H, and 78F0138HD.
 - 4. 8-bit timer H1 only.

Table 20-1. Hardware Statuses After Reset Acknowledgment (2/3)

	Hardware	Status After Reset Acknowledgment
Clock output/buzzer output controller	Clock output selection register (CKS)	00H
Watchdog timer	Mode register (WDTM)	67H
	Enable register (WDTE)	9AH
A/D converter	Conversion result register (ADCR)	Undefined
	Mode register (ADM)	00H
	Analog input channel specification register (ADS)	00H
	Power-fail comparison mode register (PFM)	00H
	Power-fail comparison threshold register (PFT)	00H
Serial interface UART0	Receive buffer register 0 (RXB0)	FFH
	Transmit shift register 0 (TXS0)	FFH
	Asynchronous serial interface operation mode register 0 (ASIM0)	01H
	Baud rate generator control register 0 (BRGC0)	1FH
Serial interface UART6	Receive buffer register 6 (RXB6)	FFH
	Transmit buffer register 6 (TXB6)	FFH
	Asynchronous serial interface operation mode register 6 (ASIM6)	01H
	Asynchronous serial interface reception error status register 6 (ASIS6)	00H
	Asynchronous serial interface transmission status register 6 (ASIF6)	00H
	Clock selection register 6 (CKSR6)	00H
	Baud rate generator control register 6 (BRGC6)	FFH
	Asynchronous serial interface control register 6 (ASICL6)	16H
Serial interfaces CSI10,	Transmit buffer registers 10, 11 (SOTB10, SOTB11)	Undefined
CSI11 ^{Note}	Serial I/O shift registers 10, 11 (SIO10, SIO11)	Undefined
	Serial operation mode registers 10, 11 (CSIM10, CSIM11)	00H
	Serial clock selection registers 10, 11 (CSIC10, CSIC11)	00H
Multiplier/divider	Remainder data register 0 (SDR0)	0000H
	Multiplication/division data register A0 (MDA0H, MDA0L)	0000H
	Multiplication/division data register B0 (MDB0)	0000H
	Multiplier/divider control register 0 (DMUC0)	00H
Key interrupt	Key return mode register (KRM)	00H
Clock monitor	Mode register (CLM)	00H

Note Serial interface CSI11 is available only for the μ PD78F0133H, 78F0134H, 78F0136H, 78F0138H, and 78F0138HD.

Table 20-1. Hardware Statuses After Reset Acknowledgment (3/3)

	Status After Reset Acknowledgment	
Reset function	Reset control flag register (RESF)	00H ^{Note 1}
Low-voltage detector	Low-voltage detection register (LVIM)	00H ^{Note 1}
	Low-voltage detection level selection register (LVIS)	00H ^{Note 1}
Interrupt	Request flag registers 0L, 0H, 1L, 1H (IF0L, IF0H, IF1L, IF1H)	00H
	Mask flag registers 0L, 0H, 1L (MK0L, MK0H, MK1L)	FFH
	Mask flag register 1H (MK1H)	DFH
Priority specification flag registers 0L, 0H, 1L, 1H (PR0L, PR0H, PR1L, PR1H)		FFH
	External interrupt rising edge enable register (EGP)	00H
	External interrupt falling edge enable register (EGN)	00H
Flash memory	Flash protect command register (PFCMD)	Undefined
	Flash status register (PFS)	00H
	Flash programming mode control register (FLPMC)	0XH ^{Note 2}

Notes 1. These values vary depending on the reset source.

Reset Source	RESET Input	Reset by POC	Reset by WDT	Reset by CLM	Reset by LVI
Register					
RESF	See Table 20-2.				
LVIM	Cleared (00H)	Cleared (00H)	Cleared (00H)	Cleared (00H)	Held
LVIS					

2. Varies depending on the operation mode.

User mode: 08HOn-board mode: 0CH

20.1 Register for Confirming Reset Source

Many internal reset generation sources exist in the 78K0/KE1+. The reset control flag register (RESF) is used to store which source has generated the reset request.

RESF can be read by an 8-bit memory manipulation instruction.

RESET input, reset input by power-on-clear (POC) circuit, and reading RESF clear RESF to 00H.

Figure 20-5. Format of Reset Control Flag Register (RESF)

Address: FFA	ACH After r	eset: 00H ^{Note}	R					
Symbol	7	6	5	4	3	2	1	0
RESF	0	0	0	WDTRF	0	0	CLMRF	LVIRF

WDTRF	Internal reset request by watchdog timer (WDT)
0	Internal reset request is not generated, or RESF is cleared.
1	Internal reset request is generated.

CLMRF	Internal reset request by clock monitor (CLM)	
0	Internal reset request is not generated, or RESF is cleared.	
1	Internal reset request is generated.	

LVIRF	Internal reset request by low-voltage detector (LVI)	
0	Internal reset request is not generated, or RESF is cleared.	
1	Internal reset request is generated.	

Note The value after reset varies depending on the reset source.

Caution Do not read data by a 1-bit memory manipulation instruction.

The status of RESF when a reset request is generated is shown in Table 20-2.

Table 20-2. RESF Status When Reset Request Is Generated

Reset Source	RESET Input	Reset by POC	Reset by WDT	Reset by CLM	Reset by LVI
Flag					
WDTRF	Cleared (0)	Cleared (0)	Set (1)	Held	Held
CLMRF			Held	Set (1)	Held
LVIRF			Held	Held	Set (1)

CHAPTER 21 CLOCK MONITOR

21.1 Functions of Clock Monitor

The clock monitor samples the high-speed system clock using the on-chip internal oscillator, and generates an internal reset signal when the high-speed system clock is stopped.

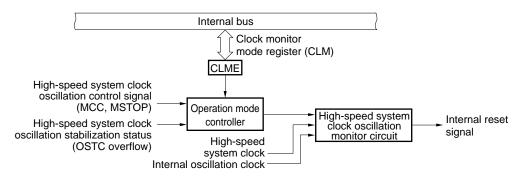
When a reset signal is generated by the clock monitor, bit 1 (CLMRF) of the reset control flag register (RESF) is set to 1. For details of RESF, see **CHAPTER 20 RESET FUNCTION**.

The clock monitor automatically stops under the following conditions.

- Reset is released and during the oscillation stabilization time
- In STOP mode and during the oscillation stabilization time
- When the high-speed system clock is stopped by software (MSTOP = 1 or MCC = 1) and during the oscillation stabilization time
- When the internal oscillation clock is stopped

Remark MSTOP: Bit 7 of the main OSC control register (MOC)

MCC: Bit 7 of the processor clock control register (PCC)


21.2 Configuration of Clock Monitor

The clock monitor includes the following hardware.

Table 21-1. Configuration of Clock Monitor

Item	Configuration	
Control register	Clock monitor mode register (CLM)	

Figure 21-1. Block Diagram of Clock Monitor

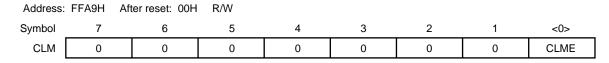
Remark MCC: Bit 7 of the processor clock control register (PCC)

MSTOP: Bit 7 of the main OSC control register (MOC)

OSTC: Oscillation stabilization time counter status register (OSTC)

21.3 Registers Controlling Clock Monitor

The clock monitor is controlled by the clock monitor mode register (CLM).


(1) Clock monitor mode register (CLM)

This register sets the operation mode of the clock monitor.

This register can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Figure 21-2. Format of Clock Monitor Mode Register (CLM)

CLME	Enables/disables clock monitor operation	
0	Disables clock monitor operation	
1	Enables clock monitor operation	

- Cautions 1. Once bit 0 (CLME) is set to 1, it cannot be cleared to 0 except by RESET input or the internal reset signal.
 - 2. If the reset signal is generated by the clock monitor, CLME is cleared to 0 and bit 1 (CLMRF) of the reset control flag register (RESF) is set to 1.

21.4 Operation of Clock Monitor

This section explains the functions of the clock monitor. The monitor start and stop conditions are as follows.

<Monitor start condition>

When bit 0 (CLME) of the clock monitor mode register (CLM) is set to operation enabled (1).

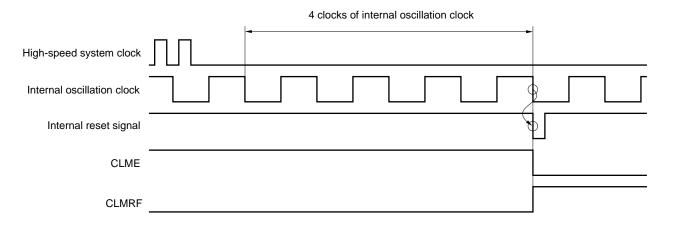
<Monitor stop condition>

- Reset is released and during the oscillation stabilization time
- In STOP mode and during the oscillation stabilization time
- When the high-speed system clock is stopped by software (MSTOP = 1 or MCC = 1) and during the oscillation stabilization time
- When the internal oscillation clock is stopped

Remark MSTOP: Bit 7 of the main OSC control register (MOC)

MCC: Bit 7 of the processor clock control register (PCC)

Table 21-2. Operation Status of Clock Monitor (When CLME = 1)


CPU Operation Clock	Operation Mode	High-Speed System Clock Status	Internal Oscillation Clock Status	Clock Monitor Status
High-speed system	STOP mode	Stopped	Oscillating	Stopped
clock			Stopped ^{Note}	
	RESET input		Oscillating	
			Stopped ^{Note}	
	Normal operation mode	Oscillating	Oscillating	Operating
	HALT mode		Stopped ^{Note}	Stopped
Internal oscillation	STOP mode	Stopped	Oscillating	Stopped
clock	RESET input			
	Normal operation mode	Oscillating		Operating
	HALT mode	Stopped		Stopped

Note The internal oscillation clock is stopped only when the "internal oscillator can be stopped by software" is selected by the option byte. If "internal oscillator cannot be stopped" is selected, the internal oscillation clock cannot be stopped.

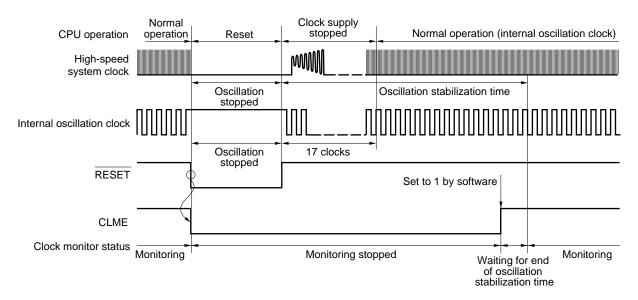
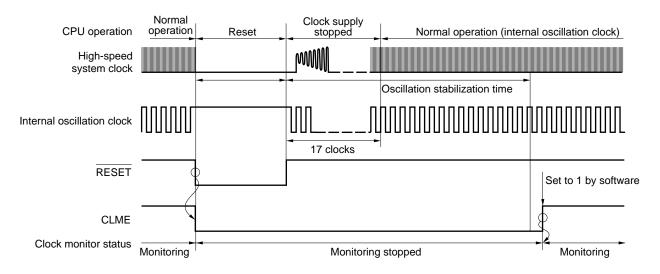
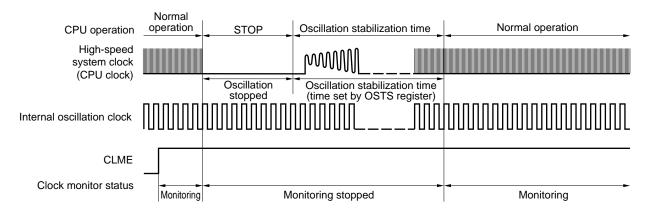

The clock monitor timing is as shown in Figure 21-3.

Figure 21-3. Timing of Clock Monitor (1/4)

(1) When internal reset is executed by oscillation stop of high-speed system clock

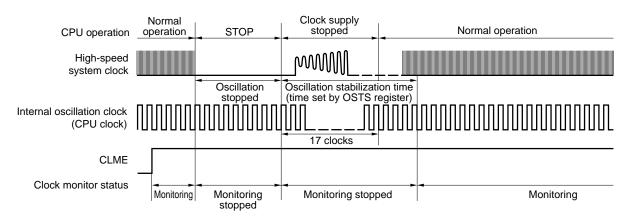

(2) Clock monitor status after RESET input (CLME = 1 is set after RESET input and during high-speed system clock oscillation stabilization time)

RESET input clears bit 0 (CLME) of the clock monitor mode register (CLM) to 0 and stops the clock monitor operation. Even if CLME is set to 1 by software during the oscillation stabilization time (reset value of OSTS register is 05H (2¹⁶/fxp)) of the high-speed system clock, monitoring is not performed until the oscillation stabilization time of the high-speed system clock ends. Monitoring is automatically started at the end of the oscillation stabilization time.

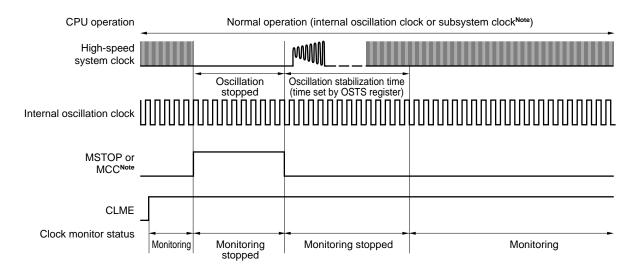

Figure 21-3. Timing of Clock Monitor (2/4)

(3) Clock monitor status after RESET input (CLME = 1 is set after RESET input and at the end of high-speed system clock oscillation stabilization time)

RESET input clears bit 0 (CLME) of the clock monitor mode register (CLM) to 0 and stops the clock monitor operation. When CLME is set to 1 by software at the end of the oscillation stabilization time (reset value of OSTS register is 05H (2¹⁶/fxp)) of the high-speed system clock, monitoring is started.


(4) Clock monitor status after STOP mode is released (CLME = 1 is set when CPU clock operates on high-speed system clock and before entering STOP mode)

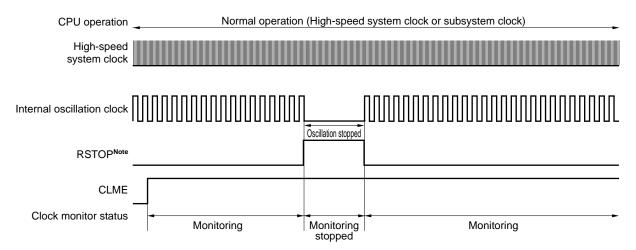
When bit 0 (CLME) of the clock monitor mode register (CLM) is set to 1 before entering STOP mode, monitoring automatically starts at the end of the high-speed system clock oscillation stabilization time. Monitoring is stopped in STOP mode and during the oscillation stabilization time.


Figure 21-3. Timing of Clock Monitor (3/4)

(5) Clock monitor status after STOP mode is released (CLME = 1 is set when CPU clock operates on internal oscillation clock and before entering STOP mode)

When bit 0 (CLME) of the clock monitor mode register (CLM) is set to 1 before entering STOP mode, monitoring automatically starts at the end of the high-speed system clock oscillation stabilization time. Monitoring is stopped in STOP mode and during the oscillation stabilization time.

(6) Clock monitor status after high-speed system clock oscillation is stopped by software


When bit 0 (CLME) of the clock monitor mode register (CLM) is set to 1 before or while oscillation of the high-speed system clock is stopped, monitoring automatically starts at the end of the high-speed system clock oscillation stabilization time. Monitoring is stopped when oscillation of the high-speed system clock is stopped and during the oscillation stabilization time.

Note The register that controls oscillation of the high-speed system clock differs depending on the type of the clock supplied to the CPU.

- When CPU operates on internal oscillation clock: Controlled by bit 7 (MSTOP) of the main OSC control register (MOC)
- When CPU operates on subsystem clock: Controlled by bit 7 (MCC) of the processor clock control register (PCC)

Figure 21-3. Timing of Clock Monitor (4/4)

(7) Clock monitor status after internal oscillation clock oscillation is stopped by software

When bit 0 (CLME) of the clock monitor mode register (CLM) is set to 1 before or while oscillation of the internal oscillation clock is stopped, monitoring automatically starts after the internal oscillation clock is stopped. Monitoring is stopped when oscillation of the internal oscillation clock is stopped.

Note If it is specified by the option byte that internal oscillator cannot be stopped, the setting of bit 0 (RSTOP) of the internal oscillation mode register (RCM) is invalid. To set RSTOP, be sure to confirm that bit 1 (MCS) of the main clock mode register (MCM) is 1.

CHAPTER 22 POWER-ON-CLEAR CIRCUIT

22.1 Functions of Power-on-Clear Circuit

The power-on-clear circuit (POC) has the following functions.

- Generates internal reset signal at power on.
- Compares supply voltage (V_{DD}) and detection voltage (V_{POC} = 2.1 V ±0.1 V), and generates internal reset signal when V_{DD} < V_{POC}.
- Cautions 1. If an internal reset signal is generated in the POC circuit, the reset control flag register (RESF) is cleared to 00H.
 - 2. The supply voltage is V_{DD} = 2.0 to 5.5 V when the internal oscillation clock or subsystem clock is used, but be sure to use the standard products and (A) grade products in a voltage range of 2.2 to 5.5 V because the detection voltage (V_{POC}) of the POC circuit is 2.1 V ±0.1 V.
 - 3. The supply voltage is V_{DD} = 2.0 to 5.5 V when the internal oscillation clock is used, but be sure to use the (A1) grade products in a voltage range of 2.25 to 5.5 V because the detection voltage (V_{POC}) of the POC circuit is 2.0 to 2.25 V.

Remark This product incorporates multiple hardware functions that generate an internal reset signal. A flag that indicates the reset cause is located in the reset control flag register (RESF) for when an internal reset signal is generated by the watchdog timer (WDT), low-voltage-detection (LVI) circuit, or clock monitor.

RESF is not cleared to 00H and the flag is set to 1 when an internal reset signal is generated by WDT, LVI, or the clock monitor.

For details of the RESF, refer to CHAPTER 20 RESET FUNCTION.

<R>

22.2 Configuration of Power-on-Clear Circuit

The block diagram of the power-on-clear circuit is shown in Figure 22-1.

VDD Internal reset signal voltage source

Figure 22-1. Block Diagram of Power-on-Clear Circuit

22.3 Operation of Power-on-Clear Circuit

In the power-on-clear circuit, the supply voltage (V_{DD}) and detection voltage (V_{POC}) are compared, and when $V_{DD} < V_{POC}$, an internal reset signal is generated.

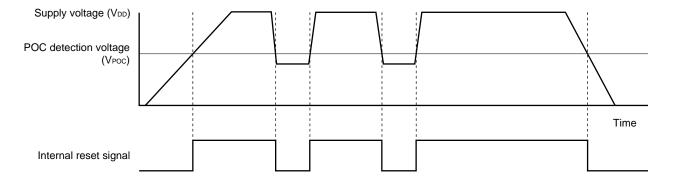
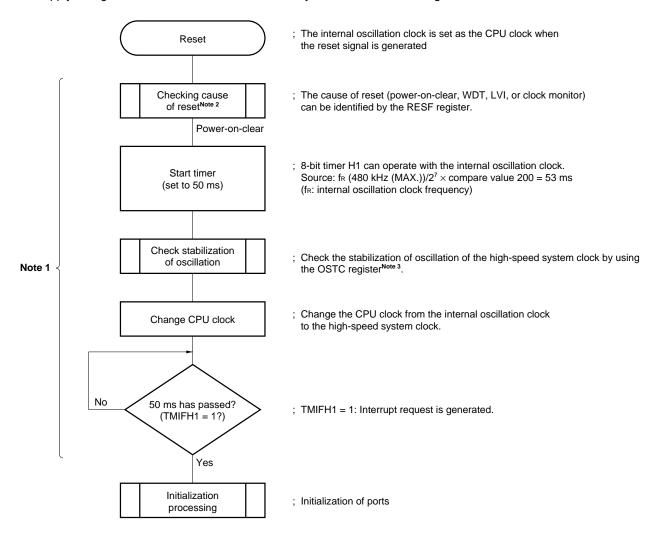


Figure 22-2. Timing of Internal Reset Signal Generation in Power-on-Clear Circuit

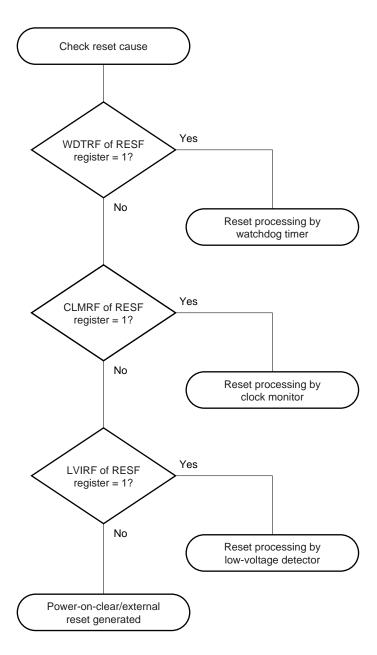
22.4 Cautions for Power-on-Clear Circuit


In a system where the supply voltage (VDD) fluctuates for a certain period in the vicinity of the POC detection voltage (VPOC), the system may be repeatedly reset and released from the reset status. In this case, the time from release of reset to the start of the operation of the microcontroller can be arbitrarily set by taking the following action.

<Action>

After releasing the reset signal, wait for the supply voltage fluctuation period of each system by means of a software counter that uses a timer, and then initialize the ports.

Figure 22-3. Example of Software Processing After Release of Reset (1/2)


• If supply voltage fluctuation is 50 ms or less in vicinity of POC detection voltage

- Notes 1. If reset is generated again during this period, initialization processing is not started.
 - 2. A flowchart is shown on the next page.

Figure 22-3. Example of Software Processing After Release of Reset (2/2)

• Checking reset cause

CHAPTER 23 LOW-VOLTAGE DETECTOR

23.1 Functions of Low-Voltage Detector

The low-voltage detector (LVI) has following functions.

- Compares supply voltage (VDD) and detection voltage (VLVI), and generates an internal interrupt signal or internal reset signal when VDD < VLVI.
- Detection levels (nine levels) of supply voltage can be changed by software.
- Interrupt or reset function can be selected by software.
- Operable in STOP mode.

When the low-voltage detector is used to reset, bit 0 (LVIRF) of the reset control flag register (RESF) is set to 1 if reset occurs. For details of RESF, refer to **CHAPTER 20 RESET FUNCTION**.

23.2 Configuration of Low-Voltage Detector

The block diagram of the low-voltage detector is shown below.

 V_{DD} Low-voltage detection level selector V_{DD} Internal reset signal Selector - INTLVI Reference voltage source √ 4 LVIS3 LVIS2 LVIS1 LVIS0 LVION LVIMD LVIF Low-voltage detection level Low-voltage detection register selection register (LVIS) Internal bus

Figure 23-1. Block Diagram of Low-Voltage Detector

23.3 Registers Controlling Low-Voltage Detector

The low-voltage detector is controlled by the following registers.

- Low-voltage detection register (LVIM)
- Low-voltage detection level selection register (LVIS)

(1) Low-voltage detection register (LVIM)

This register sets low-voltage detection and the operation mode.

This register can be set by a 1-bit or 8-bit memory manipulation instruction.

A reset other than LVI clears LVIM to 00H.

Figure 23-2. Format of Low-Voltage Detection Register (LVIM)

Address:	FFBEH A	fter reset: 00H	H R/W ^{Note 1}					
Symbol	<7>	6	5	4	3	2	<1>	<0>
LVIM	LVION	0	0	O ^{Note 2}	0	0	LVIMD	LVIF

LVION ^{Notes 3}	Enables low-voltage detection operation
0	Disables operation
1	Enables operation

LVIMD ^{Note 3}	Low-voltage detection operation mode selection
0	Generates interrupt signal when supply voltage (VDD) < detection voltage (VLVI)
1	Generates internal reset signal when supply voltage (VDD) < detection voltage (VLVI)

LVIF ^{Note 5}	Low-voltage detection flag				
0	Supply voltage $(V_{DD}) \ge$ detection voltage (V_{LVI}) , or when operation is disabled				
1	Supply voltage (VDD) < detection voltage (VLVI)				

Notes 1. Bit 0 is read-only.

- 2. Bit 4 may be 0 or 1. This bit corresponds to the LVIE bit in the 78K0/KE1.
- 3. LVION and LVIMD are cleared to 0 in the case of a reset other than an LVI reset. These are not cleared to 0 in the case of an LVI reset.
- **4.** When LVION is set to 1, operation of the comparator in the LVI circuit is started. Use software to instigate a wait of at least 0.2 ms from when LVION is set to 1 until the voltage is confirmed at LVIF.
- 5. The value of LVIF is output as the interrupt request signal INTLVI when LVION = 1 and LVIMD = 0.

Caution To stop LVI, follow either of the procedures below.

- When using 8-bit manipulation instruction: Write 00H to LVIM.
- When using 1-bit memory manipulation instruction: Clear LVION to 0.

(2) Low-voltage detection level selection register (LVIS)

This register selects the low-voltage detection level.

This register can be set by an 8-bit memory manipulation instruction.

A reset other than LVI clears LVIM to 00H.

Figure 23-3. Format of Low-Voltage Detection Level Selection Register (LVIS)

Address:	FFBFH	After reset: 00H	l R/W					
Symbol	7	6	5	4	3	2	1	0
LVIS	0	0	0	0	LVIS3	LVIS2	LVIS1	LVIS0

LVIS3	LVIS2	LVIS1	LVIS0	Detection level ^{Note}
0	0	0	0	VLVI0 (4.3 V ±0.2 V)
0	0	0	1	V _{LVI1} (4.1 V ±0.2 V)
0	0	1	0	VLVI2 (3.9 V ±0.2 V)
0	0	1	1	VLVI3 (3.7 V ±0.2 V)
0	1	0	0	VLVI4 (3.5 V ±0.2 V)
0	1	0	1	VLVI5 (3.3 V ±0.15 V)
0	1	1	0	VLVI6 (3.1 V ±0.15 V)
0	1	1	1	VLVI7 (2.85 V ±0.15 V)
1	0	0	0	V _{LVI8} (2.6 V ±0.1 V) ^{Note}
1	0	0	1	V _{LVI9} (2.35 V ±0.1 V) ^{Note}
	Other that	an above		Setting prohibited

Note Do not set V_{LVIB} or V_{LVIB} when using the standard products and (A) grade products to evaluate the program of a mask ROM version of the 78K0/KE1 or when using the (A1) grade products.

Cautions 1. Be sure to clear bits 4 to 7 to 0.

2. Clear all port pins after the supply voltage (VDD) exceeds the preset detection voltage (VLVI) after POC release in the (A1) grade products.

<R>

<R>

23.4 Operation of Low-Voltage Detector

The low-voltage detector can be used in the following two modes.

· Used as reset

Compares the supply voltage (V_{DD}) and detection voltage (V_{LVI}), and generates an internal reset signal when $V_{DD} < V_{LVI}$.

Used as interrupt

Compares the supply voltage (V_{DD}) and detection voltage (V_{LVI}), and generates an interrupt signal (INTLVI) when $V_{DD} < V_{LVI}$.

The operation is set as follows.

(1) When used as reset

- · When starting operation
- <1> Mask the LVI interrupt (LVIMK = 1).
- <2> Set the detection voltage using bits 3 to 0 (LVIS3 to LVIS0) of the low-voltage detection level selection register (LVIS).
- <3> Set bit 7 (LVION) of LVIM to 1 (enables LVI operation).
- <4> Use software to instigate a wait of at least 0.2 ms.
- <5> Confirm that "supply voltage (VDD) ≥ detection voltage (VLVI)" with bit 0 (LVIF) of LVIM.
- <6> Set bit 1 (LVIMD) of LVIM to 1 (generates internal reset signal when supply voltage (VDD) < detection voltage (VLVI)).</p>

Figure 23-4 shows the timing of the internal reset signal generated by the low-voltage detector. The numbers in this timing chart correspond to <1> to <6> above.

- Cautions 1. <1> must always be executed. When LVIMK = 0, an interrupt may occur immediately after the processing in <3>.
 - 2. If supply voltage (V_{DD}) ≥ detection voltage (V_{LVI}) when LVIMD is set to 1, an internal reset signal is not generated.
- When stopping operation

Either of the following procedures must be executed.

- When using 8-bit memory manipulation instruction: Write 00H to LVIM.
- When using 1-bit memory manipulation instruction:
 Clear LVIMD to 0 and then LVION to 0.

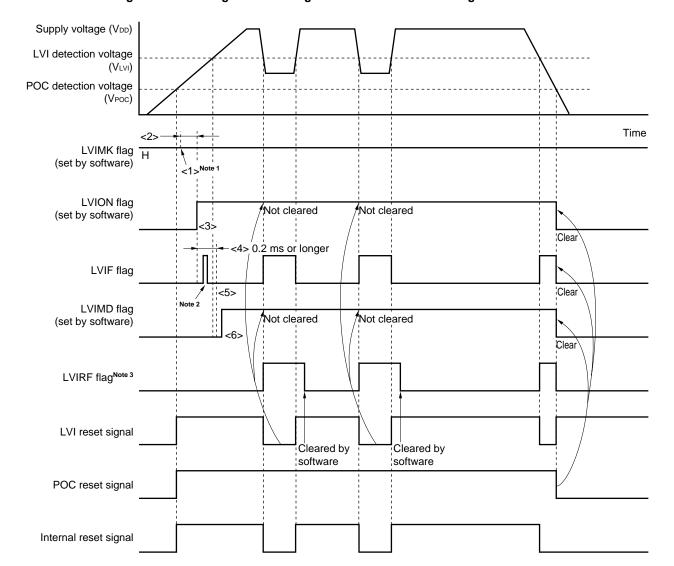


Figure 23-4. Timing of Low-Voltage Detector Internal Reset Signal Generation

- Notes 1. The LVIMK flag is set to "1" by RESET input.
 - 2. The LVIF flag may be set (1).
 - 3. LVIRF is bit 0 of the reset control flag register (RESF). For details of RESF, see **CHAPTER 20 RESET FUNCTION**.

Remark <1> to <6> in Figure 23-4 above correspond to <1> to <6> in the description of "when starting operation" in **23.4 (1) When used as reset**.

(2) When used as interrupt

- · When starting operation
- <1> Mask the LVI interrupt (LVIMK = 1).
- <2> Set the detection voltage using bits 3 to 0 (LVIS3 to LVIS0) of the low-voltage detection level selection register (LVIS).
- <3> Set bit 7 (LVION) of LVIM to 1 (enables LVI operation).
- <4> Use software to instigate a wait of at least 0.2 ms.
- <5> Confirm that "supply voltage (VDD) ≥ detection voltage (VLVI)" with bit 0 (LVIF) of LVIM.
- <6> Clear the interrupt request flag of LVI (LVIIF) to 0.
- <7> Release the interrupt mask flag of LVI (LVIMK).
- <8> Execute the EI instruction (when vector interrupts are used).

Figure 23-5 shows the timing of the internal reset signal generated by the low-voltage detector. The numbers in this timing chart correspond to <1> to <7> above.

• When stopping operation

Either of the following procedures must be executed.

- When using 8-bit memory manipulation instruction:
 Write 2014 to 17/14
 - Write 00H to LVIM.
- When using 1-bit memory manipulation instruction: Clear LVION to 0.

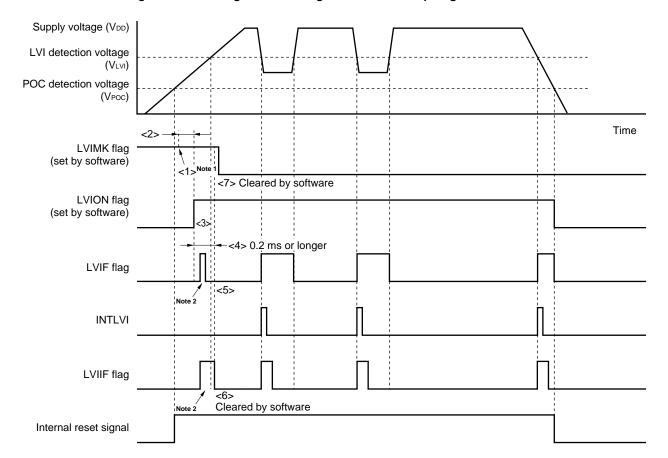


Figure 23-5. Timing of Low-Voltage Detector Interrupt Signal Generation

Notes 1. The LVIMK flag is set to "1" by RESET input.

2. The LVIF and LVIIF flags may be set (1).

Remark <1> to <7> in Figure 23-5 above correspond to <1> to <7> in the description of "when starting operation" in 23.4 (2) When used as interrupt.

23.5 Cautions for Low-Voltage Detector

In a system where the supply voltage (V_{DD}) fluctuates for a certain period in the vicinity of the LVI detection voltage (V_{LVI}), the operation is as follows depending on how the low-voltage detector is used.

(1) When used as reset

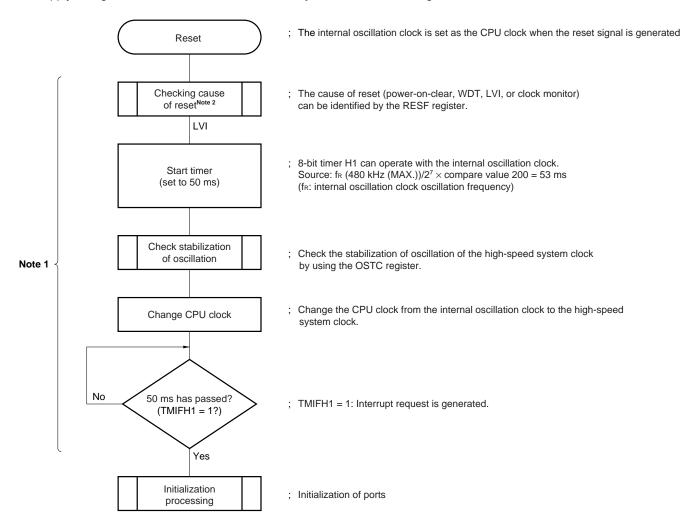
The system may be repeatedly reset and released from the reset status.

In this case, the time from release of reset to the start of the operation of the microcontroller can be arbitrarily set by taking action (a) below.

(2) When used as interrupt

Interrupt requests may be frequently generated. Take action (b) below.

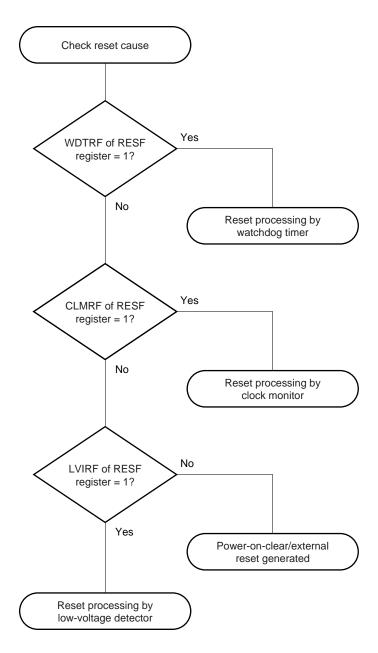
In this system, take the following actions.


<Action>

(a) When used as reset

After releasing the reset signal, wait for the supply voltage fluctuation period of each system by means of a software counter that uses a timer, and then initialize the ports.

Figure 23-6. Example of Software Processing After Release of Reset (1/2)


• If supply voltage fluctuation is 50 ms or less in vicinity of LVI detection voltage

- Notes 1. If reset is generated again during this period, initialization processing is not started.
 - 2. A flowchart is shown on the next page.

Figure 23-6. Example of Software Processing After Release of Reset (2/2)

• Checking reset cause

(b) When used as interrupt

Check that "supply voltage $(V_{DD}) \ge$ detection voltage (V_{LVI}) " in the servicing routine of the LVI interrupt by using bit 0 (LVIF) of the low-voltage detection register (LVIM). Clear bit 0 (LVIIF) of interrupt request flag register 0L (IF0L) to 0 and enable interrupts (EI).

In a system where the supply voltage fluctuation period is long in the vicinity of the LVI detection voltage, wait for the supply voltage fluctuation period, check that "supply voltage (V_{DD}) \geq detection voltage (V_{LVI})" using the LVIF flag, and then enable interrupts (EI).

24.1 Functions of Option Bytes

The flash memory at 0080H to 0084H of the 78K0/KE1+ is an option byte area. When power is turned on or when the device is restarted from the reset status, the device automatically references the option bytes and sets specified functions. When using the product, be sure to set the following functions by using the option bytes.

When the boot swap operation is used during self-programming, 0080H to 0084H are switched to 1080H to 1084H. Therefore, set values that are the same as those of 0080H to 0084H to 1080H to 1084H in advance.

(1) 0080H/1080H

- O Internal oscillator operation
 - · Can be stopped by software
 - · Cannot be stopped

(2) 0084H/1084H

- O On-chip debug operation control
 - Disabling on-chip debug operation
 - Enabling on-chip debug operation and erasing data of the flash memory in case authentication of the onchip debug security ID fails
 - Enabling on-chip debug operation and not erasing data of the flash memory even in case authentication of the on-chip debug security ID fails
- Cautions 1. Be sure to set 00H (disabling on-chip debug operation) to 0084H for products not equipped with the on-chip debug function (µPD78F0132H, 78F0133H, 78F0134H, 78F0136H, and 78F0138H). Also set 00H to 1084H because 0084H and 1084H are switched at boot swapping.
 - 2. To use the on-chip debug function with a product equipped with the on-chip debug function (μ PD78F0138HD), set 02H or 03H to 0084H. Set a value that is the same as that of 0084H to 1084H because 0084H and 1084H are switched at boot swapping.

Caution Be sure to set 00H to 0081H, 0082H, and 0083H (0081H/1081H, 0082H/1082H, and 0083H/1083H when the boot swap function is used).

24.2 Format of Option Byte

The format of the option byte is shown below.

Figure 24-1. Format of Option Byte

Address: 0080H/1080HNote

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	LSROSC

LSROSC	Internal oscillator operation					
0	Can be stopped by software (stopped when 1 is written to bit 0 (RSTOP) of RCM register)					
1	Cannot be stopped (not stopped even if 1 is written to RSTOP bit)					

Note Set a value that is the same as that of 0080H to 1080H because 0080H and 1080H are switched during the boot swap operation.

Cautions 1. If LSROSC = 0 (oscillation can be stopped by software), the count clock is not supplied to the watchdog timer in the HALT and STOP modes, regardless of the setting of bit 0 (RSTOP) of the internal oscillation mode register (RCM).

When 8-bit timer H1 operates with the internal oscillation clock, the count clock is supplied to 8-bit timer H1 even in the HALT/STOP mode.

2. Be sure to clear bit 1 to 7 to 0.

Address: 0081H/1081H, 0082H/1082H, 0083H/1083H^{Note}

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0

Note Be sure to set 00H to 0081H, 0082H, and 0083H, as these addresses are reserved areas. Also set 00H to 1081H, 1082H, and 1083H because 0081H, 0082H, and 0083H are switched with 1081H, 1082H, and 1083H when the boot swap operation is used.

Address: 0084H/1084H^{Notes1, 2}

	7	6	5	4	3	2	1	0
ſ	0	0	0	0	0	0	OCDEN1	OCDEN0

OCDEN1	OCDEN0	On-chip debug operation control
0	0	Operation disabled
0	1	Setting prohibited
1	0	Operation enabled. Does not erase data of the flash memory in case authentication of the on-chip debug security ID fails.
1	1	Operation enabled. Erases data of the flash memory in case authentication of the on-chip debug security ID fails.

- **Notes 1.** Be sure to set 00H (on-chip debug operation disabled) to 0084H for products not equipped with the on-chip debug function (μ PD78F0132H, 78F0133H, 78F0134H, 78F0136H, and 78F0138H). Also set 00H to 1084H because 0084H and 1084H are switched at boot swapping.
 - **2.** To use the on-chip debug function with a product equipped with the on-chip debug function (μ PD78F0138HD), set 02H or 03H to 0084H. Set a value that is the same as that of 0084H to 1084H because 0084H and 1084H are switched at boot swapping.

Remark For the on-chip debug security ID, see CHAPTER 27 ON-CHIP DEBUG FUNCTION (μ PD78F0138HD ONLY).

Here is an example of description of the software for setting the option bytes.

OPT	CSEG	AT 0080H	
OPTION:	DB	00H	; Internal oscillator can be stopped by software.
	DB	00H	; Reserved area
	DB	00H	; Reserved area
	DB	00H	; Reserved area
	DB	00H	; On-chip debug operation disabled

Remark Referencing of the option byte is performed during reset processing. For the reset processing timing, see **CHAPTER 20 RESET FUNCTION**.

CHAPTER 25 ROM CORRECTION

25.1 Functions of ROM Correction

The μ PD78F0136H, 78F0138H, and 78F0138HD can replace part of a program in the flash memory with a program in the internal expansion RAM.

Program bugs found in the flash memory can be avoided, and program flow can be changed by using the ROM correction.

The ROM correction can correct two places (max.) of the internal flash memory (program).

Caution The ROM correction cannot be emulated by the in-circuit emulator.

25.2 Configuration of ROM Correction

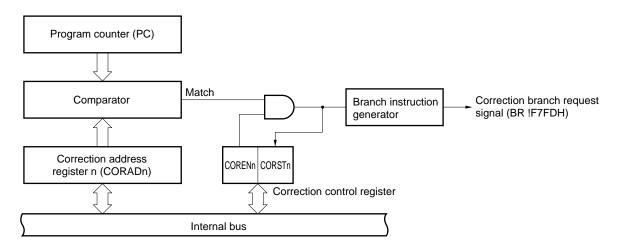

The ROM correction includes the following hardware.

Table 25-1. Configuration of ROM Correction

Item	Configuration	
Registers	Correction address registers 0 and 1 (CORAD0, CORAD1)	
Control register	Correction control register (CORCN)	

Figure 25-1 shows a block diagram of the ROM correction.

Figure 25-1. Block Diagram of ROM Correction

Remark n = 0, 1

(1) Correction address registers 0 and 1 (CORAD0, CORAD1)

These registers set the start address (correction address) of the instruction(s) to be corrected in the flash memory.

The ROM correction corrects two places (max.) of the program. Addresses are set to two registers, CORAD0 and CORAD1. If only one place needs to be corrected, set the address to either of the registers.

CORAD0 and CORAD1 are set by a 16-bit memory manipulation instruction.

RESET input clears CORAD0 and CORAD1 to 0000H.

Figure 25-2. Format of Correction Address Registers 0 and 1

Symbol	15 0	Address	After reset	R/W
CORAD0		FF38H/FF39H	0000H	R/W
CORAD1		FF3AH/FF3BH	0000H	R/W

- Cautions 1. Set the CORAD0 and CORAD1 when bit 1 (COREN0) and bit 3 (COREN1) of the correction control register (CORCN: see Figure 25-3) are 0.
 - 2. Only addresses where operation codes are stored can be set in CORAD0 and CORAD1.
 - 3. Do not set the following addresses to CORAD0 and CORAD1.
 - Address value in table area of table reference instruction (CALLT instruction): 0040H to 007FH
 - Address value in vector table area: 0000H to 003FH

(2) Comparator

The comparator always compares the correction address value set in correction address registers 0 and 1 (CORAD0, CORAD1) with the fetch address value. When bit 1 (COREN0) or bit 3 (COREN1) of the correction control register (CORCN) is 1 and the correction address matches the fetch address value, the correction branch request signal (BR !F7FDH) is generated from the ROM correction circuit.

25.3 Register Controlling ROM Correction

The ROM correction is controlled by the correction control register (CORCN).

(1) Correction control register (CORCN)

This register controls whether or not the correction branch request signal is generated when the fetch address matches the correction address set in correction address registers 0 and 1. The correction control register consists of correction enable flags (COREN0, COREN1) and correction status flags (CORST0, CORST1). The correction enable flags enable or disable the comparator match detection signal, and correction status flags show the values are matched.

CORCN is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears CORCN to 00H.

Clear CORST0 and CORST1 using software.

Symbol <0> After reset <3> <2> Address R/W 6 5 4 <1> 0 0 COREN1 CORST1 CORENO CORSTO CORCN FF8AH 00H R/W^{Note} CORST0 Correction Address Register 0 and Fetch Address Match Detection Not detected 1 Detected COREN0 Correction Address Register 0 and Fetch Address Match Detection Control 0 Disabled Enabled CORST1 Correction Address Register 1 and Fetch Address Match Detection 0 Not detected Detected Correction Address Register 1 and Fetch Address Match Detection Control Disabled 0 Enabled

Figure 25-3. Format of Correction Control Register

Note Do not set bits 0 and 2 to 1.

25.4 ROM Correction Usage Example

The example of ROM correction when the instruction at address 1000H "ADD A, #1" is changed to "ADD A, #2" is as follows.

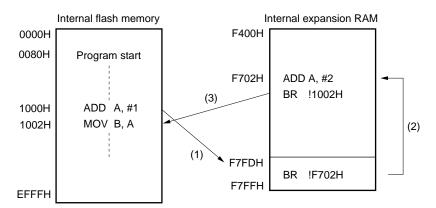


Figure 25-4. ROM Correction Usage Example

- (1) Branches to address F7FDH when the preset value 1000H in the correction address register matches the fetch address value after the main program is started.
- (2) Branches to any address (address F702H in this example) by setting the entire-space branch instruction (BR !addr16) to address F7FDH with the main program.
- (3) Returns to the program of the internal flash memory after executing the substitute instruction ADD A, #2.

25.5 ROM Correction Application

How to apply the example shown in 25.4 is described below.

(1) Store the correction address and instruction after correction (patch program) to nonvolatile memory (such as EEPROMTM) outside the microcontroller.

When two places should be corrected, store the branch destination judgment program as well. The branch destination judgment program checks which one of the addresses set to correction address registers 0 and 1 (CORAD0 or CORAD1) generates the correction branch.

EEPROM Source Program 00 00H CSEG AT 0000H 01H 10 02H 0D DW #1000H RA78K0 02 A, #2 ADD 9B !1002H BR 02 10 FFH

Figure 25-5. Example of Storing to EEPROM (When One Place Is Corrected)

(2) Assemble in advance the initial setting routine as shown in Figure 25-6 to correct the program.

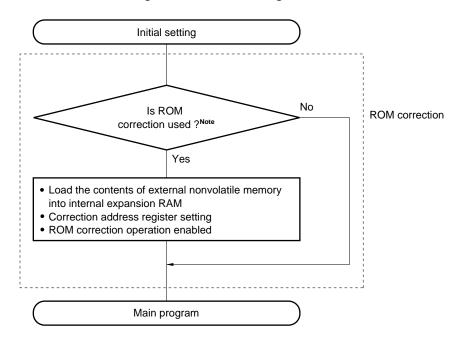


Figure 25-6. Initial Setting Routine

Note Whether the ROM correction is used or not should be judged by the port input level. For example, when the P20 input level is high, the ROM correction is used, otherwise, it is not used.

- (3) After reset, store the corrected address and program that have been previously stored in the external nonvolatile memory with initial setting routine for ROM correction of the user to internal expansion RAM (see **Figure 25-6**).
 - Set the start address of the instruction to be corrected to CORAD0 and CORAD1, and set bits 1 and 3 (COREN0, COREN1) of the correction control register (CORCN) to 1.
- (4) Set the main program so that the program branches from the specified address of the internal expansion RAM (F7FDH) to the internal expansion RAM address where the corrected program is stored using the entire space branch instruction (BR !addr16).
- (5) After the main program is started, the fetch address value and the values set in CORAD0 and CORAD1 are always compared by the comparator in the ROM correction circuit. When these values match, the correction branch request signal is generated. Simultaneously the corresponding correction status flag (CORST0 or CORST1) is set to 1.
- (6) Branch to the address F7FDH by the correction branch request signal.
- (7) Branch to the internal expansion RAM address set in (4) by the entire-space branch instruction of the address F7FDH.
- (8) When one place is corrected, the correction program is executed. When two places are corrected, the correction status flag is checked with the branch destination judgment program, and branches to the correction program.

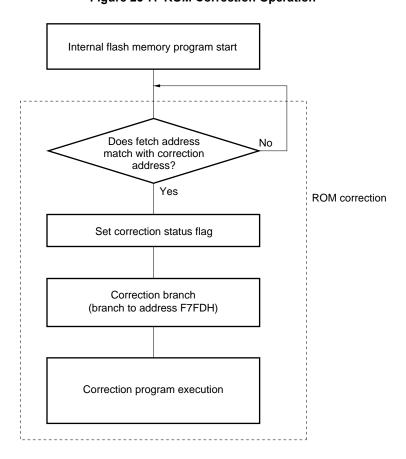


Figure 25-7. ROM Correction Operation

25.6 Program Execution Flow

Figures 25-8 and 25-9 show the program transition diagrams when the ROM correction is used.

FFFFH
F7FDH

BR !JUMP
F7FDH

Correction program

JUMP

Correction place

xxxxH

Internal flash memory

0000H

Figure 25-8. Program Transition Diagram (When One Place Is Corrected)

- (1) Branches to address F7FDH when fetch address matches correction address
- (2) Branches to correction program
- (3) Returns to internal flash memory program

Remark Area filled with diagonal lines: Internal expansion RAM JUMP: Correction program start address

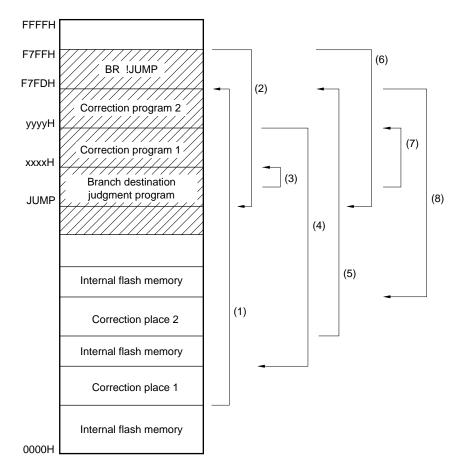


Figure 25-9. Program Transition Diagram (When Two Places Are Corrected)

- (1) Branches to address F7FDH when fetch address matches correction address
- (2) Branches to branch destination judgment program
- (3) Branches to correction program 1 by branch destination judgment program (BTCLR !CORSTO, \$xxxxH)
- (4) Returns to internal flash memory program
- (5) Branches to address F7FDH when fetch address matches correction address
- (6) Branches to branch destination judgment program
- (7) Branches to correction program 2 by branch destination judgment program (BTCLR !CORST1, \$yyyyH)
- (8) Returns to internal flash memory program

Remark Area filled with diagonal lines: Internal expansion RAM JUMP: Branch destination judgment program start address

25.7 Cautions for ROM Correction

- (1) Address values set in correction address registers 0 and 1 (CORAD0, CORAD1) must be addresses where instruction codes are stored.
- (2) Correction address registers 0 and 1 (CORAD0, CORAD1) should be set when the correction enable flag (COREN0, COREN1) is 0 (when the correction branch is in disabled state). If address is set to CORAD0 or CORAD1 when COREN0 or COREN1 is 1 (when the correction branch is in enabled state), the correction branch may start with the different address from the set address value.
- (3) Do not set the address value of instruction immediately after the instruction that sets the correction enable flag (COREN0, COREN1) to 1, to correction address register 0 or 1 (CORAD0, CORAD1); the correction branch may not start.
- (4) Do not set the address value in table area of table reference instruction (CALLT instruction) (0040H to 007FH), and the address value in vector table area (0000H to 003FH) to correction address registers 0 and 1 (CORAD0, CORAD1).
- (5) Do not set two addresses immediately after the instructions shown below to correction address registers 0 and 1 (CORAD0, CORAD1). (That is, when the mapped terminal address of these instructions is N, do not set the address values of N + 1 and N + 2.)
 - RET
 - RETI
 - RETB
 - BR \$addr16
 - STOP
 - HALT

CHAPTER 26 FLASH MEMORY

The μ PD78F0132H, 78F0133H, 78F0134H, 78F0136H, and 78F0138H/HD replace the internal mask ROM of the μ PD780132, 780133, 780134, 780136, and 780138 of the 78K0/KE1 respectively with flash memory to which a program can be written, erased, and overwritten while mounted on the board. Table 26-1 lists the differences between the 78K0/KE1+ and the 78K0/KE1.

Table 26-1, Differences Between 78K0/KE1+ and 78K0/KE1

Item	78K0/KE1+	78K0)/KE1
	μPD78F0132H, 78F0133H, 78F0134H, 78F0136H, 78F0138H, 78F0138HD	µРD78F0134, 78F0138	μPD780131, 780132, 780133, 780134, 780136, 780138
Internal ROM	Flash memory	Flash memory	Mask ROM
configuration	(single power supply)	(two power supplies)	
Internal ROM capacity	μPD78F0132H: 16 KB ^{Note 1} μPD78F0133H: 24 KB ^{Note 1} μPD78F0134H: 32 KB ^{Note 1} μPD78F0136H: 48 KB ^{Note 1} μPD78F0138H: 60 KB ^{Note 1} μPD78F0138HD: 60 KB ^{Note 1}	μPD78F0134: 32 KB ^{Note 1} μPD78F0138: 60 KB ^{Note 1}	μPD780131: 8 KB μPD780132: 16 KB μPD780133: 24 KB μPD780134: 32 KB μPD780136: 48 KB μPD780138: 60 KB
Internal high-speed RAM capacity	μPD78F0132H: 512 bytes ^{Note 1} μPD78F0133H: 1024 bytes ^{Note 1} μPD78F0134H: 1024 bytes ^{Note 1} μPD78F0136H: 1024 bytes ^{Note 1} μPD78F0138H: 1024 bytes ^{Note 1} μPD78F0138HD: 1024 bytes ^{Note 1}	μPD78F0134: 1024 bytes ^{Note 1} μPD78F0138: 1024 bytes ^{Note 1}	μPD780131: 512 bytes μPD780132: 512 bytes μPD780133: 1024 bytes μPD780134: 1024 bytes μPD780136: 1024 bytes μPD780138: 1024 bytes
Internal expansion RAM capacity	μPD78F0132H: None μPD78F0133H: None μPD78F0134H: None μPD78F0136H: 1024 bytes ^{Note 1} μPD78F0138H : 1024 bytes ^{Note 1} μPD78F0138HD: 1024 bytes ^{Note 1}	μPD78F0134: None μPD78F0138: 1024 bytes ^{Note 1}	μPD780131: None μPD780132: None μPD780133: None μPD780134: None μPD780136: 1024 bytes μPD780138: 1024 bytes
Pin 3	FLMD0 pin	V _{PP} pin	IC pin
Pin 20	P17/TI50/TO50/FLMD1 pin	P17/TI50/TO50 pin	
Power-on clear (POC) function	Detection voltage is fixed (V _{POC} = 2.1 V ±0.1 V)	Enabling use of POC and detection voltage selectable by product	Enabling use of POC and detection voltage selectable by mask option
Regulator	None	Available Note 2	
Self-programming function	Available	None	-
On-chip debug function	Available only in μPD78F0138HD	None	-
Electrical specifications	Refer to the electrical specification	s chapter in the user's manual of e	each product.

Notes 1. The same capacity as the mask ROM versions can be specified by means of the internal memory size switching register (IMS) and the internal expansion RAM size switching register (IXS).

Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations for the commercial samples (not engineering samples) of the mask ROM versions.

^{2.} The regulator cannot be used in (A1) grade products and (A2) grade products.

26.1 Internal Memory Size Switching Register

The internal memory capacity can be selected using the internal memory size switching register (IMS). IMS is set by an 8-bit memory manipulation instruction.

RESET input sets IMS to CFH.

Caution The initial value of IMS is CFH. Be sure to set each product to the values shown in Table 26-2 at initialization. Also, when using the 78K0/KE1+ to evaluate the program of a mask ROM version of the 78K0/KE1, be sure to set the values shown in Table 26-2.

Figure 26-1. Format of Internal Memory Size Switching Register (IMS)

Address: FFF0H After reset: CFH R/W Symbol 5 3 2 1 0 IMS RAM2 RAM1 RAM0 0 ROM3 ROM2 ROM1 ROM0

RAM2	RAM1	RAM0	Internal high-speed RAM capacity selection
0	1	0	512 bytes
1	1	0	1024 bytes
Other than above		ve	Setting prohibited

ROM3	ROM2	ROM1	ROM0	Internal ROM capacity selection
0	0	1	0	8 KB
0	1	0	0	16 KB
0	1	1	0	24 KB
1	0	0	0	32 KB
1	1	0	0	48 KB
1	1	1	1	60 KB
	Other than above			Setting prohibited

The IMS settings required to obtain the same memory map as mask ROM versions of the 78K0/KE1 are shown in Table 26-2.

Table 26-2. Internal Memory Size Switching Register Settings

Flash Memory Versions (78K0/KE1+)	Target Mask ROM Versions (78K0/KE1)	IMS Setting
-	μPD780131	42H
μPD78F0132H	μPD780132	44H
μPD78F0133H	μPD780133	C6H
μPD78F0134H	μPD780134	C8H
μPD78F0136H	μPD780136	ССН
μPD78F0138H, 78F0138HD	μPD780138	CFH

26.2 Internal Expansion RAM Size Switching Register

The internal expansion RAM capacity can be selected using the internal expansion RAM size switching register (IXS).

This register is set by an 8-bit memory manipulation instruction.

RESET input sets IXS to 0CH.

Caution The initial value of IXS is 0CH. Be sure to set each product to the values shown in Table 26-3 at initialization. Also, when using the 78K0/KE1+ to evaluate the program of a mask ROM version of the 78K0/KE1, be sure to set the values shown in Table 26-3.

Figure 26-2. Format of Internal Expansion RAM Size Switching Register (IXS)

Address: FFF	Address: FFF4H After reset: 0CH R/W							
Symbol	7	6	5	4	3	2	1	0
IXS	0	0	0	IXRAM4	IXRAM3	IXRAM2	IXRAM1	IXRAM0
<u>'</u>								
	IXRAM4	IXRAM3	IXRAM2	IXRAM1	IXRAM0	Internal expan	sion RAM cap	acity selection
	0	1	1	0	0	0 bytes		
	0	1	0	1	0	1024 bytes		
Other than above					Setting proh	ibited		

The IXS settings required to obtain the same memory map as mask ROM versions of the 78K0/KE1 are shown in Table 26-3.

Table 26-3. Internal Expansion RAM Size Switching Register Settings

Flash Memory Versions (78K0/KE1+)	Target Mask ROM Versions (78K0/KE1)	IXS Setting
-	μPD780131	0CH
μPD78F0132H	μPD780132	0CH
μPD78F0133H	μPD780133	0CH
μPD78F0134H	μPD780134	0CH
μPD78F0136H	μPD780136	0AH
μPD78F0138H, 78F0138HD	μPD780138	0AH

26.3 Writing with Flash Programmer

Data can be written to the flash memory on-board or off-board, by using a dedicated flash programmer.

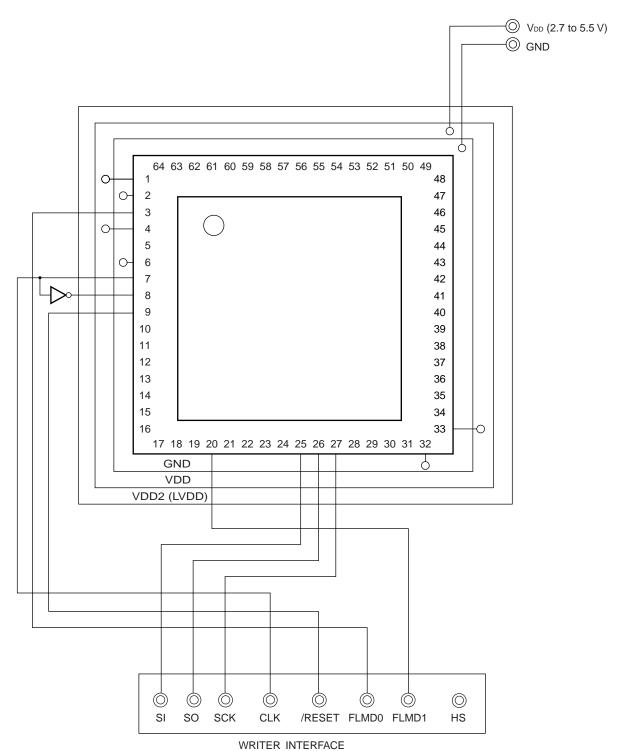
(1) On-board programming

The contents of the flash memory can be rewritten after the 78K0/KE1+ has been mounted on the target system. The connectors that connect the dedicated flash programmer must be mounted on the target system.

(2) Off-board programming

Data can be written to the flash memory with a dedicated program adapter (FA series) before the 78K0/KE1+ is mounted on the target system.

Remark The FA series is a product of Naito Densei Machida Mfg. Co., Ltd.


Table 26-4. Wiring Between 78K0/KE1+ and Dedicated Flash Programmer

Pin Configuration of Dedicated Flash Programmer		With CSI10 V		With CSI10 +	With CSI10 + HS		With UART6	
Signal Name	I/O	Pin Function	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.
SI/RxD	Input	Receive signal	SO10/P12	25	SO10/P12	25	TxD6/P13	24
SO/TxD	Output	Transmit signal	SI10/RxD0/P11	26	SI10/RxD0/P11	26	RxD6/P14	23
SCK	Output	Transfer clock	SCK10/TxD0/P10	27	SCK10/TxD0/P10	27	Not needed	Not needed
CLK	Output	Clock to 78K0/KE1+	X1	7	X1	7	X1	7
			X2 ^{Note}	8	X2 ^{Note}	8	X2 ^{Note}	8
/RESET	Output	Reset signal	RESET	9	RESET	9	RESET	9
FLMD0	Output	Mode signal	FLMD0	3	FLMD0	3	FLMD0	3
FLMD1	Output	Mode signal	FLMD1/TI50/ TO50/P17	20	FLMD1/TI50/ TO50/P17	20	FLMD1/TI50/ TO50/P17	20
H/S	Input	Handshake signal	Not needed	Not needed	HS/P15/TOH0	22	Not needed	Not needed
V _{DD}	I/O	V _{DD} voltage	V _{DD}	4	V _{DD}	4	V _{DD}	4
		generation/voltage	EV _{DD}	33	EV _{DD}	33	EV _{DD}	33
		monitoring	AVREF	1	AVREF	1	AVREF	1
GND	-	Ground	Vss	6	Vss	6	Vss	6
			EVss	32	EVss	32	EVss	32
			AVss	2	AVss	2	AVss	2

Note When using the clock out of the flash programmer, connect CLK of the programmer to X1, and connect its inverse signal to X2.

Examples of the recommended connection when using the adapter for flash memory writing are shown below.

Figure 26-3. Example of Wiring Adapter for Flash Memory Writing in 3-Wire Serial I/O (CSI10) Mode

○ V_{DD} (2.7 to 5.5 V) ⊕ GND 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 GND VDD VDD2 (LVDD) HS SI SO SCK CLK /RESET FLMD0 FLMD1 WRITER INTERFACE

Figure 26-4. Example of Wiring Adapter for Flash Memory Writing in 3-Wire Serial I/O (CSI10 + HS) Mode

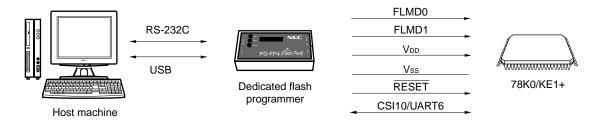

○ V_{DD} (2.7 to 5.5 V) ⊕ GND 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 0-0-17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 GND VDD VDD2 (LVDD) \bigcirc \bigcirc HS SI SO SCK CLK /RESET FLMD0 FLMD1 WRITER INTERFACE

Figure 26-5. Example of Wiring Adapter for Flash Memory Writing in UART (UART6) Mode

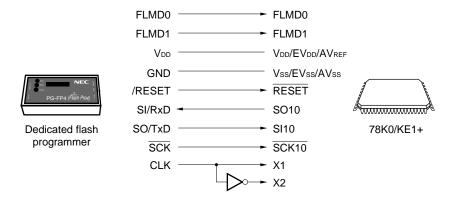
26.4 Programming Environment

The environment required for writing a program to the flash memory of the 78K0/KE1+ is illustrated below.

Figure 26-6. Environment for Writing Program to Flash Memory

A host machine that controls the dedicated flash programmer is necessary.

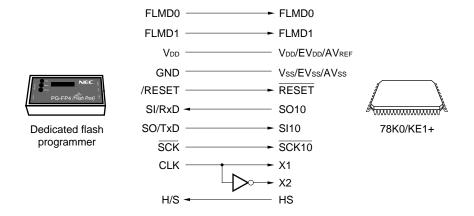
To interface between the dedicated flash programmer and the 78K0/KE1+, CSI10 or UART6 is used for manipulation such as writing and erasing. To write the flash memory off-board, a dedicated program adapter (FA series) is necessary.


26.5 Communication Mode

Communication between the dedicated flash programmer and the 78K0/KE1+ is established by serial communication via CSI10 or UART6 of the 78K0/KE1+.

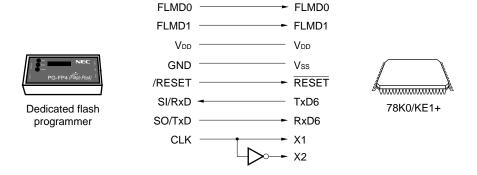
(1) CSI10

Transfer rate: 200 kHz to 2 MHz


Figure 26-7. Communication with Dedicated Flash Programmer (CSI10)

(2) CSI communication mode supporting handshake

Transfer rate: 200 kHz to 2 MHz


Figure 26-8. Communication with Dedicated Flash Programmer (CSI10 + HS)

(3) UART6

Transfer rate: 4800 to 76800 bps

Figure 26-9. Communication with Dedicated Flash Programmer (UART6)

If FlashPro4 is used as the dedicated flash programmer, FlashPro4 generates the following signal for the 78K0/KE1+. For details, refer to the FlashPro4 manual.

Table 26-5. Pin Connection

	FlashPro4				ection
Signal Name	I/O	Pin Function	Pin Name	CSI10	UART6
FLMD0	Output	Mode signal	FLMD0	0	0
FLMD1	Output	Mode signal	FLMD1	0	0
V _{DD}	I/O	V _{DD} voltage generation/voltage monitoring	VDD, EVDD, AVREF	0	0
GND	_	Ground	Vss, EVss, AVss	0	0
CLK	Output	Clock output to 78K0/KE1+	X1, X2 ^{Note}	0	0
/RESET	Output	Reset signal	RESET	0	0
SI/RxD	Input	Receive signal	SO10/TxD6	0	0
SO/TxD	Output	Transmit signal	SI10/RxD6	0	0
SCK	Output	Transfer clock	SCK10	0	×
H/S	Input	Handshake signal	HS	Δ	×

Note When using the clock out of the flash programmer, connect CLK of the programmer to X1, and connect its inverse signal to X2.

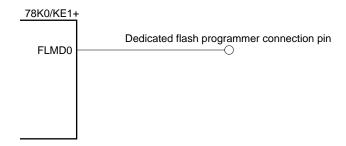
Remark \bigcirc : Be sure to connect the pin.

O: The pin does not have to be connected if the signal is generated on the target board.

 \times : The pin does not have to be connected.

 \triangle : In handshake mode

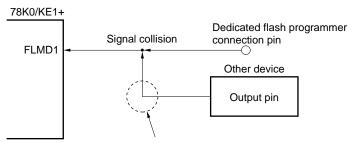
26.6 Connection of Pins on Board


To write the flash memory on-board, connectors that connect the dedicated flash programmer must be provided on the target system. First provide a function that selects the normal operation mode or flash memory programming mode on the board.

When the flash memory programming mode is set, all the pins not used for programming the flash memory are in the same status as immediately after reset. Therefore, if the external device does not recognize the state immediately after reset, the pins must be connected as described below.

26.6.1 FLMD0 pin

In the normal operation mode, 0 V is input to the FLMD0 pin. In the flash memory programming mode, the V_{DD} write voltage is supplied to the FLMD0 pin. An FLMD0 pin connection example is shown below.


Figure 26-10. FLMD0 Pin Connection Example

26.6.2 FLMD1 pin

When 0 V is input to the FLMD0 pin, the FLMD1 pin does not function. When V_{DD} is supplied to the FLMD0 pin, the flash memory programming mode is entered, so the same voltage as V_{SS} must be supplied to the FLMD1 pin. An FLMD1 pin connection example is shown below.

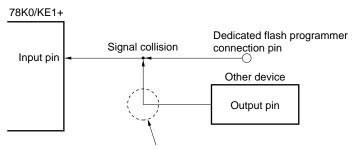
Figure 26-11. FLMD1 Pin Connection Example

If the V_{DD} signal is input to the FLMD1 pin from another device during on-board programming and immediately after reset, isolate this signal.

26.6.3 Serial interface pins

The pins used by each serial interface are listed below.

Table 26-6. Pins Used by Each Serial Interface

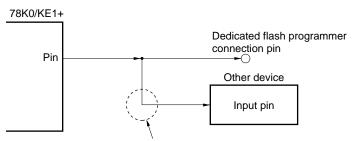

Serial Interface	Pins Used
CSI10	SO10, SI10, SCK10
CSI10 + HS	SO10, SI10, SCK10, HS/P15
UART6	TxD6, RxD6

To connect the dedicated flash programmer to the pins of a serial interface that is connected to another device on the board, care must be exercised so that signals do not collide or that the other device does not malfunction.

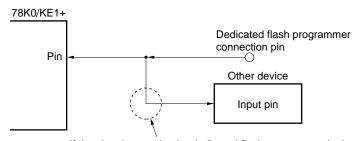
(1) Signal collision

If the dedicated flash programmer (output) is connected to a pin (input) of a serial interface connected to another device (output), signal collision takes place. To avoid this collision, either isolate the connection with the other device, or make the other device go into an output high-impedance state.

Figure 26-12. Signal Collision (Input Pin of Serial Interface)



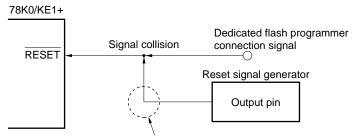
In the flash memory programming mode, the signal output by the device collides with the signal sent from the dedicated flash programmer. Therefore, isolate the signal of the other device.


(2) Malfunction of other device

If the dedicated flash programmer (output or input) is connected to a pin (input or output) of a serial interface connected to another device (input), a signal may be output to the other device, causing the device to malfunction. To avoid this malfunction, isolate the connection with the other device.

Figure 26-13. Malfunction of Other Device

If the signal output by the 78K0/KE1+ in the flash memory programming mode affects the other device, isolate the signal of the other device.


If the signal output by the dedicated flash programmer in the flash memory programming mode affects the other device, isolate the signal of the other device.

26.6.4 RESET pin

If the reset signal of the dedicated flash programmer is connected to the RESET pin that is connected to the reset signal generator on the board, signal collision takes place. To prevent this collision, isolate the connection with the reset signal generator.

If the reset signal is input from the user system while the flash memory programming mode is set, the flash memory will not be correctly programmed. Do not input any signal other than the reset signal of the dedicated flash programmer.

Figure 26-14. Signal Collision (RESET Pin)

In the flash memory programming mode, the signal output by the reset signal generator collides with the signal output by the dedicated flash programmer. Therefore, isolate the signal of the reset signal generator.

26.6.5 Port pins

When the flash memory programming mode is set, all the pins not used for flash memory programming enter the same status as that immediately after reset. If external devices connected to the ports do not recognize the port status immediately after reset, the port pin must be connected to VDD or VSS via a resistor.

26.6.6 Other signal pins

Connect X1 and X2 in the same status as in the normal operation mode when using the on-board clock.

To input the operating clock from the programmer, however, connect the clock out of the programmer to X1, and its inverse signal to X2.

26.6.7 Power supply

To use the supply voltage output of the flash programmer, connect the V_{DD} pin to V_{DD} of the flash programmer, and the Vss pin to Vss of the flash programmer.

To use the on-board supply voltage, connect in compliance with the normal operation mode.

However, be sure to connect the V_{DD} and V_{SS} pins to V_{DD} and GND of the flash programmer, respectively, because the voltage is monitored by the flash programmer.


Supply the same other power supplies (EVDD, EVss, AVREF, and AVss) as those in the normal operation mode.

26.7 Programming Method

26.7.1 Controlling flash memory

The following figure illustrates the procedure to manipulate the flash memory.

Figure 26-15. Flash Memory Manipulation Procedure

26.7.2 Flash memory programming mode

To rewrite the contents of the flash memory by using the dedicated flash programmer, set the 78K0/KE1+ in the flash memory programming mode. To set the mode, set the FLMD0 pin to V_{DD} and clear the reset signal.

Change the mode by using a jumper when writing the flash memory on-board.

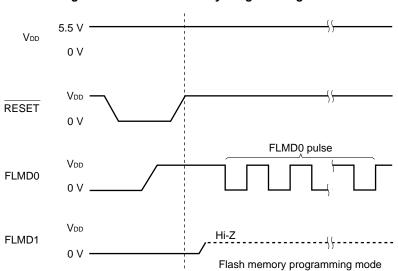


Figure 26-16. Flash Memory Programming Mode

Table 26-7. Relationship Between FLMD0, FLMD1 Pins and Operation Mode After Reset Release

FLMD0	FLMD1	Operation Mode
0	Any	Normal operation mode
V _{DD}	0	Flash memory programming mode
V _{DD}	V _{DD}	Setting prohibited

26.7.3 Selecting communication mode

In the 78K0/KE1+, a communication mode is selected by inputting pulses (up to 11 pulses) to the FLMD0 pin after the dedicated flash memory programming mode is entered. These FLMD0 pulses are generated by the flash programmer.

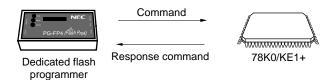
The following table shows the relationship between the number of pulses and communication modes.

<R>

Table 26-8. Communication Modes

Communication Mode		Sta	ndard Setting Note 1			Pins Used	Number of
	Port	Speed	On Target	Frequency	Multiply Rate		FLMD0 Pulses
UART (UART6)	UART-ch0	9600, 19200, 31250, 38400, 76800, 153600 ^{Note 3} bps ^{Note 4}	Optional	2 MHz to 16 MHz Note 2	1.0	TxD6, RxD6	0
3-wire serial I/O (CSI10)	SIO-ch0	2.4 kHz to 2.5 MHz				SO10, SI10, SCK10	8
3-wire serial I/O with handshake supported (CSI10 + HS)	SIO-H/S	2.4 kHz to 2.5 MHz				SO10, SI10, SCK10, HS/P15	11

Notes 1. Selection items for Standard settings on FlashPro4.


- **2.** The possible setting range differs depending on the voltage. For details, refer to the chapters of electrical specifications.
- <R> 3. When peripheral hardware clock frequency is 2.5 MHz or less, this cannot be selected.
 - **4.** Because factors other than the baud rate error, such as the signal waveform slew, also affect UART communication, thoroughly evaluate the slew as well as the baud rate error.

Caution When UART6 is selected, the receive clock is calculated based on the reset command sent from the dedicated flash programmer after the FLMD0 pulse has been received.

26.7.4 Communication commands

The 78K0/KE1+ communicates with the dedicated flash programmer by using commands. The signals sent from the flash programmer to the 78K0/KE1+ are called commands, and the commands sent from the 78K0/KE1+ to the dedicated flash programmer are called response commands.

Figure 26-17. Communication Commands

The flash memory control commands of the 78K0/KE1+ are listed in the table below. All these commands are issued from the programmer and the 78K0/KE1+ perform processing corresponding to the respective commands.

Table 26-9. Flash Memory Control Commands

Classification	Command Name	Function
Verify	Batch verify command	Compares the contents of the entire memory with the input data.
Erase	Batch erase command	Erases the contents of the entire memory.
Blank check	Batch blank check command	Checks the erasure status of the entire memory.
Data write	High-speed write command	Writes data by specifying the write address and number of bytes to be written, and executes a verify check.
	Successive write command	Writes data from the address following that of the high-speed write command executed immediately before, and executes a verify check.
System setting, control	Status read command	Obtains the operation status
	Oscillation frequency setting command	Sets the oscillation frequency
	Erase time setting command	Sets the erase time for batch erase
	Write time setting command	Sets the write time for writing data
	Baud rate setting command	Sets the baud rate when UART is used
	Silicon signature command	Reads the silicon signature information
	Reset command	Escapes from each status

The 78K0/KE1+ return a response command for the command issued by the dedicated flash programmer. The response commands sent from the 78K0/KE1+ are listed below.

Table 26-10. Response Commands

Command Name	Function
ACK	Acknowledges command/data.
NAK	Acknowledges illegal command/data.

26.8 Flash Memory Programming by Self-Writing

The 78K0/KE1+ supports a self-programming function that can be used to rewrite the flash memory via a user program, so that the program can be upgraded in the field.

The programming mode is selected by bits 0 and 1 (FLSPM0 and FLSPM1) of the flash programming mode control register (FLPMC).

The procedure of self-programming is illustrated below.

Remark For details of the self programming function, refer to the 78K0/Kx1+ Flash Memory Self Programming User's Manual (U16701E).

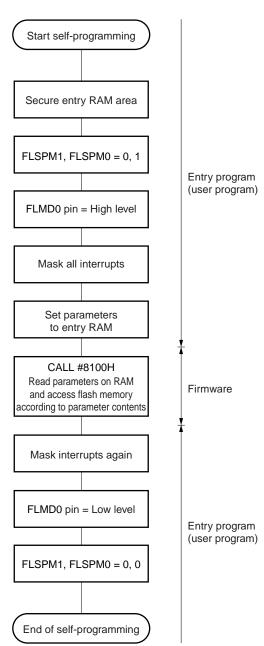


Figure 26-18. Self-Programming Procedure

26.8.1 Registers used for self-programming function

The following three registers are used for the self-programming function.

- Flash programming mode control register (FLPMC)
- Flash protect command register (PFCMD)
- Flash status register (PFS)

(1) Flash programming mode control register (FLPMC)

This register is used to enable or disable writing or erasing of the flash memory and to set the operation mode during self-programming.

FLPMC can be written only in a specific sequence (see **26.8.1 (2) Flash protect command register (PFCMD)**) so that the application system does not stop inadvertently due to malfunction caused by noise or program hangup.

FLPMC can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 0xHNote.

Note Differs depending on the operation mode.

User mode: 08HOn-board mode: 0CH

Figure 26-19. Format of Flash Programming Mode Control Register (FLPMC)

Address: FFC4H		After reset:	0×H ^{Note 1}	R/W ^{Note}	R/W ^{Note 2}				
Symbol	7	6	5	4	3	2	1	0	
FLPMC	0	0	0	0	FWEDIS	FWEPR	FLSPM1	FLSPM0	

FWEDIS	Control of flash memory writing/erasing			
0	Writing/erasing enabled ^{Note 3}			
1	Writing/erasing disabled			

FWEP	R Status of FLMD0 pin
0	Low level
1	High level ^{Note 3}

FLSPM1Note 4	FLSPM0 ^{Note 4}	Selection of operation mode during self-programming
0	0	Normal mode Instructions of flash memory can be fetched from all addresses.
0	1	Self-programming mode A1 Firmware can be called (CALL #8100H).
1	1	Self-programming mode A2 Instructions are fetched from firmware ROM. This mode is set in firmware and cannot be set by the user.
1	0	Setting prohibited

Notes 1. Differs depending on the operation mode.

User mode: 08HOn-board mode: 0CH

- 2. Bit 2 (FWEPR) is read-only.
- **3.** For actual writing/erasing, the FLMD0 pin must be high (FWEPR = 1), as well as FWEDIS = 0.

FWEDIS	FWEPR	Enable or disable of flash memory writing/erasing
0	1	Writing/erasing enabled
Other than above		Writing/erasing disabled

4. The user ROM (flash memory) or firmware ROM can be selected by FLSPM1 and FLSPM0, and the operation mode set on the application system by the mode pin or the self-programming mode can be selected.

Cautions 1. Be sure to keep FWEDIS at 0 until writing or erasing of the flash memory is completed.

- 2. Make sure that FWEDIS = 1 in the normal mode.
- 3. Manipulate FLSPM1 and FLSPM0 after execution branches to the internal RAM. The address of the flash memory is specified by an address signal from the CPU when FLSPM1 = 0 or the set value of the firmware written when FLSPM1 = 1. In the on-board mode, the specifications of FLSPM1 and FLSPM0 are ignored.

(2) Flash protect command register (PFCMD)

If the application system stops inadvertently due to malfunction caused by noise or program hang-up, an operation to write the flash programming mode control register (FLPMC) may have a serious effect on the system. PFCMD is used to protect FLPMC from being written, so that the application system does not stop inadvertently.

Writing FLPMC is enabled only when a write operation is performed in the following specific sequence.

- <1> Write a specific value to PFCMD (PFCMD = A5H)
- <2> Write the value to be set to FLPMC (writing in this step is invalid)
- <3> Write the inverted value of the value to be set to FLPMC (writing in this step is invalid)
- <4> Write the value to be set to FLPMC (writing in this step is valid)

This rewrites the value of the register, so that the register cannot be written illegally.

Occurrence of an illegal store operation can be checked by bit 0 (FPRERR) of the flash status register (PFS).

A5H must be written to PFCMD each time the value of FLPMC is changed.

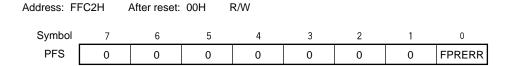
PFCMD can be set by an 8-bit memory manipulation instruction.

RESET input makes this register undefined.

Figure 26-20. Format of Flash Protect Command Register (PFCMD)

Address: FFC0H		After reset:	Undefined	l W				
Symbol	7	6	5	4	3	2	1	0
PFCMD	REG7	REG6	REG5	REG4	REG3	REG2	REG1	REG0

(3) Flash status register (PFS)


If data is not written to the flash programming mode control register (FLPMC), which is protected, in the correct sequence (writing the flash protect command register (PFCMD)), FLPMC is not written and a protection error occurs. If this happens, bit 0 of PFS (FPRERR) is set to 1.

This bit is a cumulative flag. After checking FPRERR, clear it by writing 0 to it.

PFS can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Figure 26-21. Format of Flash Status Register (PFS)

The operating conditions of the FPRERR flag are as follows.

<Setting conditions>

- If PFCMD is written when the store instruction operation recently performed on a peripheral register is not to write a specific value (A5H) to PFCMD
- If the first store instruction operation after <1> is on a peripheral register other than FLPMC
- If the first store instruction operation after <2> is on a peripheral register other than FLPMC
- If a value other than the inverted value of the value to be set to FLPMC is written by the first store instruction after <2>
- If the first store instruction operation after <3> is on a peripheral register other than FLPMC
- If a value other than the value to be set to FLPMC (value written in <2>) is written by the first store instruction after <3>

Remark The numbers in angle brackets above correspond to the those in (2) Flash protect command register (PFCMD).

<Reset conditions>

- If 0 is written to the FPRERR flag
- If RESET is input

<Example of description in specific sequence>

To write 05H to FLPMC

MOV PFCMD, #0A5H ; Writes A5H to PFCMD.

MOV FLPMC, #05H ; Writes 05H to FLPMC.

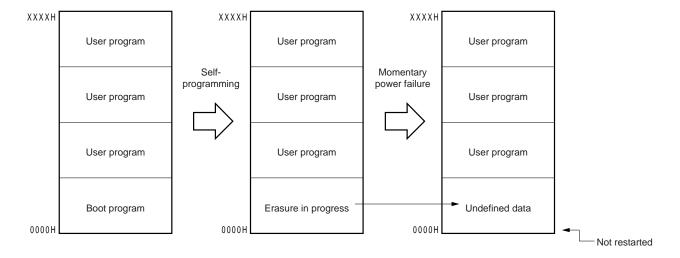
MOV FLPMC, #0FAH ; Writes 0FAH (inverted value of 05H) to FLPMC.

MOV FLPMC, #05H ; Writes 05H to FLPMC.

26.9 Boot Swap Function

The 78K0/KE1+ has a boot swap function.

Even if a momentary power failure occurs for some reason while the boot area is being rewritten by self-programming and the program in the boot area is lost, the boot swap function can execute the program correctly after re-application of power, reset, and start.


26.9.1 Outline of boot swap function

Before erasing the boot program area by self-programming, write a new boot program to the block to be swapped, and also set the boot flag^{Note}. Even if a momentary power failure occurs, the address is swapped when the system is reset and started next time. Consequently, the above area to be swapped is used as a boot area, and the program is executed correctly. Figure 26-22 shows an image of the boot swap function.

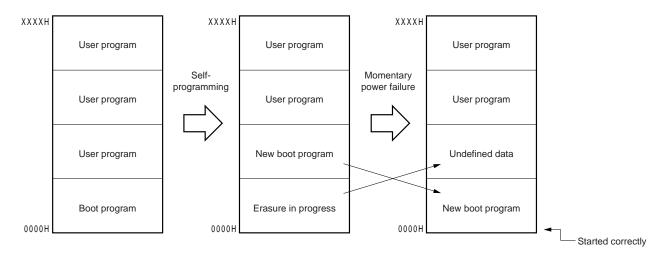

Note The boot flag is controlled by the flash memory control firmware of the 78K0/KE1+.

Figure 26-22. Image of Boot Swap Function

(1) If boot swap is not supported

(2) If boot swap is supported

26.9.2 Memory map and boot area

Figure 26-23 shows the memory map and boot area. The boot program area of the 78K0/KE1+ is in 4 KB units. When boot swap is executed, boot cluster 0 and boot cluster 1 in the figure are exchanged.

Figure 26-23. Memory Map and Boot Area (1/6)

(1) μ PD78F0132H

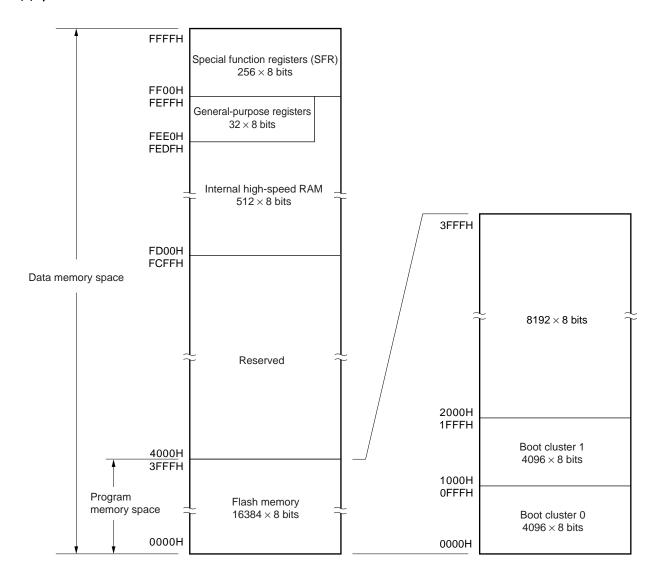


Figure 26-23. Memory Map and Boot Area (2/6)

(2) μ PD78F0133H

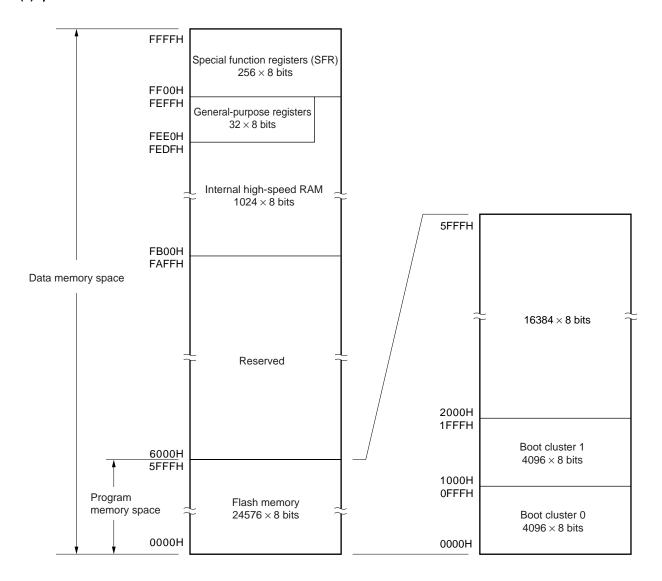


Figure 26-23. Memory Map and Boot Area (3/6)

(3) μ PD78F0134H

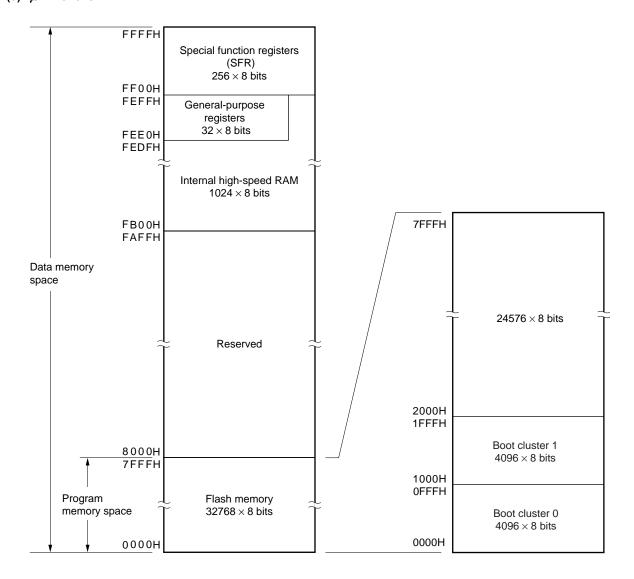


Figure 26-23. Memory Map and Boot Area (4/6)

(4) μ PD78F0136H

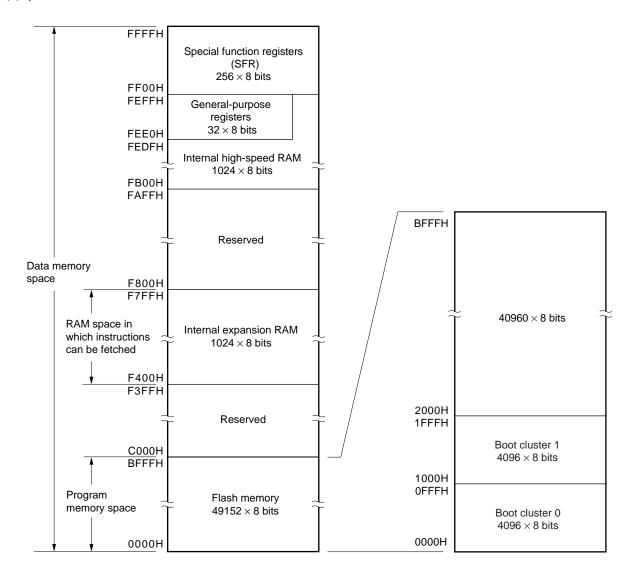


Figure 26-23. Memory Map and Boot Area (5/6)

(5) μ PD78F0138H

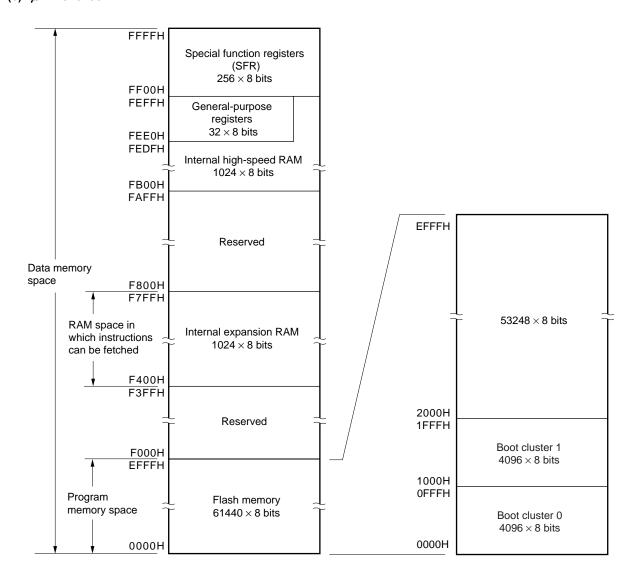
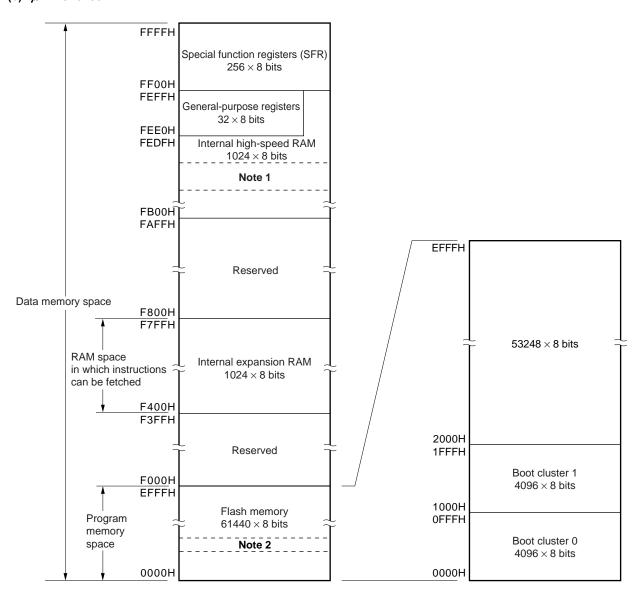



Figure 26-23. Memory Map and Boot Area (6/6)

(6) μ PD78F0138HD

- Notes 1. During on-chip debugging, about 7 to 16 bytes of this area are used as the user data backup area for communication.
 - 2. During on-chip debugging, use of this area is disabled because it is used as the communication command area (008FH to 018FH: debugger's default setting).

<R>

The μ PD78F0138HD uses the V_{DD}, FLMD0, RESET, X1 (or P31), X2 (or P32), and V_{SS} pins to communicate with the host machine via an on-chip debug emulator (QB-78K0MINI) for on-chip debugging. Whether X1 and P31, or X2 and P32 are used can be selected.

Caution The μ PD78F0138HD has an on-chip debug function. Do not use this product for mass production because its reliability cannot be guaranteed after the on-chip debug function has been used, given the issue of the number of times the flash memory can be rewritten. NEC Electronics does not accept complaints concerning this product.

QB-78K0MINI target connector μPD78F0138HD FLMD0 FLMD0 **Note** Target reset RESET_IN RESET OUT RESET X1 X1 X2 X2 GND **GND** V_{DD} V_{DD} P31

Figure 27-1. Connection Example of QB-78K0MINI and µPD78F0138HD (When X1 and X2 Are Used)

Note Make pull-down resistor 470 Ω or more.

- Cautions 1. Input the clock from the X1 pin during on-chip debugging.
 - 2. Control the X1 and X2 pins by externally pulling down the P31 pin.

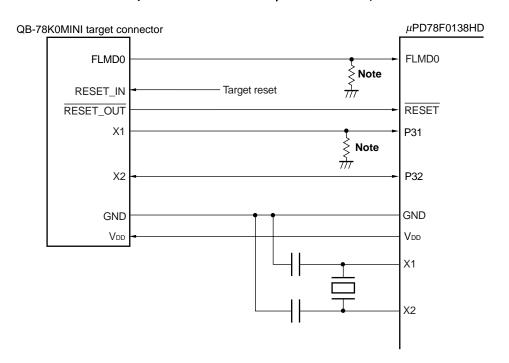


Figure 27-2. Connection Example of QB-78K0MINI and µPD78F0138HD (When P31 and P32 Are Used)

Note Make pull-down resistor 470 Ω or more.

27.1 On-Chip Debug Security ID

The μ PD78F0138HD has an on-chip debug operation control flag in the flash memory at 0084H (see **CHAPTER 24 OPTION BYTE**) and an on-chip debug security ID setting area at 0085H to 008EH.

When the boot swap function is used, also set a value that is the same as that of 1084H and 1085H to 108EH in advance, because 0084H, 0085H to 008EH and 1084H, and 1085H to 108EH are switched.

For details on the on-chip debug security ID, refer to the QB-78K0MINI User's Manual (U17029E).

Table 27-1. On-Chip Debug Security ID

Address	On-Chip Debug Security ID
0085H to 008EH	Any ID code of 10 bytes
1085H to 108EH	

CHAPTER 28 INSTRUCTION SET

This chapter lists each instruction set of the 78K0/KE1+ in table form. For details of each operation and operation code, refer to the separate document **78K/0 Series Instructions User's Manual (U12326E)**.

28.1 Conventions Used in Operation List

28.1.1 Operand identifiers and specification methods

Operands are written in the "Operand" column of each instruction in accordance with the specification method of the instruction operand identifier (refer to the assembler specifications for details). When there are two or more methods, select one of them. Upper case letters and the symbols #, !, \$ and [] are keywords and must be written as they are. Each symbol has the following meaning.

- #: Immediate data specification
- !: Absolute address specification
- \$: Relative address specification
- []: Indirect address specification

In the case of immediate data, describe an appropriate numeric value or a label. When using a label, be sure to write the #, !, \$, and [] symbols.

For operand register identifiers r and rp, either function names (X, A, C, etc.) or absolute names (names in parentheses in the table below, R0, R1, R2, etc.) can be used for specification.

Table 28-1. Operand Identifiers and Specification Methods

Identifier	Specification Method
r	X (R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7),
rp	AX (RP0), BC (RP1), DE (RP2), HL (RP3)
sfr	Special function register symbol ^{Note}
sfrp	Special function register symbol (16-bit manipulatable register even addresses only) ^{Note}
saddr	FE20H to FF1FH Immediate data or labels
saddrp	FE20H to FF1FH Immediate data or labels (even address only)
addr16	0000H to FFFFH Immediate data or labels
	(Only even addresses for 16-bit data transfer instructions)
addr11	0800H to 0FFFH Immediate data or labels
addr5	0040H to 007FH Immediate data or labels (even address only)
word	16-bit immediate data or label
byte	8-bit immediate data or label
bit	3-bit immediate data or label
RBn	RB0 to RB3

Note Addresses from FFD0H to FFDFH cannot be accessed with these operands.

Remark For special function register symbols, refer to Table 3-6 Special Function Register List.

28.1.2 Description of operation column

A: A register; 8-bit accumulator

X: X register

B: B register

C: C register

D: D register

E: E register

H: H register

L: L register

AX: AX register pair; 16-bit accumulator

BC: BC register pair

DE: DE register pair

HL: HL register pair

PC: Program counter

SP: Stack pointer

PSW: Program status word

CY: Carry flag

AC: Auxiliary carry flag

Z: Zero flag

RBS: Register bank select flag

IE: Interrupt request enable flag

(): Memory contents indicated by address or register contents in parentheses

XH, XL: Higher 8 bits and lower 8 bits of 16-bit register

\(\text{.}\): Logical product (AND)\(\text{.}\): Logical sum (OR)

--: Inverted data

addr16: 16-bit immediate data or label

jdisp8: Signed 8-bit data (displacement value)

28.1.3 Description of flag operation column

(Blank): Not affected 0: Cleared to 0

1: Set to 1

X: Set/cleared according to the resultR: Previously saved value is restored

28.2 Operation List

Instruction	Manamania	Operande	Dytoo	С	locks	Operation	F	∃lag
Group	Mnemonic	Operands	Bytes	Note 1	Note 2	Operation	Z.	AC CY
8-bit data	MOV	r, #byte	2	4	ı	$r \leftarrow \text{byte}$		
transfer		saddr, #byte	3	6	7	(saddr) ← byte		
		sfr, #byte	3	-	7	sfr ← byte		
		A, r	1	2	-	$A \leftarrow r$		
		r, A Note 3	1	2	-	$r \leftarrow A$		
		A, saddr	2	4	5	$A \leftarrow (saddr)$		
		saddr, A	2	4	5	(saddr) ← A		
		A, sfr	2	_	5	$A \leftarrow sfr$		
		sfr, A	2	_	5	sfr ← A		
		A, !addr16	3	8	9	A ← (addr16)		
		!addr16, A	3	8	9	(addr16) ← A		
		PSW, #byte	3	_	7	PSW ← byte	×	× ×
		A, PSW	2	_	5	$A \leftarrow PSW$		
		PSW, A	2	_	5	PSW ← A	×	××
		A, [DE]	1	4	5	$A \leftarrow (DE)$		
		[DE], A	1	4	5	(DE) ← A		
		A, [HL]	1	4	5	$A \leftarrow (HL)$		
		[HL], A	1	4	5	(HL) ← A		
		A, [HL + byte]	2	8	9	A ← (HL + byte)		
		[HL + byte], A	2	8	9	(HL + byte) ← A		
		A, [HL + B]	1	6	7	$A \leftarrow (HL + B)$		
		[HL + B], A	1	6	7	(HL + B) ← A		
		A, [HL + C]	1	6	7	$A \leftarrow (HL + C)$		
		[HL + C], A	1	6	7	(HL + C) ← A		
	хсн	A, r	1	2	-	$A \leftrightarrow r$		
		A, saddr	2	4	6	$A \leftrightarrow (saddr)$		
		A, sfr	2	-	6	$A \leftrightarrow (sfr)$		
		A, !addr16	3	8	10	$A \leftrightarrow (addr16)$		
		A, [DE]	1	4	6	$A \leftrightarrow (DE)$		
		A, [HL]	1	4	6	$A \leftrightarrow (HL)$		
		A, [HL + byte]	2	8	10	$A \leftrightarrow (HL + byte)$		
		A, [HL + B]	2	8	10	$A \leftrightarrow (HL + B)$		
		A, [HL + C]	2	8	10	$A \leftrightarrow (HL + C)$		

Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access

- 2. When an area except the internal high-speed RAM area is accessed
- **3.** Except "r = A"

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcpu) selected by the processor clock control register (PCC).

Instruction	Mnemonic	Operands	Bytes	С	locks	Operation	Flag
Group	Willemonic	Operands	Dytes	Note 1	Note 2	Operation	Z AC CY
16-bit data	MOVW	rp, #word	3	6	_	$rp \leftarrow word$	
transfer		saddrp, #word	4	8	10	(saddrp) ← word	
		sfrp, #word	4	_	10	$sfrp \leftarrow word$	
		AX, saddrp	2	6	8	AX ← (saddrp)	
		saddrp, AX	2	6	8	(saddrp) ← AX	
		AX, sfrp	2	_	8	AX ← sfrp	
		sfrp, AX	2	_	8	$sfrp \leftarrow AX$	
		AX, rp	³ 1	4	1	$AX \leftarrow rp$	
		rp, AX	³ 1	4	_	$rp \leftarrow AX$	
		AX, !addr16	3	10	12	AX ← (addr16)	
		!addr16, AX	3	10	12	(addr16) ← AX	
	XCHW	AX, rp	1	4	1	$AX \leftrightarrow rp$	
8-bit	ADD	A, #byte	2	4	1	A, CY ← A + byte	× × ×
operation		saddr, #byte	3	6	8	(saddr), $CY \leftarrow$ (saddr) + byte	× × ×
		A, r	4 2	4	1	$A, CY \leftarrow A + r$	× × ×
		r, A	2	4	ı	$r, CY \leftarrow r + A$	× × ×
		A, saddr	2	4	5	A, CY ← A + (saddr)	× × ×
		A, !addr16	3	8	9	A, CY ← A + (addr16)	× × ×
		A, [HL]	1	4	5	$A, CY \leftarrow A + (HL)$	× × ×
		A, [HL + byte]	2	8	9	$A, CY \leftarrow A + (HL + byte)$	× × ×
		A, [HL + B]	2	8	9	$A, CY \leftarrow A + (HL + B)$	× × ×
		A, [HL + C]	2	8	9	$A, CY \leftarrow A + (HL + C)$	× × ×
	ADDC	A, #byte	2	4	1	A, CY ← A + byte + CY	× × ×
		saddr, #byte	3	6	8	(saddr), $CY \leftarrow$ (saddr) + byte + CY	× × ×
		A, r	4 2	4	_	$A, CY \leftarrow A + r + CY$	× × ×
		r, A	2	4	1	$r, CY \leftarrow r + A + CY$	× × ×
		A, saddr	2	4	5	A, CY ← A + (saddr) + CY	× × ×
		A, !addr16	3	8	9	A, CY ← A + (addr16) + C	× × ×
		A, [HL]	1	4	5	$A, CY \leftarrow A + (HL) + CY$	× × ×
		A, [HL + byte]	2	8	9	$A, CY \leftarrow A + (HL + byte) + CY$	× × ×
	_	A, [HL + B]	2	8	9	$A, CY \leftarrow A + (HL + B) + CY$	× × ×
		A, [HL + C]	2	8	9	$A, CY \leftarrow A + (HL + C) + CY$	× × ×

Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access

- 2. When an area except the internal high-speed RAM area is accessed
- 3. Only when rp = BC, DE or HL
- **4.** Except "r = A"

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcpu) selected by the processor clock control register (PCC).

Instruction	Maamania	Operanda		Dutos	С	locks	Operation		Flag
Group	Mnemonic	Operands		Bytes	Note 1	Note 2	Operation	Z	AC CY
8-bit	SUB	A, #byte		2	4	-	A, CY ← A – byte	×	× ×
operation		saddr, #byte		3	6	8	(saddr), CY ← (saddr) – byte	×	× ×
		A, r	Note 3	2	4	-	$A, CY \leftarrow A - r$	×	× ×
	r, A			2	4	-	$r, CY \leftarrow r - A$	×	× ×
		A, saddr		2	4	5	A, CY ← A − (saddr)	×	× ×
		A, !addr16		3	8	9	A, CY ← A − (addr16)	×	× ×
		A, [HL]		1	4	5	$A, CY \leftarrow A - (HL)$	×	××
		A, [HL + byte]		2	8	9	$A, CY \leftarrow A - (HL + byte)$	×	× ×
		A, [HL + B]		2	8	9	$A, CY \leftarrow A - (HL + B)$	×	× ×
		A, [HL + C]		2	8	9	$A, CY \leftarrow A - (HL + C)$	×	× ×
	SUBC	A, #byte		2	4	ı	$A, CY \leftarrow A - byte - CY$	×	× ×
		saddr, #byte		3	6	8	(saddr), CY ← (saddr) – byte – CY	×	× ×
		A, r	Note 3	2	4	-	$A, CY \leftarrow A - r - CY$	×	× ×
		r, A		2	4	ı	$r, CY \leftarrow r - A - CY$	×	× ×
		A, saddr		2	4	5	A, CY ← A − (saddr) − CY	×	× ×
		A, !addr16		3	8	9	A, CY ← A − (addr16) − CY	×	××
		A, [HL]		1	4	5	$A, CY \leftarrow A - (HL) - CY$	×	××
		A, [HL + byte]		2	8	9	$A, CY \leftarrow A - (HL + byte) - CY$	×	××
		A, [HL + B]		2	8	9	$A, CY \leftarrow A - (HL + B) - CY$	×	××
		A, [HL + C]		2	8	9	$A, CY \leftarrow A - (HL + C) - CY$	×	××
	AND	A, #byte		2	4	-	$A \leftarrow A \land byte$	×	
		saddr, #byte		3	6	8	$(saddr) \leftarrow (saddr) \land byte$	×	
		A, r	Note 3	2	4	ı	$A \leftarrow A \wedge r$	×	
		r, A		2	4	-	$r \leftarrow r \wedge A$	×	
		A, saddr		2	4	5	$A \leftarrow A \wedge (saddr)$	×	
		A, !addr16		3	8	9	A ← A ∧ (addr16)	×	
		A, [HL]		1	4	5	$A \leftarrow A \wedge [HL]$	×	
		A, [HL + byte]		2	8	9	$A \leftarrow A \wedge [HL + byte]$	×	
		A, [HL + B]		2	8	9	$A \leftarrow A \wedge [HL + B]$	×	
		A, [HL + C]		2	8	9	$A \leftarrow A \wedge [HL + C]$	×	

Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access

- 2. When an area except the internal high-speed RAM area is accessed
- **3.** Except "r = A"

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the processor clock control register (PCC).

Instruction	Mnomonio	Operande		Duton	С	locks	Operation	Flag
Group	Mnemonic	Operands		Bytes	Note 1	Note 2	Operation	Z AC CY
8-bit	OR	A, #byte		2	4	-	$A \leftarrow A \lor byte$	×
operation		saddr, #byte		3	6	8	$(saddr) \leftarrow (saddr) \lor byte$	×
		A, r	Note 3	2	4	ı	$A \leftarrow A \lor r$	×
		r, A		2	4	_	$r \leftarrow r \lor A$	×
		A, saddr		2	4	5	$A \leftarrow A \lor (saddr)$	×
		A, !addr16		3	8	9	$A \leftarrow A \lor (addr16)$	×
		A, [HL]		1	4	5	$A \leftarrow A \lor (HL)$	×
		A, [HL + byte]		2	8	9	$A \leftarrow A \lor (HL + byte)$	×
		A, [HL + B]		2	8	9	$A \leftarrow A \lor (HL + B)$	×
		A, [HL + C]		2	8	9	$A \leftarrow A \lor (HL + C)$	×
	XOR	A, #byte		2	4	ı	A ← A ∨ byte	×
		saddr, #byte		3	6	8	(saddr) ← (saddr) + byte	×
		A, r	Note 3	2	4	_	$A \leftarrow A + r$	×
		r, A		2	4	ı	$r \leftarrow r + A$	×
		A, saddr		2	4	5	$A \leftarrow A \neq (saddr)$	×
		A, !addr16		3	8	9	A ← A ← (addr16)	×
		A, [HL]		1	4	5	$A \leftarrow A \neq (HL)$	×
		A, [HL + byte]		2	8	9	$A \leftarrow A \neq (HL + byte)$	×
		A, [HL + B]		2	8	9	$A \leftarrow A \neq (HL + B)$	×
		A, [HL + C]		2	8	9	$A \leftarrow A \neq (HL + C)$	×
	СМР	A, #byte		2	4	ı	A – byte	× × ×
		saddr, #byte		3	6	8	(saddr) – byte	× × ×
		A, r	Note 3	2	4	ı	A – r	× × ×
		r, A		2	4	1	r – A	× × ×
		A, saddr		2	4	5	A – (saddr)	× × ×
		A, !addr16		3	8	9	A – (addr16)	× × ×
		A, [HL]		1	4	5	A – (HL)	× × ×
		A, [HL + byte]		2	8	9	A – (HL + byte)	× × ×
		A, [HL + B]		2	8	9	A – (HL + B)	× × ×
		A, [HL + C]		2	8	9	A – (HL + C)	× × ×

Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access

- 2. When an area except the internal high-speed RAM area is accessed
- **3.** Except "r = A"

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcpu) selected by the processor clock control register (PCC).

Instruction	Masassis	Onered	Dutas	С	locks	Operation		Flag
Group	Mnemonic	Operands	Bytes	Note 1	Note 2	Operation	Z	AC CY
16-bit	ADDW	AX, #word	3	6	-	$AX, CY \leftarrow AX + word$	×	××
operation	SUBW	AX, #word	3	6	ı	$AX, CY \leftarrow AX - word$	×	××
	CMPW	AX, #word	3	6	ı	AX – word	×	××
Multiply/	MULU	X	2	16	Ī	$AX \leftarrow A \times X$		
divide	DIVUW	С	2	25	ı	AX (Quotient), C (Remainder) $\leftarrow AX \div C$		
Increment/	INC	r	1	2	-	r ← r + 1	×	×
decrement		saddr	2	4	6	(saddr) ← (saddr) + 1	×	×
	DEC	r	1	2	1	r ← r − 1	×	×
		saddr	2	4	6	(saddr) ← (saddr) − 1	×	×
	INCW	rp	1	4	-	rp ← rp + 1		
	DECW	rp	1	4	ı	rp ← rp − 1		
Rotate	ROR	A, 1	1	2	-	(CY, $A_7 \leftarrow A_0$, $A_{m-1} \leftarrow A_m$) × 1 time		×
	ROL	A, 1	1	2	-	$(CY,A_0\leftarrow A_7,A_{m+1}\leftarrow A_m)\times 1 \text{ time}$		×
	RORC	A, 1	1	2	ı	$(CY \leftarrow A_0, A_7 \leftarrow CY, A_{m-1} \leftarrow A_m) \times 1 \text{ time}$		×
	ROLC	A, 1	1	2	-	$(CY \leftarrow A_7, A_0 \leftarrow CY, A_{m+1} \leftarrow A_m) \times 1 \text{ time}$		×
	ROR4	[HL]	2	10	12	$A_{3-0} \leftarrow (HL)_{3-0}, (HL)_{7-4} \leftarrow A_{3-0},$ $(HL)_{3-0} \leftarrow (HL)_{7-4}$		
	ROL4	[HL]	2	10	12	$A_{3-0} \leftarrow (HL)_{7-4}, (HL)_{3-0} \leftarrow A_{3-0},$ $(HL)_{7-4} \leftarrow (HL)_{3-0}$		
BCD	ADJBA		2	4	-	Decimal Adjust Accumulator after Addition	×	××
adjustment	ADJBS		2	4	-	Decimal Adjust Accumulator after Subtract	×	××
Bit	MOV1	CY, saddr.bit	3	6	7	$CY \leftarrow (saddr.bit)$		×
manipulate		CY, sfr.bit	3	-	7	CY ← sfr.bit		×
		CY, A.bit	2	4	_	CY ← A.bit		×
		CY, PSW.bit	3	-	7	CY ← PSW.bit		×
		CY, [HL].bit	2	6	7	CY ← (HL).bit		×
		saddr.bit, CY	3	6	8	(saddr.bit) ← CY		
		sfr.bit, CY	3	_	8	sfr.bit ← CY		
		A.bit, CY	2	4		A.bit ← CY		
		PSW.bit, CY	3		8	PSW.bit ← CY	×	×
		[HL].bit, CY	2	6	8	(HL).bit ← CY		

- Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access
 - 2. When an area except the internal high-speed RAM area is accessed
- Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcpu) selected by the processor clock control register (PCC).
 - **2.** This clock cycle applies to the internal ROM program.

Instruction	Mnemonic	Operanda	Dutos	С	locks	Operation	Flag
Group	Minemonic	Operands	Bytes	Note 1	Note 2	Operation	Z AC CY
Bit	AND1	CY, saddr.bit	3	6	7	$CY \leftarrow CY \land saddr.bit)$	×
manipulate		CY, sfr.bit	3	_	7	$CY \leftarrow CY \land sfr.bit$	×
		CY, A.bit	2	4	1	$CY \leftarrow CY \wedge A.bit$	×
		CY, PSW.bit	3	_	7	$CY \leftarrow CY \land PSW.bit$	×
		CY, [HL].bit	2	6	7	$CY \leftarrow CY \land (HL).bit$	×
	OR1	CY, saddr.bit	3	6	7	$CY \leftarrow CY \lor (saddr.bit)$	×
		CY, sfr.bit	3	_	7	$CY \leftarrow CY \lor sfr.bit$	×
		CY, A.bit	2	4	_	$CY \leftarrow CY \lor A.bit$	×
		CY, PSW.bit	3	_	7	$CY \leftarrow CY \lor PSW.bit$	×
		CY, [HL].bit	2	6	7	$CY \leftarrow CY \lor (HL).bit$	×
	XOR1	CY, saddr.bit	3	6	7	CY ← CY ← (saddr.bit)	×
		CY, sfr.bit	3	_	7	CY ← CY ¥ sfr.bit	×
		CY, A.bit	2	4	_	CY ← CY ¥ A.bit	×
		CY, PSW. bit	3	_	7	CY ← CY ¥ PSW.bit	×
		CY, [HL].bit	2	6	7	$CY \leftarrow CY \neq (HL).bit$	×
	SET1	saddr.bit	2	4	6	(saddr.bit) ← 1	
		sfr.bit	3	-	8	sfr.bit ← 1	
		A.bit	2	4	_	A.bit ← 1	
		PSW.bit	2	_	6	PSW.bit ← 1	\times \times \times
		[HL].bit	2	6	8	(HL).bit ← 1	
	CLR1	saddr.bit	2	4	6	(saddr.bit) ← 0	
		sfr.bit	3	_	8	sfr.bit ← 0	
		A.bit	2	4	_	A.bit ← 0	
		PSW.bit	2	-	6	PSW.bit ← 0	\times \times \times
		[HL].bit	2	6	8	(HL).bit ← 0	
	SET1	CY	1	2	-	CY ← 1	1
	CLR1	CY	1	2	_	CY ← 0	0
	NOT1	CY	1	2	_	$CY \leftarrow \overline{CY}$	×

Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access

2. When an area except the internal high-speed RAM area is accessed

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcpu) selected by the processor clock control register (PCC).

Instruction	Mnemonic	Operands	Bytes	С	locks	Operation	F	lag
Group	winemonic	Operands	bytes	Note 1	Note 2	Operation	Z	AC CY
Call/return	CALL	!addr16	3	7	ı	$(SP-1) \leftarrow (PC+3)_H, (SP-2) \leftarrow (PC+3)_L,$ PC \leftarrow addr16, SP \leftarrow SP -2		
	CALLF	!addr11	2	5	l	$\begin{split} &(SP-1) \leftarrow (PC+2)_{H}, (SP-2) \leftarrow (PC+2)_{L}, \\ &PC_{15-11} \leftarrow 00001, PC_{10-0} \leftarrow addr11, \\ &SP \leftarrow SP-2 \end{split}$		
	CALLT	[addr5]	1	6	1	$\begin{split} &(SP-1) \leftarrow (PC+1)_{H}, (SP-2) \leftarrow (PC+1)_{L}, \\ &PC_{H} \leftarrow (00000000, addr5+1), \\ &PC_{L} \leftarrow (00000000, addr5), \\ &SP \leftarrow SP-2 \end{split}$		
	BRK		1	6	ı	$\begin{split} (SP-1) \leftarrow PSW, (SP-2) \leftarrow (PC+1)_H, \\ (SP-3) \leftarrow (PC+1)_L, PC_H \leftarrow (003FH), \\ PC_L \leftarrow (003EH), SP \leftarrow SP-3, IE \leftarrow 0 \end{split}$		
	RET		1	6	-	$PCH \leftarrow (SP + 1), PCL \leftarrow (SP),$ $SP \leftarrow SP + 2$		
	RETI		1	6	-	$PCH \leftarrow (SP + 1), PCL \leftarrow (SP),$ $PSW \leftarrow (SP + 2), SP \leftarrow SP + 3$	R	R R
	RETB		1	6	-	$PCH \leftarrow (SP + 1), PCL \leftarrow (SP),$ $PSW \leftarrow (SP + 2), SP \leftarrow SP + 3$	R	R R
Stack	PUSH	PSW	1	2	_	(SP – 1) ← PSW, SP ← SP – 1		
manipulate		rp	1	4	1	$(SP - 1) \leftarrow rpH, (SP - 2) \leftarrow rpL,$ $SP \leftarrow SP - 2$		
	POP	PSW	1	2	_	$PSW \leftarrow (SP),SP \leftarrow SP + 1$	R	R R
		rp	1	4	-	$rpH \leftarrow (SP + 1), rpL \leftarrow (SP),$ $SP \leftarrow SP + 2$		
	MOVW	SP, #word	4	-	10	$SP \leftarrow word$		
		SP, AX	2	-	8	$SP \leftarrow AX$		
		AX, SP	2	-	8	$AX \leftarrow SP$		
Unconditional	BR	!addr16	3	6	_	PC ← addr16		
branch		\$addr16	2	6	П	PC ← PC + 2 + jdisp8		
		AX	2	8	I	$PCH \leftarrow A, PC_{\perp} \leftarrow X$		
Conditional	вс	\$addr16	2	6	1	PC ← PC + 2 + jdisp8 if CY = 1		
branch	BNC	\$addr16	2	6	-	PC ← PC + 2 + jdisp8 if CY = 0		
	BZ	\$addr16	2	6	-	$PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 1$		
	BNZ	\$addr16	2	6	-	$PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 0$		

- Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access
 - 2. When an area except the internal high-speed RAM area is accessed
- Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcpu) selected by the processor clock control register (PCC).
 - **2.** This clock cycle applies to the internal ROM program.

Instruction	Mnemonic	Operando	Bytes	CI	ocks	Operation	Flag
Group	winemonic	Operands	bytes	Note 1	Note 2	Operation	Z AC CY
Conditional	вт	saddr.bit, \$addr16	3	8	9	PC ← PC + 3 + jdisp8 if(saddr.bit) = 1	
branch		sfr.bit, \$addr16	4	_	11	PC ← PC + 4 + jdisp8 if sfr.bit = 1	
		A.bit, \$addr16	3	8	-	PC ← PC + 3 + jdisp8 if A.bit = 1	
		PSW.bit, \$addr16	3	_	9	PC ← PC + 3 + jdisp8 if PSW.bit = 1	
		[HL].bit, \$addr16	3	10	11	PC ← PC + 3 + jdisp8 if (HL).bit = 1	
	BF	saddr.bit, \$addr16	4	10	11	PC ← PC + 4 + jdisp8 if(saddr.bit) = 0	
		sfr.bit, \$addr16	4	-	11	PC ← PC + 4 + jdisp8 if sfr.bit = 0	
		A.bit, \$addr16	3	8	-	PC ← PC + 3 + jdisp8 if A.bit = 0	
		PSW.bit, \$addr16	4	_	11	PC ← PC + 4 + jdisp8 if PSW. bit = 0	
		[HL].bit, \$addr16	3	10	11	$PC \leftarrow PC + 3 + jdisp8 if (HL).bit = 0$	
	BTCLR	saddr.bit, \$addr16	4	10	12	PC ← PC + 4 + jdisp8	
						if(saddr.bit) = 1	
						then reset(saddr.bit)	
		sfr.bit, \$addr16	4	_	12	$PC \leftarrow PC + 4 + \text{jdisp8 if sfr.bit} = 1$	
		A.bit, \$addr16	3	8	_	then reset sfr.bit PC ← PC + 3 + jdisp8 if A.bit = 1	
		A.bit, şaddi 10	3	0	_	then reset A.bit	
		PSW.bit, \$addr16	4	_	12	PC ← PC + 4 + jdisp8 if PSW.bit = 1	× × ×
		, ,				then reset PSW.bit	
		[HL].bit, \$addr16	3	10	12	PC ← PC + 3 + jdisp8 if (HL).bit = 1	
						then reset (HL).bit	
	DBNZ	B, \$addr16	2	6	-	$B \leftarrow B - 1$, then	
						$PC \leftarrow PC + 2 + jdisp8 \text{ if } B \neq 0$	
		C, \$addr16	2	6	_	$C \leftarrow C - 1$, then	
		Codds Codds16	3	8	10	$PC \leftarrow PC + 2 + \text{jdisp8 if } C \neq 0$	
		Saddr, \$addr16	3	0	10	(saddr) ← (saddr) – 1, then $PC \leftarrow PC + 3 + \text{jdisp8 if(saddr)} \neq 0$	
CPU	SEL	RBn	2	4	_	RBS1, 0 ← n	
control	NOP		1	2	_	No Operation	
	EI		2	_	6	IE ← 1(Enable Interrupt)	
	DI		2	_	6	IE ← 0(Disable Interrupt)	
	HALT		2	6	_	Set HALT Mode	
	STOP		2	6	_	Set STOP Mode	

Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access

- 2. When an area except the internal high-speed RAM area is accessed
- **Remarks 1.** One instruction clock cycle is one cycle of the CPU clock (fcpu) selected by the processor clock control register (PCC).
 - 2. This clock cycle applies to the internal ROM program.

28.3 Instructions Listed by Addressing Type

(1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

Second Operand First Operand	#byte	А	r ^{Note}	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL + byte] [HL + B] [HL + C]		1	None
A	ADD ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV	MOV XCH	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	
r	MOV	MOV ADD ADDC SUB SUBC AND OR XOR CMP											INC DEC
B, C											DBNZ		
sfr	MOV	MOV											
saddr	MOV ADD ADDC SUB SUBC AND OR XOR CMP	MOV									DBNZ		INC DEC
!addr16		MOV											
PSW	MOV	MOV											PUSH POP
[DE]		MOV											
[HL]		MOV											ROR4 ROL4
[HL + byte] [HL + B] [HL + C]		MOV											
Х													MULU
С													DIVUW

Note Except "r = A"

(2) 16-bit instructions

 ${\sf MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW}$

Second Operand	#word	AX	rp ^{Note}	sfrp	saddrp	!addr16	SP	None
First Operand								
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
гр	MOVW	MOVW ^{Note}						INCW DECW PUSH POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP	MOVW	MOVW						

Note Only when rp = BC, DE, HL

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

Second Operand First Operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
A.bit						MOV1	BT BF BTCLR	SET1 CLR1
sfr.bit						MOV1	BT BF BTCLR	SET1 CLR1
saddr.bit						MOV1	BT BF BTCLR	SET1 CLR1
PSW.bit						MOV1	BT BF BTCLR	SET1 CLR1
[HL].bit						MOV1	BT BF BTCLR	SET1 CLR1
СҮ	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1

(4) Call instructions/branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

Second Operand First Operand	AX	!addr16	!addr11	[addr5]	\$addr16
Basic instruction	BR	CALL BR	CALLF	CALLT	BR BC BNC BZ BNZ
Compound instruction					BT BF BTCLR DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

CHAPTER 29 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS, (A) GRADE PRODUCTS)

Target products: μ PD78F0132H, 78F0132H(A), 78F0133H, 78F0133H(A), 78F0134H, 78F0134H(A), 78F0136H, 78F0138H(A), 78F0138HD

Caution The µPD78F0138HD has an on-chip debug function. Do not use this product for mass production because its reliability cannot be guaranteed after the on-chip debug function has been used, given the issue of the number of times the flash memory can be rewritten. NEC Electronics does not accept complaints concerning this product.

Absolute Maximum Ratings ($T_A = 25^{\circ}C$) (1/2)

Parameter	Symbol		Conditions	Ratings	Unit
Supply voltage	V _{DD}			-0.3 to +6.5	V
	EV _{DD}			-0.3 to +6.5	V
	Vss			-0.3 to +0.3	V
	EVss			-0.3 to +0.3	V
	AVREF			-0.3 to V_{DD} + 0.3^{Note}	V
	AVss			-0.3 to +0.3	V
Input voltage	VI1	to P33, P40 to F	0 to P17, P20 to P27, P30 P43, P50 to P53, P60, 7, P120, P140, P141, X1, RESET	-0.3 to V _{DD} + 0.3 ^{Note}	V
	Vı2	P62, P63	N-ch open drain	-0.3 to +13	V
Output voltage	Vo			-0.3 to V _{DD} + 0.3 ^{Note}	V
Analog input voltage	Van			AVss -0.3 to AV _{REF} + 0.3 ^{Note} and -0.3 to V _{DD} + 0.3 ^{Note}	V
Output current, high	Іон	Per pin		-10	mA
		Total of all pins -60 mA	P00 to P06, P40 to P43, P50 to P53, P70 to P77	-30	mA
			P10 to P17, P30 to P33, P120, P130, P140, P141	-30	mA

Note Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Absolute Maximum Ratings ($T_A = 25$ °C) (2/2)

Parameter	Symbol		Conditions	Ratings	Unit
Output current, low	loL	Per pin	P00 to P06, P10 to P17, P30 to P33, P40 to P43, P50 to P53, P70 to P77, P120, P130, P140, P141	20	mA
			P60 to P63	30	mA
		Total of all pins 70 mA	P00 to P06, P40 to P43, P50 to P53, P70 to P77	35	mA
			P10 to P17, P30 to P33, P60 to P63, P120, P130, P140, P141	35	mA
Operating ambient	Та	In normal opera	tion mode	-40 to +85	°C
temperature		In flash memory	programming mode	−10 to +65	
Storage temperature	T _{stg}	In flash memory	blank state	−65 to +150	°C
		In flash memory	programmed state	-40 to +125	

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

<R>

High-Speed System Clock (Crystal/Ceramic) Oscillator Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.5 \text{ V} \le V_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, 2.5 \text{ V} \le \text{AV}_{REF} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}$)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	Vss X1 X2	Oscillation frequency (fxp) ^{Note 1}	$4.0~V \le V_{DD} \le 5.5~V$	2.0		16	MHz
resoriator		riequeriey (IXF)	$3.5 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$	2.0		10	
	C1= C2=		3.0 V ≤ V _{DD} < 3.5 V	2.0		8.38	
	; , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2.5 V ≤ V _{DD} < 3.0 V	2.0		5.0	
Crystal resonator	Vss X1 X2	Oscillation frequency (fxp) ^{Note 1}	$4.0~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	2.0		16	MHz
resoriator		irequency (IXP)	3.5 V ≤ V _{DD} < 4.0 V	2.0		10	
	C1 C2		3.0 V ≤ V _{DD} < 3.5 V	2.0		8.38	
	<i>m</i>		2.5 V ≤ V _{DD} < 3.0 V	2.0		5.0	
External		X1 input frequency	4.0 V ≤ V _{DD} ≤ 5.5 V	2.0		16	MHz
clock ^{Note 2}		(fxp) ^{Note 1}	3.5 V ≤ V _{DD} < 4.0 V	2.0		10	
	X1 X2		3.0 V ≤ V _{DD} < 3.5 V	2.0		8.38	
			2.5 V ≤ V _{DD} < 3.0 V	2.0		5.0	
		X1 input high-/low-	4.0 V ≤ V _{DD} ≤ 5.5 V	30		250	ns
		level width (txph,	3.5 V ≤ V _{DD} < 4.0 V	46		250	
		txpl)	3.0 V ≤ V _{DD} < 3.5 V	56		250	
			2.5 V ≤ V _{DD} < 3.0 V	96		250	

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. Input a clock signal to the X1 pin and input the inverse clock signal to the X2 pin.
- Cautions 1. When using the high-speed system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - · Keep the wiring length as short as possible.
 - · Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. Since the CPU is started by the internal oscillation clock after reset, check the oscillation stabilization time of the high-speed system clock using the oscillation stabilization time counter status register (OSTC). Determine the oscillation stabilization time of the OSTC register and oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Recommended Oscillator Constants

Ceramic Resonator ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

Manufacturer	Part Number	SMD/Lead	Frequency (MHz)		nded Circuit stants	Oscillation Vo	oltage Range
				C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)
Murata Mfg.	CSTCC2M00G56-R0 CSTCR4M00G55-R0 CSTCR4M19G55-R0	SMD	2.00	Internal (47)	Internal (47)	2.5	5.5
			4.00	Internal (39)	Internal (39)		
			4.194	Internal (39)	Internal (39)		
	CSTCR4M91G55-R0		4.915	Internal (39)	Internal (39)		
	CSTCR5M00G55-R0		5.00	Internal (39)	Internal (39)		
	CSTCR6M00G55-R0		6.00	Internal (39)	Internal (39)		
	CSTCE8M00G55-R0		8.00	Internal (33)	Internal (33)	_	
	CSTCE10M0G55-R0		10.0	Internal (33)	Internal (33)		
	CSTCE12M0G55-R0		12.0	Internal (33)	Internal (33)		
	CSTCE13M0V53-R0		13.0	Internal (15)	Internal (15)		
CSTCE14M0V53-R0	CSTCE14M0V53-R0		14.0	Internal (15)	Internal (15)		
	CSTCE16M0V53-R0		16.0	Internal (15)	Internal (15)		

Caution The oscillator constants shown above are reference values based on evaluation in a specific environment by the resonator manufacturer. If it is necessary to optimize the oscillator characteristics in the actual application, apply to the resonator manufacturer for evaluation on the implementation circuit. The oscillation voltage and oscillation frequency only indicate the oscillator characteristic. Use the 78K0/KE1+ so that the internal operation conditions are within the specifications of the DC and AC characteristics.

Internal Oscillator Characteristic

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.0 \text{ V} \le \text{Vdd} = \text{EVdd} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVref} \le \text{Vdd}, \text{Vss} = \text{EVss} = \text{AVss} = 0 \text{ V})$

Resonator	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
On-chip internal oscillator	Oscillation frequency (fR)		120	240	480	kHz

Subsystem Clock Oscillator Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.0 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AV}_{REF} \le \text{V}_{DD}, \text{Vss} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	Vss XT2 XT1 Rd C4 — C3 —	Oscillation frequency (fxт) ^{Note}		32	32.768	35	kHz
External clock Note 2	XT2 XT1	XT1 input frequency (fxr) ^{Note}		32		38.5	kHz
	7	XT1 input high-/low-level width (txth, txtl)		12		15.6	μs

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. Input a clock signal to the XT1 pin and input the inverse clock signal to the XT2 pin.
- Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - The subsystem clock oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the high-speed system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.
- **Remark** For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

DC Characteristics (1/3) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \ 2.0 \text{ V} \leq \text{V}_{\text{DD}} = \text{EV}_{\text{DD}} \leq 5.5 \text{ V}^{\text{Note 1}}, \ 2.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq \text{V}_{\text{DD}}^{\text{Note 1}}, \ \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high	Іон	Per pin	$4.0~V \leq V_{DD} \leq 5.5~V$			- 5	mA
		Total of P10 to P17, P30 to P33, P120, P130, P140, P141	$4.0~V \le V_{DD} \le 5.5~V$			-25	mA
		Total of P00 to P06, P40 to P43, P50 to P53, P70 to P77	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			-25	mA
		All pins	2.0 V ≤ V _{DD} < 4.0 V			-10	mA
Output current, low	Іоь	Per pin for P00 to P06, P10 to P17, P30 to P33, P40 to P43, P50 to P53, P70 to P77, P120, P130, P140, P141	4.0 V ≤ V _{DD} ≤ 5.5 V			10	mA
		Per pin for P60 to P63	$4.0~V \leq V_{DD} \leq 5.5~V$			15	mA
		Total of P10 to P17, P30 to P33, P60 to P63, P120, P130, P140, P141	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			30	mA
		Total of P00 to P06, P40 to P43, P50 to P53, P70 to P77	$4.0~V \leq V_{DD} \leq 5.5~V$			30	mA
		All pins	$2.0 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$			10	mA
Input voltage, high	V _{IH1}	P12, P13, P15, P40 to P43, P50 to	$2.7~V \leq V_{DD} \leq 5.5~V$	0.7Vdd		V _{DD}	V
		P53	$2.0 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$	0.8V _{DD}		V _{DD}	V
	V _{IH2}	P00 to P06, P10, P11, P14, P16,	$2.7~V \leq V_{DD} \leq 5.5~V$	0.8V _{DD}		V_{DD}	V
		P17, P30 to P33, P70 to P77, P120, P140, P141, RESET	$2.0 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$	0.85V _{DD}		V _{DD}	V
	V _{IH3}	P20 to P27 ^{Note 2}	$2.7~V \leq V_{DD} \leq 5.5~V$	0.7AVREF		AVREF	V
			$2.0 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$	0.8AVREF		AVREF	V
	V _{IH4}	P60, P61	$2.7~V \leq V_{DD} \leq 5.5~V$	0.7Vdd		V _{DD}	V
			$2.0 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$	0.8V _{DD}		V _{DD}	V
	V _{IH5}	P62, P63	$2.7~V \leq V_{DD} \leq 5.5~V$	0.7Vdd		12	V
			$2.0 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$	0.8V _{DD}		12	V
	V _{IH6}	X1, X2, XT1, XT2	$2.7~V \leq V_{DD} \leq 5.5~V$	$V_{\text{DD}}-0.5$		V _{DD}	V
			$2.0 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$	$V_{\text{DD}}-0.2$		V_{DD}	V
Input voltage, low	V _{IL1}	P12, P13, P15, P40 to P43, P50 to	$2.7~V \leq V_{DD} \leq 5.5~V$	0		0.3V _{DD}	V
		P53	$2.0 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$	0		0.2V _{DD}	V
	V _{IL2}	P00 to P06, P10, P11, P14, P16,	$2.7 \text{ V} \leq V_{DD} \leq 5.5 \text{ V}$	0		0.2V _{DD}	V
		P17, P30 to P33, P70 to P77, P120, P140, P141, RESET	2.0 V ≤ V _{DD} < 2.7 V	0		0.15V _{DD}	V
	V _{IL3}	P20 to P27 ^{Note 2}	$2.7~V \leq V_{DD} \leq 5.5~V$	0		0.3AVREF	V
			2.0 V ≤ V _{DD} < 2.7 V	0		0.2AV _{REF}	V
	VIL4	P60, P61	$2.7~V \leq V_{DD} \leq 5.5~V$	0		0.3V _{DD}	V
			$2.0 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$	0		0.2V _{DD}	V
	VIL5	P62, P63	$2.7~V \leq V_{DD} \leq 5.5~V$	0		0.3V _{DD}	V
			2.0 V ≤ V _{DD} < 2.7 V	0		0.2V _{DD}	V
	VIL6	X1, X2, XT1, XT2	$2.7~V \leq V_{DD} \leq 5.5~V$	0		0.4	V
			$2.0 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$	0		0.2	V

Notes 1. When high-speed system clock is used: $2.5 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$, $2.5 \text{ V} \le \text{AV}_{REF} \le \text{V}_{DD}$

2. When used as digital input ports, set $AV_{REF} = V_{DD}$.

DC Characteristics (2/3)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.0 \text{ V} \le V_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}^{\text{Note 1}}, 2.0 \text{ V} \le \text{AV}_{\text{REF}} \le V_{DD}^{\text{Note 1}}, V_{\text{SS}} = \text{EV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol		Conditio	ns	MIN.	TYP.	MAX.	Unit
Output voltage, high	Vон	P10 to P17, P3 P120, P130, P Total loн = -2	140, P141	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH} = -5 \text{ mA}$	V _{DD} – 1.0			V
		P00 to P06, P4 P50 to P53, P7 Total Іон = -2	'0 to P77	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH} = -5 \text{ mA}$	V _{DD} - 1.0			V
		Iон = −100 μA		$2.0 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$	V _{DD} - 0.5			V
Output voltage, low	Vol1	P10 to P17, P3 P60 to P63, P1 P140, P141 Total lo _L = 30	20, P130,	4.0 V ≤ V _{DD} ≤ 5.5 V, I _{OL} = 10 mA			1.3	<
		P50 to P53, P7	00 to P06, P40 to P43, 50 to P53, P70 to P77 otal lo∟ = 30 mA 50 to P53, P70 to P77				1.3	V
		IoL = 400 μA		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$			0.4	V
				2.0 V ≤ V _{DD} < 2.7 V			0.5	V
	V _{OL2}	P60 to P63		$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL} = 15 \text{ mA}$			2.0	V
Input leakage current, high	Ішн1	$V_{I} = V_{DD}$	P33, P40 to	, P10 to P17, P30 to p P43, P50 to P53, P70 to P77, P120, 1, RESET			З	μΑ
		V _I = AV _{REF}	P20 to P27				3	μΑ
	I _{LIH2}	$V_{I} = V_{DD}$	X1, X2 ^{Note 2}	, XT1, XT2 ^{Note 2}			20	μΑ
	Ішнз	Vı = 12 V	P62, P63 (I	N-ch open drain)			3	μΑ
Input leakage current, low	ILIL1	V ₁ = 0 V	, , , , , , , , , , , , , , , , , , , ,				-3	μΑ
	ILIL2		X1, X2 ^{Note 2}	, XT1, XT2 ^{Note 2}			-20	μΑ
	ILIL3		P62, P63 (I	N-ch open drain)			-3 ^{Note 3}	μΑ
Output leakage current, high	Ісон	$V_O = V_{DD}$				-	3	μΑ
Output leakage current, low	ILOL	Vo = 0 V					-3	μΑ
Pull-up resistor	RL	V1 = 0 V			10	30	100	kΩ
FLMD0 supply voltage	Flmd	In normal opera	ation mode		0		0.2V _{DD}	V

Notes 1. When high-speed system clock is used: $2.5 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$, $2.5 \text{ V} \le \text{AV}_{REF} \le \text{V}_{DD}$

- 2. When the inverse level of X1 is input to X2 and the inverse level of XT1 is input to XT2.
- 3. If port 6 has been set to input mode when a read instruction is executed to read from port 6, a low-level input leakage current of up to -45 μ A flows during only one cycle. At all other times, the maximum leakage current is -3 μ A.

DC Characteristics (3/3)

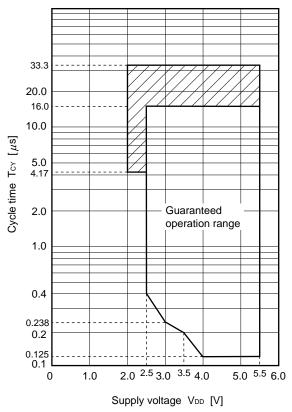
$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.0 \text{ V} \le V_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}^{\text{Note 1}}, 2.0 \text{ V} \le \text{AV}_{\text{REF}} \le V_{DD}^{\text{Note 1}}, \text{Vss} = \text{EV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol		Condit	ions	MIN.	TYP.	MAX.	Unit
Supply	I _{DD1}	Crystal/ceramic	f _{XP} = 16 MHz	When A/D converter is stopped		13.0	26.0	mA
current ^{Note 2}		oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 4}}$	When A/D converter is operating Note 7		14.0	28.0	mA
		operating mode ^{Note 3}	f _{XP} = 10 MHz	When A/D converter is stopped		9.0	20.0	mA
		mede	V_{DD} = 5.0 V ±10% Note 4	When A/D converter is operating Note 7		10.0	22.0	mA
			f _{XP} = 5 MHz	When A/D converter is stopped		2.5	6.5	mA
			$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 4}}$	When A/D converter is operating Note 7		3.1	7.7	mA
	I _{DD2}	Crystal/ceramic	fxp = 16 MHz	When peripheral functions are stopped		2.5	6.0	mA
		oscillation HALT	$V_{DD} = 5.0 \text{ V} \pm 10\%$	When peripheral functions are operating			13.0	mA
		mode	f_{XP} = 10 MHz	When peripheral functions are stopped		2.0	5.0	mA
			$V_{DD} = 5.0 \text{ V} \pm 10\%$	When peripheral functions are operating			10.0	mA
			$f_{XP} = 5 \text{ MHz}$	When peripheral functions are stopped		0.7	1.5	mA
			$V_{DD} = 3.0 \text{ V} \pm 10\%$	When peripheral functions are operating			3.5	mA
	I _{DD3}	Internal oscillation	V _{DD} = 5.0 V ±10%	V _{DD} = 5.0 V ±10%				mA
		operating mode ^{Note 5}	$V_{DD} = 3.0 \text{ V} \pm 10\%$			0.4	1.6	mA
	I _{DD4}	Internal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%$			0.4	1.6	mA
		HALT mode ^{Note 5}	V _{DD} = 3.0 V ±10%			0.25	1.0	mA
	I _{DD5}	32.768 kHz	$V_{DD} = 5.0 \text{ V} \pm 10\%$			50.0	100	μΑ
		crystal oscillation operating mode ^{Notes 5, 6}	$V_{DD} = 3.0 \text{ V} \pm 10\%$			30.0	60.0	μΑ
	IDD6	32.768 kHz	V _{DD} = 5.0 V ±10%			20.0	40.0	μΑ
		crystal oscillation HALT mode ^{Notes 5, 6}	$V_{DD} = 3.0 \text{ V} \pm 10\%$			10.0	20.0	μΑ
	I _{DD7}	STOP mode	V _{DD} = 5.0 V ±10%	Internal oscillator: OFF		3.5	35.5	μΑ
				Internal oscillator: ON		17.5	63.5	μΑ
			V _{DD} = 3.0 V ±10%	Internal oscillator: OFF		3.5	15.5	μΑ
				Internal oscillator: ON		11	30.5	μΑ

Notes 1. When high-speed system clock is used: $2.5 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$, $2.5 \text{ V} \le \text{AV}_{REF} \le \text{V}_{DD}$

- **2.** Total current flowing through the internal power supply (VDD). Peripheral operation current is included (however, the current that flows through the pull-up resistors of ports is not included).
- 3. IDD1 includes peripheral operation current.
- **4.** When PCC = 00H.
- 5. When the high-speed system clock (crystal/ceramic) oscillator is stopped.
- **6.** When the internal oscillator is stopped.
- 7. Including the current that flows through the AVREF pin.

AC Characteristics


(1) Basic operation

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.0 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}^{\text{Note 1}}, 2.0 \text{ V} \le \text{AV}_{REF} \le \text{V}_{DD}^{\text{Note 1}}, \text{Vss} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions	Conditions				Unit
Instruction cycle (minimum	Тсч	Main	High-speed system	$4.0~V \leq V_{DD} \leq 5.5~V$	0.125		16	μs
instruction execution time)		system	clock	$3.5 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$	0.2		16	μs
		clock operation	Crystal/ceramic oscillation clock	3.0 V ≤ V _{DD} < 3.5 V	0.238		16	μs
		oporation:	Coomanon orong	2.5 V ≤ V _{DD} < 3.0 V	0.4		16	μs
			Internal oscillation cl	lock	4.17	8.33	33.3	μs
		Subsystem	n clock operation		114	122	125	μs
TI000, TI010, TI001 ^{Note 2} , TI011 ^{Note 2} input high-level width,	tтіно, tтіLo	4.0 V ≤ V _{DI}	o ≤ 5.5 V		2/f _{sam} + 0.1 Note 3			μs
low-level width		2.7 V ≤ V _{DI}	o < 4.0 V		2/f _{sam} + 0.2 ^{Note 3}			μs
		2.5 V ≤ V _{DI}	o < 2.7 V	2/f _{sam} + 0.5 ^{Note 3}			μs	
TI50, TI51 input frequency	f TI5	4.0 V ≤ V _{DI}	0 V ≤ V _{DD} ≤ 5.5 V				10	MHz
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$					5	MHz
		2.5 V ≤ V _{DI}	V _{DD} < 2.7 V				2.5	MHz
TI50, TI51 input high-level width,	t TIH5,	4.0 V ≤ V _{DI}	o ≤ 5.5 V		50			ns
low-level width	t TIL5	2.7 V ≤ V _{DI}	o < 4.0 V		100			ns
		2.5 V ≤ V _{DI}	o < 2.7 V		200			ns
Interrupt input high-level width,	tinth,	2.7 V ≤ V _{DI}	o ≤ 5.5 V		1			μs
low-level width	tintl	2.0 V ≤ V _{DI}	o < 2.7 V		2			μs
Key return input low-level width	t kr	4.0 V ≤ V _{DI}	o ≤ 5.5 V		50			ns
		2.7 V ≤ V _{DI}	o < 4.0 V		100			ns
		2.0 V ≤ V _{DI}	o < 2.7 V		200			ns
RESET low-level width	trsl	2.7 V ≤ V _{DI}	o ≤ 5.5 V		10			μs
		2.0 V ≤ V _{DI}	o < 2.7 V		20			μs

Notes 1. When high-speed system clock is used: $2.5 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$, $2.5 \text{ V} \le \text{AV}_{REF} \le \text{V}_{DD}$

- **2.** μ PD78F0133H, 78F0133H(A), 78F0134H, 78F0134H(A), 78F0136H, 78F0136H(A), 78F0138HD only.
- 3. Selection of f_{sam} = f_{xP}, f_{xP}/4, f_{xP}/256, or f_{xP}, f_{xP}/16, f_{xP}/64 is possible using bits 0 and 1 (PRM000, PRM001 or PRM010, PRM011) of prescaler mode registers 00 and 01 (PRM00, PRM01). Note that when selecting the TI000 or TI001 valid edge as the count clock, f_{sam} = f_{xP}.

Tcy vs. VDD (Main System Clock Operation)

Remark The values indicated by the shaded section are only when the internal oscillation clock is selected.

(2) Serial interface

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.5 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, 2.5 \text{ V} \le \text{AV}_{REF} \le \text{V}_{DD}, \text{Vss} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

(a) UART mode (UART6, dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					312.5	kbps

(b) UART mode (UART0, dedicated baud rate generator output)

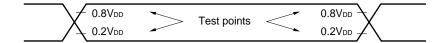
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					312.5	kbps

(c) 3-wire serial I/O mode (master mode, SCK1n... internal clock output)

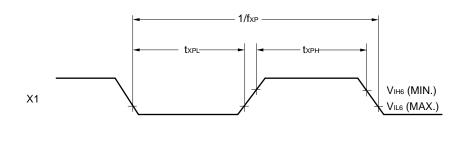
Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	Unit
SCK1n cycle time	tkcy1	4.0 V ≤ V _{DD} ≤ 5	5.5 V	200			ns
		3.3 V ≤ V _{DD} < 4	1.0 V	240			ns
		2.7 V ≤ V _{DD} < 3	3.3 V	400			ns
			2.5 V ≤ V _{DD} < 2.7 V				ns
SCK1n high-/low-level width	t кн1,	2.7 V ≤ V _{DD} ≤ 5.5 V tx		tксү1/2-10			ns
	t _{KL1}	2.5 V ≤ V _{DD} < 2.7 V		tkcy1/2-50			ns
SI1n setup time (to SCK1n↑)	tsıĸı	2.7 V ≤ V _{DD} ≤ 5	5.5 V	30			ns
		2.5 V ≤ V _{DD} < 2	2.7 V	70			ns
SI1n hold time (from SCK1n↑)	t _{KSI1}	2.7 V ≤ V _{DD} ≤ 5	5.5 V	30			ns
		2.5 V ≤ V _{DD} < 2.7 V		70			ns
Delay time from SCK1n ↓ to	tkso1	C = 100 pF ^{Note}	$2.7~V \leq V_{DD} \leq 5.5~V$			30	ns
SO1n output			$2.5 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$			120	ns

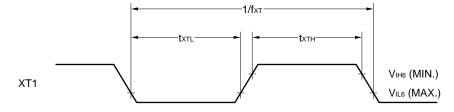
Note C is the load capacitance of the SCK1n and SO1n output lines.

(d) 3-wire serial I/O mode (slave mode, SCK1n... external clock input)

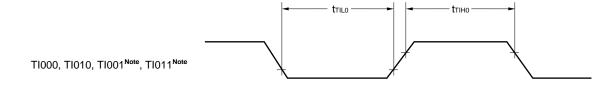

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1n cycle time	tkcy2	$2.7~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	400			ns
		$2.5 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	800			ns
SCK1n high-/low-level width	tkH2, tkL2		tkcy2/2			ns
SI1n setup time (to SCK1n↑)	tsık2		80			ns
SI1n hold time (from SCK1n↑)	tksi2		50			ns
Delay time from SCK1n↓ to SO1n output	tkso2	C = 100 pF ^{Note}			120	ns

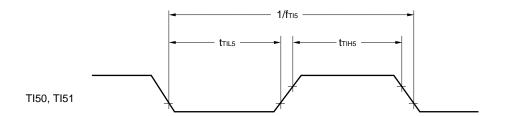
Note C is the load capacitance of the SO1n output line.

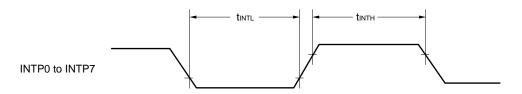

Remark n = 0: μ PD78F0132H, 78F0132H(A)


n = 0, 1: μ PD78F0133H, 78F0133H(A), 78F0134H, 78F0134H(A), 78F0136H, 78F0136H(A), 78F0138HD

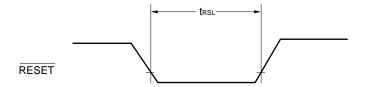
AC Timing Test Points (Excluding X1, XT1)



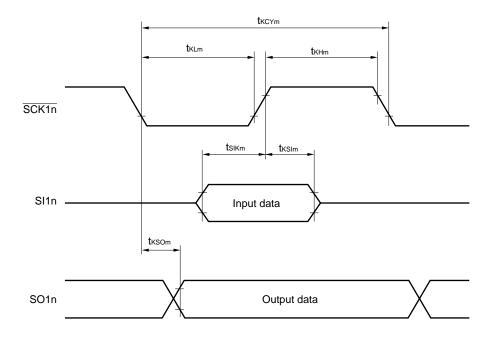

Clock Timing



TI Timing



Interrupt Request Input Timing


Note μ PD78F0133H, 78F0133H(A), 78F0134H, 78F0134H(A), 78F0136H, 78F0136H(A), 78F0138HD only.

RESET Input Timing

Serial Transfer Timing

3-wire serial I/O mode:

Remark m = 1, 2

n = 0: μ PD78F0132H, 78F0132H(A)

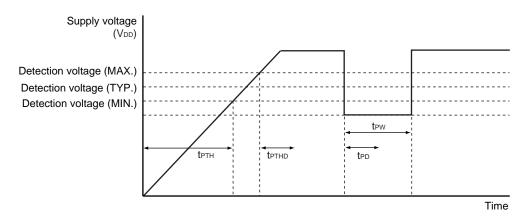
n = 0, 1: μ PD78F0133H, 78F0133H(A), 78F0134H, 78F0134H(A), 78F0136H, 78F0136H(A), 78F0138H, 78F0138H(A), 78F0138HD

A/D Converter Characteristics

(TA = -40 to +85°C, 2.5 V \leq VDD = EVDD \leq 5.5 V, 2.5 V \leq AVREF \leq VDD, Vss = EVss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			10	10	10	bit
Overall error ^{Notes 1, 2}		4.0 V ≤ AV _{REF} ≤ 5.5 V		±0.2	±0.4	%FSR
		2.7 V ≤ AV _{REF} < 4.0 V		±0.3	±0.6	%FSR
		2.5 V ≤ AV _{REF} < 2.7 V		±0.6	±1.2	%FSR
Conversion time	tconv	4.0 V ≤ AV _{REF} ≤ 5.5 V	14		100	μs
		2.7 V ≤ AV _{REF} < 4.0 V	17		100	μs
		2.5 V ≤ AV _{REF} < 2.7 V	48		100	μs
Zero-scale error ^{Notes 1, 2}		4.0 V ≤ AV _{REF} ≤ 5.5 V			±0.4	%FSR
		2.7 V ≤ AV _{REF} < 4.0 V			±0.6	%FSR
		2.5 V ≤ AV _{REF} < 2.7 V			±1.2	%FSR
Full-scale error Notes 1, 2		4.0 V ≤ AV _{REF} ≤ 5.5 V			±0.4	%FSR
		2.7 V ≤ AV _{REF} < 4.0 V			±0.6	%FSR
		2.5 V ≤ AV _{REF} < 2.7 V			±1.2	%FSR
Integral non-linearity error ^{Note 1}		4.0 V ≤ AV _{REF} ≤ 5.5 V			±2.5	LSB
		2.7 V ≤ AV _{REF} < 4.0 V			±4.5	LSB
		2.5 V ≤ AV _{REF} < 2.7 V			±8.5	LSB
Differential non-linearity error Note 1		4.0 V ≤ AV _{REF} ≤ 5.5 V			±1.5	LSB
		2.7 V ≤ AV _{REF} < 4.0 V			±2.0	LSB
		2.5 V ≤ AV _{REF} < 2.7 V			±3.5	LSB
Analog input voltage	VAIN		AVss		AVREF	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).


2. This value is indicated as a ratio (%FSR) to the full-scale value.

POC Circuit Characteristics (T_A = -40 to +85°C)

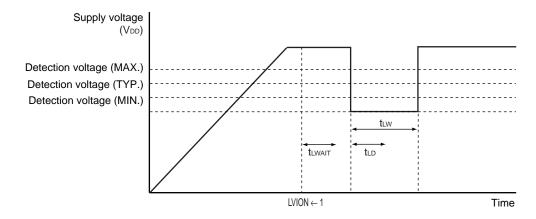
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOC		2.0	2.1	2.2	V
Power supply rise time	t PTH	VDD: $0 \text{ V} \rightarrow 2.0 \text{ V}$	0.0015			ms
Response delay time 1 ^{Note 1}	t РТНD	When power supply rises, after reaching detection voltage (MAX.)			3.0	ms
Response delay time 2 ^{Note 2}	t PD	When VDD falls			1.0	ms
Minimum pulse width	tpw		0.2			ms

- **Notes 1.** Time required from voltage detection to reset release.
 - 2. Time required from voltage detection to internal reset output.

POC Circuit Timing

LVI Circuit Characteristics (T_A = -40 to +85°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VLVIO		4.1	4.3	4.5	V
	V _L VI1		3.9	4.1	4.3	V
	V _{LVI2}		3.7	3.9	4.1	V
	V _{LVI3}		3.5	3.7	3.9	V
	V _{LVI4}		3.3	3.5	3.7	V
	V _{LVI5}		3.15	3.3	3.45	V
	V _L VI6		2.95	3.1	3.25	V
	V _L VI7		2.7	2.85	3.0	V
	V _L VI8		2.5	2.6	2.7	V
	V _L VI9		2.25	2.35	2.45	V
Response time ^{Note 1}	t LD			0.2	2.0	ms
Minimum pulse width	t _{LW}		0.2			ms
Operation stabilization wait time Note 2	tlwait			0.1	0.2	ms


Notes 1. Time required from voltage detection to interrupt output or internal reset output.

2. Time required from setting LVION to 1 to operation stabilization.

Remarks 1. $V_{LV10} > V_{LV11} > V_{LV12} > V_{LV13} > V_{LV14} > V_{LV15} > V_{LV16} > V_{LV17} > V_{LV18} > V_{LV19}$

2. $V_{POC} < V_{LVIm}$ (m = 0 to 9)

LVI Circuit Timing

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (T_A = -40 to +85°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	V _{DDDR}		2.0		5.5	V
Release signal set time	tsrel		0			μs

Flash Memory Programming Characteristics

 $(T_A = -10 \text{ to } +65^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le AV_{REF} \le V_{DD}, V_{SS} = AV_{SS} = 0 \text{ V})$

Basic characteristics

Paramet	er	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{DD} supply current	V _{DD} supply current		fxp = 16 MHz, V _{DD} = 5.5 V			32	mA
Unit erase time ^{Note 1}	Unit erase time ^{Note 1}				10		ms
Erase time ^{Note 2}	All blocks	Teraca			0.01	2.55	s
	Block unit	Terasa			0.01	2.55	s
Write time		Twrwa			50	500	μs
Number of rewrites p	er chip ^{Note 3}	Cerwr	1 erase + 1 write after erase = 1 rewrite Note 4			100	Times

Notes 1. Time required for one erasure execution

- 2. The total time for repetition of the unit erase time (255 times max.) until the data is erased completely. Note that the prewrite time and the erase verify time (writeback time) before data erasure are not included.
- 3. Number of rewrites per block
- **4.** If a block erasure is executed after word units of data are written 512 times to a block (2 KB), it is considered as one rewrite. Overwriting the same address without erasing the data in it is prohibited.

Target products: μ PD78F0132H(A1), 78F0133H(A1), 78F0134H(A1), 78F0136H(A1), 78F0138H(A1)

Absolute Maximum Ratings ($T_A = 25$ °C) (1/2)

Parameter	Symbol		Conditions	Ratings	Unit
Supply voltage	V _{DD}			-0.3 to +6.5	V
	EV _{DD}			-0.3 to +6.5	V
	Vss			-0.3 to +0.3	V
	EVss			-0.3 to +0.3	V
	AVREF			-0.3 to V _{DD} + 0.3 ^{Note}	V
	AVss			-0.3 to +0.3	V
Input voltage	V ₁₁	to P33, P40 to F	0 to P17, P20 to P27, P30 P43, P50 to P53, P60, 7, P120, P140, P141, X1, RESET	−0.3 to V _{DD} + 0.3 ^{Note}	V
	V _{I2}	P62, P63	N-ch open drain	-0.3 to +13	V
Output voltage	Vo			-0.3 to V _{DD} + 0.3 ^{Note}	V
Analog input voltage	Van			AVss -0.3 to AVREF + 0.3^{Note} and -0.3 to V _{DD} + 0.3^{Note}	V
Output current, high	Іон	Per pin		-8	mA
		Total of all pins -48 mA	P00 to P06, P40 to P43, P50 to P53, P70 to P77	-24	mA
			P10 to P17, P30 to P33, P120, P130, P140, P141	-24	mA

Note Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Absolute Maximum Ratings ($T_A = 25^{\circ}C$) (2/2)

Parameter	Symbol		Conditions	Ratings	Unit
Output current, low	Іоц	Per pin	P00 to P06, P10 to P17, P30 to P33, P40 to P43, P50 to P53, P70 to P77, P120, P130, P140, P141	16	mA
			P60 to P63	24	mA
		Total of all pins 56 mA	P00 to P06, P40 to P43, P50 to P53, P70 to P77	28	mA
			P10 to P17, P30 to P33, P60 to P63, P120, P130, P140, P141	28	mA
Operating ambient	Та	In normal opera	tion mode	-40 to +110	°C
temperature		In flash memory	programming mode	-10 to +65	
Storage temperature	T _{stg}	In flash memory	blank state	–65 to +150	°C
		In flash memory	programmed state	-40 to +125	

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

High-Speed System Clock (Crystal/Ceramic) Oscillator Characteristics ($T_A = -40 \text{ to } +110^{\circ}\text{C}, 2.0 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{AV}_{REF} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}$)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit	
Ceramic resonator	Vss X1 X2	Oscillation frequency (fxp) ^{Note 1}	$4.0~V \le V_{DD} \le 5.5~V$	2.0		16	MHz	
resoriator			inequency (ixi)	$3.5 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$	2.0		10	
	C1= C2=		3.0 V ≤ V _{DD} < 3.5 V	2.0		8.38		
	777		2.7 V ≤ V _{DD} < 3.0 V	2.0		5.0		
Crystal	Crystal vss X1 X2 Vss X1 X2 C1= C2=	Oscillation frequency (fxp) ^{Note 1}	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	2.0		16	MHz	
resoriator			nequency (IXP)	$3.5 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$	2.0		10	
			$3.0 \text{ V} \le \text{V}_{DD} < 3.5 \text{ V}$	2.0		8.38		
	:] <i>111</i>		2.7 V ≤ V _{DD} < 3.0 V	2.0		5.0		
External		X1 input frequency	$4.0~V \le V_{DD} \le 5.5~V$	2.0		16	MHz	
clock ^{Note 2}		(f _{XP}) ^{Note 1}	3.5 V ≤ V _{DD} < 4.0 V	2.0		10		
	X1 X2		3.0 V ≤ V _{DD} < 3.5 V	2.0		8.38		
			2.7 V ≤ V _{DD} < 3.0 V	2.0		5.0		
		X1 input high-/low-	4.0 V ≤ V _{DD} ≤ 5.5 V	30		250	ns	
	\vdash	level width (txph,	3.5 V ≤ V _{DD} < 4.0 V	46		250		
		txpl)	3.0 V ≤ V _{DD} < 3.5 V	56		250		
			2.7 V ≤ V _{DD} < 3.0 V	96		250		

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. Input a clock signal to the X1 pin and input the inverse clock signal to the X2 pin.
- Cautions 1. When using the high-speed system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - · Keep the wiring length as short as possible.
 - · Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. Since the CPU is started by the internal oscillation clock after reset, check the oscillation stabilization time of the high-speed system clock using the oscillation stabilization time counter status register (OSTC). Determine the oscillation stabilization time of the OSTC register and oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- **Remark** For the resonator selection and oscillator constant, users are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Internal Oscillator Characteristic

$(T_A = -40 \text{ to } +110^{\circ}\text{C}, 2.0 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{AV}_{REF} \le \text{V}_{DD}, \text{Vss} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Resonator	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
On-chip internal oscillator	Oscillation frequency (fR)		120	240	490	kHz

Subsystem Clock Oscillator Characteristics

(T_A = -40 to +110°C, 2.7 V ≤ V_{DD} = EV_{DD} ≤ 5.5 V, 2.7 V ≤ AV_{REF} ≤ V_{DD}, V_{SS} = EV_{SS} = AV_{SS} = 0 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	Vss XT2 XT1	Oscillation frequency $(f_{XT})^{Note}$		32	32.768	35	kHz
External clock Note 2	XT2 XT1	XT1 input frequency (fxT) ^{Note}		32		38.5	kHz
	7	XT1 input high-/low-level width (txth, txtl)		12		15.6	μs

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. Input a clock signal to the XT1 pin and input the inverse clock signal to the XT2 pin.
- Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - The subsystem clock oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the high-speed system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.
- **Remark** For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

DC Characteristics (1/3) $(T_A = -40 \text{ to } +110 ^{\circ}\text{C}, \ 2.7 \text{ V} \leq \text{V}_{DD} = \text{EV}_{DD} \leq 5.5 \text{ V}, \ 2.7 \text{ V} \leq \text{AV}_{REF} \leq \text{V}_{DD}, \ \text{Vss} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Output current, high	Іон	Per pin	$4.0~V \leq V_{DD} \leq 5.5~V$			-4	mA
		Total of P10 to P17, P30 to P33, P120, P130, P140, P141	$4.0~V \leq V_{DD} \leq 5.5~V$			-20	mA
		Total of P00 to P06, P40 to P43, P50 to P53, P70 to P77	$4.0~V \leq V_{DD} \leq 5.5~V$			-20	mA
		All pins	$4.0~V \leq V_{DD} \leq 5.5~V$			-25	mA
			$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$			-8	mA
Output current, low	Іоь	Per pin for P00 to P06, P10 to P17, P30 to P33, P40 to P43, P50 to P53, P70 to P77, P120, P130, P140, P141	4.0 V ≤ V _{DD} ≤ 5.5 V			8	mA
		Per pin for P60 to P63	$4.0~V \leq V_{DD} \leq 5.5~V$			12	mA
		Total of P10 to P17, P30 to P33, P60 to P63, P120, P130, P140, P141	4.0 V ≤ V _{DD} ≤ 5.5 V			24	mA
		Total of P00 to P06, P40 to P43, P50 to P53, P70 to P77	$4.0~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$			24	mA
		All pins	$4.0~V \leq V_{DD} \leq 5.5~V$			30	mA
			2.7 V ≤ V _{DD} < 4.0 V			8	mA
Input voltage, high	V _{IH1}	P12, P13, P15, P40 to P43, P50 to P53		0.7V _{DD}		V _{DD}	٧
	V _{IH2}	P00 to P06, P10, P11, P14, P16, P17, P30 to P33, P70 to P77, P120, P140, P141, RESET		0.8V _{DD}		V _{DD}	٧
	V _{IH3}	P20 to P27 ^{Note}		0.7AV _{REF}		AVREF	V
	V _{IH4}	P60, P61		0.7V _{DD}		V _{DD}	V
	V _{IH5}	P62, P63		0.7V _{DD}		12	٧
	V _{IH6}	X1, X2, XT1, XT2		V _{DD} - 0.5		V _{DD}	V
Input voltage, low	V _{IL1}	P12, P13, P15, P40 to P43, P50 to P53		0		0.3V _{DD}	V
	V _{IL2}	P00 to P06, P10, P11, P14, P16, P17, P30 to P33, P70 to P77, P120, P140, P141, RESET		0		0.2V _{DD}	V
	VIL3	P20 to P27 ^{Note}		0		0.3AVREF	V
	VIL4	P60, P61		0		0.3V _{DD}	V
	VIL5	P62, P63		0		0.3V _{DD}	٧
	VIL6	X1, X2, XT1, XT2		0		0.4	٧

Note When used as digital input ports, set AVREF = VDD.

DC Characteristics (2/3)

(TA = -40 to +110°C, 2.7 V \leq VDD = EVDD \leq 5.5 V, 2.7 V \leq AVREF \leq VDD, Vss = EVss = AVss = 0 V)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Output voltage, high	Vон	P10 to P17, P30 to P33, P120, P130, P140, P141 $I_{OH} = -20 \text{ mA}$ $I_{OH} = -4 \text{ mA}$		V _{DD} - 1.0			V	
		P00 to P06, P40 to P43, P50 to P53, P70 to P77 $I_{OH} = -4 \text{ mA}$ $I_{OH} = -20 \text{ mA}$		VDD - 1.0			V	
		I_{OH} = $-100 \mu A$		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$	$V_{\text{DD}}-0.5$			V
Output voltage, low	Vol1	P10 to P17, P30 to P33, P60 to P63, P120, P130, P140, P141 Total loL = 24 mA		$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $\text{IoL} = 8 \text{ mA}$			1.3	<
		P00 to P06, P40 to P43, P50 to P53, P70 to P77 Total IoL = 24 mA		$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL} = 8 \text{ mA}$			1.3	V
		IoL = 400 μA		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$			0.4	V
	V _{OL2}	P60 to P63		$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL} = 12 \text{ mA}$			2.0	٧
Input leakage current, high	Ішн1	V _I = V _{DD} P00 to P06, P10 to to P33, P40 to P43, P53, P60, P61, P70, P120, P140, P141,		0 to P43, P50 to P61, P70 to P77,			10	μΑ
	V _I = AV _{REF} P20 to P27				10	μΑ		
	ILIH2	$V_I = V_{DD}$	X1, X2 ^{Note}	¹ , XT1, XT2 ^{Note 1}			20	μΑ
	Ішнз	Vı = 12 V	P62, P63 (N-ch open drain)				10	μΑ
Input leakage current, low	ILIL1	V _I = 0 V P00 to P06, P10 to P17, P20 to P27, P30 to P33, P40 to P43, P50 to P53, P60, P61, P70 to P77, P120, P140, P141, RESET X1, X2 ^{Note 1} , XT1, XT2 ^{Note 1} P62, P63 (N-ch open drain)				-10	μΑ	
	ILIL2			¹ , XT1, XT2 ^{Note 1}			-20	μΑ
	ILIL3			(N-ch open drain)			-10 ^{Note 2}	μA
Output leakage current, high	Ісон	Vo = V _{DD}					10	μА
Output leakage current, low	ILOL	Vo = 0 V					-10	μΑ
Pull-up resistor	R∟	V ₁ = 0 V			10	30	120	kΩ
FLMD0 supply voltage	Flmd	In normal oper	In normal operation mode				0.2V _{DD}	V

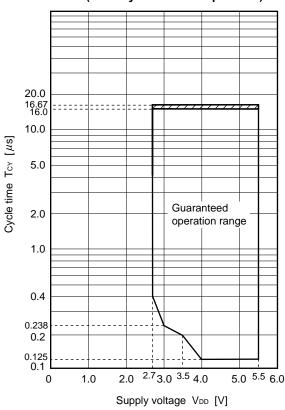
- Notes 1. When the inverse level of X1 is input to X2 and the inverse level of XT1 is input to XT2.
 - 2. If port 6 has been set to input mode when a read instruction is executed to read from port 6, a low-level input leakage current of up to $-55~\mu$ A flows during only one cycle. At all other times, the maximum leakage current is $-10~\mu$ A.

DC Characteristics (3/3)

$(T_A = -40 \text{ to } +110^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{AV}_{REF} \le \text{V}_{DD}, \text{Vss} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions				MAX.	Unit
Supply IDD1 currentNote 1	I _{DD1}	Crystal/ceramic	fxp = 16 MHz	When A/D converter is stopped		13.0	27.4	mA
		oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When A/D converter is operating Note6		14.0	29.4	mA
		operating mode ^{Note 2}	f _{XP} = 10 MHz	When A/D converter is stopped		9.0	21.4	mA
			$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When A/D converter is operating ^{Note 6}		10.0	23.4	mA
			f _{XP} = 5 MHz	When A/D converter is stopped		2.5	7.5	mA
			$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When A/D converter is operating Note 6		3.1	8.7	mA
	I _{DD2}	Crystal/ceramic	f _{XP} = 16 MHz	When peripheral functions are stopped		2.5	7.4	mA
		oscillation HALT	$V_{DD} = 5.0 \text{ V} \pm 10\%$	When peripheral functions are operating			14.4	mA
		mode	f _{XP} = 10 MHz	When peripheral functions are stopped		2.0	6.4	mA
			$V_{DD} = 5.0 \text{ V} \pm 10\%$	When peripheral functions are operating			11.4	mA
			f _{XP} = 5 MHz	When peripheral functions are stopped		0.7	2.5	mA
			$V_{DD} = 3.0 \text{ V} \pm 10\%$	When peripheral functions are operating			4.5	mA
	IDD3	Internal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%$			0.9	5.0	mA
		operating mode ^{Note 4}	$V_{DD} = 3.0 \text{ V} \pm 10\%$			0.4	2.6	mA
	I _{DD4}	Internal oscillation	V _{DD} = 5.0 V ±10%			0.4	3.0	mA
		HALT mode ^{Note 4}	V _{DD} = 3.0 V ±10%			0.25	2.0	mA
	I _{DD5}	32.768 kHz	V _{DD} = 5.0 V ±10%			50.0	1500	μΑ
		crystal oscillation operating mode ^{Notes 4, 5}	$V_{DD} = 3.0 \text{ V} \pm 10\%$			30.0	1100	μΑ
	IDD6	32.768 kHz	V _{DD} = 5.0 V ±10%			20.0	1400	μΑ
loo7		crystal oscillation HALT mode ^{Notes 4, 5}	$V_{DD} = 3.0 \text{ V} \pm 10\%$			10.0	1000	μΑ
	I _{DD7}	STOP mode	V _{DD} = 5.0 V ±10%	Internal oscillator: OFF		3.5	1400	μΑ
				Internal oscillator: ON		17.5	1500	μΑ
			V _{DD} = 3.0 V ±10%	Internal oscillator: OFF		3.5	1000	μΑ
				Internal oscillator: ON		11	1000	μΑ

- **Notes 1.** Total current flowing through the internal power supply (V_{DD}). Peripheral operation current is included (however, the current that flows through the pull-up resistors of ports is not included).
 - 2. IDD1 includes peripheral operation current.
 - **3.** When PCC = 00H.
 - **4.** When the high-speed system clock (crystal/ceramic) oscillator is stopped.
 - **5.** When the internal oscillator is stopped.
 - **6.** Including the current that flows through the AVREF pin.


AC Characteristics

(1) Basic operation

 $(T_A = -40 \text{ to } +110^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}^{\text{Note 1}}, 2.7 \text{ V} \le \text{AV}_{REF} \le V_{DD}^{\text{Note 1}}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Тсч	Main system clock operation	High-speed system	$4.0~V \leq V_{DD} \leq 5.5~V$	0.125		16	μs
			clock	$3.5 \text{ V} \leq \text{V}_{DD} \leq 4.0 \text{ V}$	0.2		16	μs
			Crystal/ceramic oscillation clock	$3.0 \text{ V} \leq \text{V}_{DD} < 3.5 \text{ V}$	0.238		16	μs
				$2.7 \text{ V} \le \text{V}_{DD} \le 3.0 \text{ V}$	0.4		16	μs
			Internal oscillation c	lock ^{Note 1}	4.09	8.33	16.67	μs
		Subsystem	Subsystem clock operation			122	125	μs
TI000, TI010, TI001 ^{Note 2} , TI011 ^{Note 2} input high-level width,	tтіно, tтіLo	4.0 V ≤ V _{DD} ≤ 5.5 V			2/f _{sam} + 0.1 Note 3			μs
low-level width		3.3 V ≤ V _{DD} < 4.0 V			2/f _{sam} + 0.2 ^{Note 3}			μs
		2.7 V ≤ V _{DD} < 3.3 V			2/f _{sam} + 0.5 ^{Note 3}			μs
TI50, TI51 input frequency	fтıs	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$					10	MHz
		3.3 V ≤ V _{DD} < 4.0 V					5	MHz
		2.7 V ≤ V _D	o < 3.3 V				2.5	MHz
TI50, TI51 input high-level width,	, t тін5, t тіL5	4.0 V ≤ V _{DD} ≤ 5.5 V			50			ns
low-level width		$3.3 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$			100			ns
		2.7 V ≤ V _{DD} < 3.3 V			200			ns
Interrupt input high-level width,	tinth, tintl	3.3 V ≤ V _{DD} < 5.5 V			1			μs
low-level width		2.7 V ≤ V _{DD} < 3.3 V			2			μs
Key return input low-level width	t kR	$4.0 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$			50			ns
		3.3 V ≤ V _{DD} < 4.0 V			100			ns
		2.7 V ≤ V _{DD} < 3.3 V			200			ns
RESET low-level width	trsl	3.3 V ≤ V _{DD} < 4.0 V			10			μs
		2.7 V ≤ V _{DI}	o < 3.3 V		20			μs

- **Notes 1.** When the internal oscillation clock is used, the CPU can operate at 2.0 V \leq V_{DD} \leq 5.5 V. However, perform I/O operations at 2.7 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq AV_{REF} \leq V_{DD}
 - **2.** μ PD78F0133H(A1), 78F0134H(A1), 78F0136H(A1), 78F0138H(A1) only.
 - 3. Selection of f_{sam} = f_{xP}, f_{xP}/4, f_{xP}/256, or f_{xP}, f_{xP}/16, f_{xP}/64 is possible using bits 0 and 1 (PRM000, PRM001 or PRM010, PRM011) of prescaler mode registers 00 and 01 (PRM00, PRM01). Note that when selecting the TI000 or TI001 valid edge as the count clock, f_{sam} = f_{xP}.

Tcy vs. VDD (Main System Clock Operation)

Remark The values indicated by the shaded section are only when the internal oscillation clock is selected.

(2) Serial interface

(TA = -40 to +110°C, 2.7 V \leq VDD = EVDD \leq 5.5 V, 2.7 V \leq AVREF \leq VDD, Vss = EVss = AVss = 0 V)

(a) UART mode (UART6, dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					312.5	kbps

(b) UART mode (UART0, dedicated baud rate generator output)

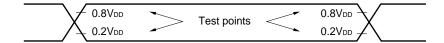
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					312.5	kbps

(c) 3-wire serial I/O mode (master mode, SCK1n... internal clock output)

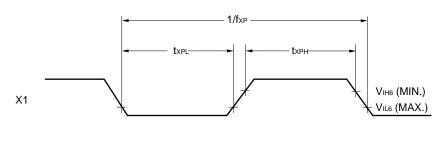
Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	Unit
SCK1n cycle time	tkcy1	4.5 V ≤ V _{DD} ≤ 5	5.5 V	200			ns
		4.0 V ≤ V _{DD} < 4	1.5 V	240			ns
		3.3 V ≤ V _{DD} < 4	1.0 V	400			ns
		$2.7 \text{ V} \leq \text{V}_{DD} < 3$	3.3 V	800			ns
SCK1n high-/low-level width	tĸнı,	$3.3 \text{ V} \leq \text{V}_{DD} \leq 5$	5.5 V	tkcy1/2-10			ns
	t _{KL1}	2.7 V ≤ V _{DD} < 3	3.3 V	tkcy1/2-50			ns
SI1n setup time (to SCK1n↑)	tsıkı	$3.3 \text{ V} \leq \text{V}_{DD} \leq 5$	5.5 V	30			ns
		2.7 V ≤ V _{DD} < 3	3.3 V	70			ns
SI1n hold time (from SCK1n↑)	tksi1	$3.3 \text{ V} \leq \text{V}_{DD} \leq 5$	5.5 V	30			ns
		2.7 V ≤ V _{DD} < 3	3.3 V	70			ns
Delay time from SCK1n↓ to	tkso1	C = 100 pF ^{Note}	$3.3~V \leq V_{DD} \leq 5.5~V$			30	ns
SO1n output			$2.7 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V}$			120	ns

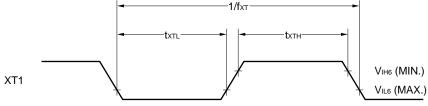
Note C is the load capacitance of the SCK1n and SO1n output lines.

(d) 3-wire serial I/O mode (slave mode, SCK1n... external clock input)

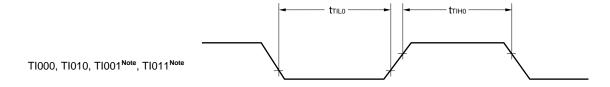

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1n cycle time	tkcy2	$3.3 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	400			ns
		2.7 V ≤ V _{DD} < 3.3 V	800			ns
SCK1n high-/low-level width	t кн2,		tkcy2/2			ns
	t _{KL2}					
SI1n setup time (to SCK1n↑)	tsık2		80			ns
SI1n hold time (from SCK1n↑)	tksi2		50			ns
Delay time from SCK1n↓ to SO1n output	tkso2	C = 100 pF ^{Note}			120	ns

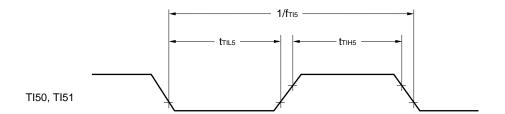
Note C is the load capacitance of the SO1n output line.

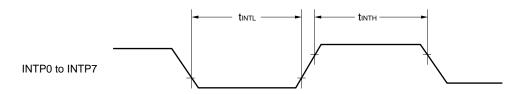

Remark n = 0: μ PD78F0132H(A1)


n = 0, 1: μ PD78F0133H(A1), 78F0134H(A1), 78F0136H(A1), 78F0138H(A1)

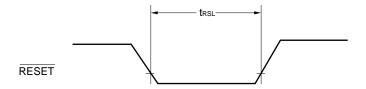
AC Timing Test Points (Excluding X1, XT1)



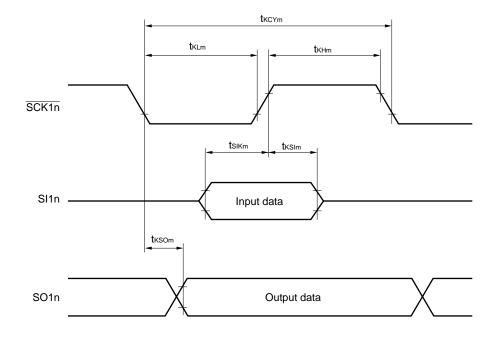

Clock Timing



TI Timing



Interrupt Request Input Timing


Note μ PD78F0133H(A1), 78F0134H(A1), 78F0136H(A1), 78F0138H(A1) only.

RESET Input Timing

Serial Transfer Timing

3-wire serial I/O mode:

Remark m = 1, 2

n = 0: μ PD78F0132H(A1)

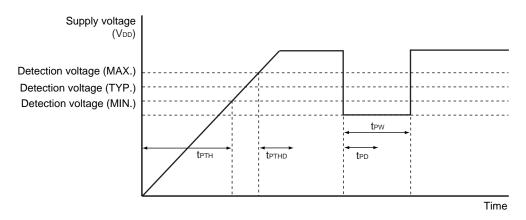
n = 0, 1: μ PD78F0133H(A1), 78F0134H(A1), 78F0136H(A1), 78F0138H(A1)

A/D Converter Characteristics

$(T_A = -40 \text{ to } +110 ^{\circ}\text{C}, \ 2.7 \text{ V} \leq \text{V}_{DD} = \text{EV}_{DD} \leq 5.5 \text{ V}, \ 2.7 \text{ V} \leq \text{AV}_{REF} \leq \text{V}_{DD}, \ \text{Vss} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			10	10	10	bit
Overall error ^{Notes 1, 2}		4.0 V ≤ AV _{REF} ≤ 5.5 V		±0.2	±0.6	%FSR
		2.7 V ≤ AV _{REF} < 4.0 V		±0.3	±0.8	%FSR
Conversion time	tconv	4.0 V ≤ AV _{REF} ≤ 5.5 V	14		60	μs
		2.7 V ≤ AV _{REF} < 4.0 V	19		60	μs
Zero-scale error ^{Notes 1, 2}		4.0 V ≤ AV _{REF} ≤ 5.5 V			±0.6	%FSR
		2.7 V ≤ AV _{REF} < 4.0 V			±0.8	%FSR
Full-scale error Notes 1, 2		4.0 V ≤ AV _{REF} ≤ 5.5 V			±0.6	%FSR
		2.7 V ≤ AV _{REF} < 4.0 V			±0.8	%FSR
Integral non-linearity error Note 1		4.0 V ≤ AV _{REF} ≤ 5.5 V			±4.5	LSB
		2.7 V ≤ AV _{REF} < 4.0 V			±6.5	LSB
Differential non-linearity error Note 1		4.0 V ≤ AV _{REF} ≤ 5.5 V			±2.0	LSB
		2.7 V ≤ AV _{REF} < 4.0 V			±2.5	LSB
Analog input voltage	VAIN		AVss		AVREF	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).


2. This value is indicated as a ratio (%FSR) to the full-scale value.

POC Circuit Characteristics (T_A = -40 to +110°C)

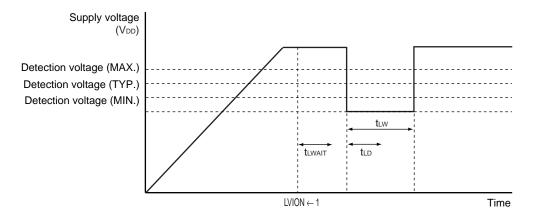
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOC		2.0	2.1	2.25	V
Power supply rise time	t PTH	VDD: $0 \text{ V} \rightarrow 2.0 \text{ V}$	0.0015			ms
Response delay time 1 ^{Note 1}	t РТНD	When power supply rises, after reaching detection voltage (MAX.)			3.0	ms
Response delay time 2 ^{Note 2}	t PD	When VDD falls			1.0	ms
Minimum pulse width	tpw		0.2			ms

- **Notes 1.** Time required from voltage detection to reset release.
 - 2. Time required from voltage detection to internal reset output.

POC Circuit Timing

LVI Circuit Characteristics ($T_A = -40 \text{ to } +110^{\circ}\text{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VLVIO		4.1	4.3	4.52	٧
	V _{LVI1}		3.9	4.1	4.32	V
	V _{LVI2}		3.7	3.9	4.12	٧
	V _{LVI3}		3.5	3.7	3.92	٧
	V _{LVI4}		3.3	3.5	3.72	>
	V _{LVI5}		3.15	3.3	3.5	>
	V _{LVI6}		2.95	3.1	3.3	V
	V _{LVI7}		2.7	2.85	3.05	>
	V _{LVI8}		2.5	2.6	2.75	٧
	V _{LVI9}		2.25	2.35	2.5	٧
Response time ^{Note 1}	t ld			0.2	2.0	ms
Minimum pulse width	t LW		0.2			ms
Operation stabilization wait time Note 2	tlwait			0.1	0.2	ms


Notes 1. Time required from voltage detection to interrupt output or internal reset output.

2. Time required from setting LVION to 1 to operation stabilization.

Remarks 1. $V_{LV10} > V_{LV11} > V_{LV12} > V_{LV13} > V_{LV14} > V_{LV15} > V_{LV16} > V_{LV17} > V_{LV18} > V_{LV19}$

2. $V_{POC} < V_{LVIm}$ (m = 0 to 9)

LVI Circuit Timing

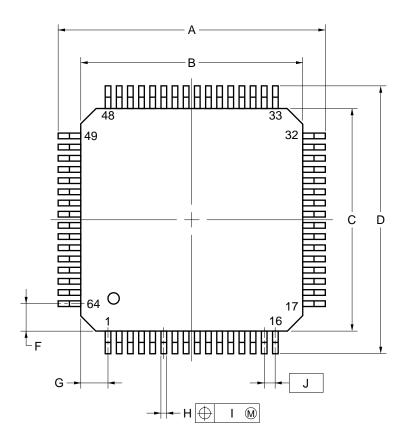
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (T_A = -40 to +110°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	V _{DDDR}		2.0		5.5	V
Release signal set time	tsrel		0			μs

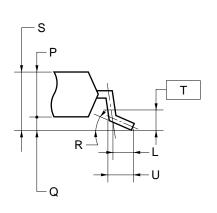
Flash Memory Programming Characteristics

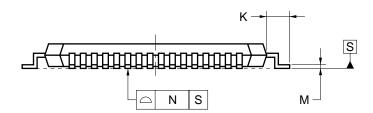
 $(T_A = -10 \text{ to } +65^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le AV_{REF} \le V_{DD}, V_{SS} = AV_{SS} = 0 \text{ V})$

Basic characteristics


Paramet	er	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{DD} supply current		IDD	fxp = 16 MHz, V _{DD} = 5.5 V			32	mA
Unit erase time ^{Note 1}		Terass			10		ms
Erase time ^{Note 2}	All blocks	Teraca			0.01	2.55	s
	Block unit	Terasa			0.01	2.55	s
Write time		Twrwa			50	500	μs
Number of rewrites p	er chip ^{Note 3}	Cerwr	1 erase + 1 write after erase = 1 rewrite Note 4			100	Times

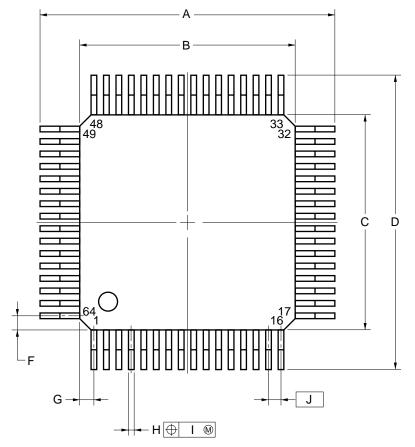
Notes 1. Time required for one erasure execution

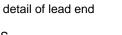

- 2. The total time for repetition of the unit erase time (255 times max.) until the data is erased completely. Note that the prewrite time and the erase verify time (writeback time) before data erasure are not included.
- 3. Number of rewrites per block
- **4.** If a block erasure is executed after word units of data are written 512 times to a block (2 KB), it is considered as one rewrite. Overwriting the same address without erasing the data in it is prohibited.

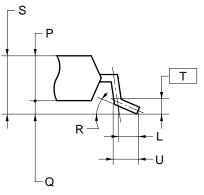

CHAPTER 31 PACKAGE DRAWINGS

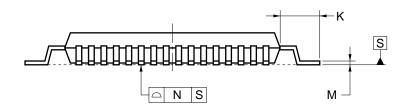
64-PIN PLASTIC LQFP (10x10)

detail of lead end

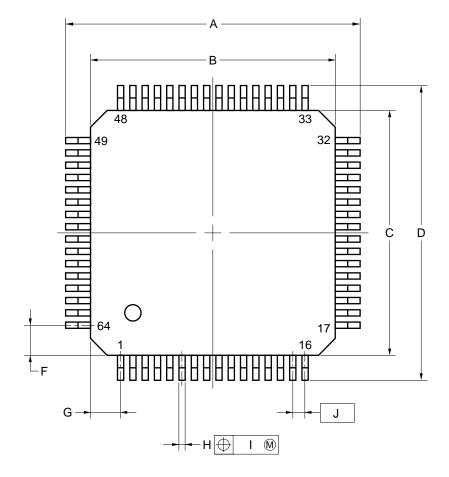

NOTE


Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

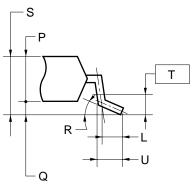

ITEM	MILLIMETERS
Α	12.0±0.2
В	10.0±0.2
С	10.0±0.2
D	12.0±0.2
F	1.25
G	1.25
Н	0.22±0.05
1	0.08
J	0.5 (T.P.)
K	1.0±0.2
L	0.5
М	$0.17^{+0.03}_{-0.07}$
N	0.08
Р	1.4
Q	0.1±0.05
R	3° ⁺⁴ ° -3°
S	1.5±0.10
Т	0.25
U	0.6±0.15
	SEACH EN OFIL 2

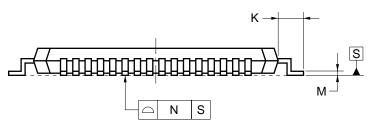

S64GB-50-8EU-2

64-PIN PLASTIC LQFP (14x14)



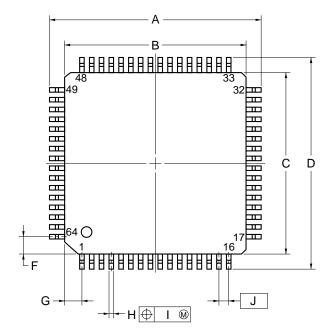
NOTE


Each lead centerline is located within 0.20 mm of its true position (T.P.) at maximum material condition.

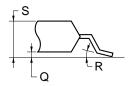

ITEM	MILLIMETERS
Α	17.2±0.2
В	14.0±0.2
С	14.0±0.2
D	17.2±0.2
F	1.0
G	1.0
Н	$0.37^{+0.08}_{-0.07}$
1	0.20
J	0.8 (T.P.)
K	1.6±0.2
L	0.8
М	$0.17^{+0.03}_{-0.06}$
N	0.10
Р	1.4±0.1
Q	0.127±0.075
R	3°+4°
S	1.7 MAX.
Т	0.25
U	0.886±0.15
·	P64GC-80-8BS

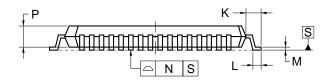
64-PIN PLASTIC TQFP (12x12)

detail of lead end



NOTE


Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.


ITEM	MILLIMETERS
Α	14.0±0.2
В	12.0±0.2
C	12.0±0.2
D	14.0±0.2
F	1.125
G	1.125
Н	$0.32^{+0.06}_{-0.10}$
I	0.13
J	0.65 (T.P.)
K	1.0±0.2
L	0.5
М	$0.17^{+0.03}_{-0.07}$
N	0.10
Р	1.0
Q	0.1±0.05
R	3°+4°
S	1.1±0.1
Т	0.25
U	0.6±0.15

64-PIN PLASTIC LQFP (12x12)

detail of lead end

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	14.8±0.4
В	12.0±0.2
С	12.0±0.2
D	14.8±0.4
F	1.125
G	1.125
Н	0.32±0.08
I	0.13
J	0.65 (T.P.)
K	1.4±0.2
L	0.6±0.2
М	$0.17^{+0.08}_{-0.07}$
Ν	0.10
Р	1.4±0.1
Q	0.125±0.075
R	5°±5°
S	1.7 MAX.

P64GK-65-8A8-3

CHAPTER 32 RECOMMENDED SOLDERING CONDITIONS

These products should be soldered and mounted under the following recommended conditions.

For soldering methods and conditions other than those recommended below, please contact an NEC Electronics sales representative.

For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

Table 32-1. Surface Mounting Type Soldering Conditions (1/3)

(1) μPD78F0132HGB-8EU, 78F0132HGB(A)-8EU, 78F0132HGB(A1)-8EU, 78F0132HGK-9ET, 78F0132HGK(A)-9ET, 78F0132HGK(A1)-9ET, 78F0133HGB-8EU, 78F0133HGB(A)-8EU, 78F0133HGB(A1)-8EU, 78F0133HGK-9ET, 78F0133HGK(A1)-9ET, 78F0133HGK(A1)-9ET, 78F0134HGB-8EU, 78F0134HGB(A)-8EU, 78F0134HGB(A1)-8EU, 78F0134HGK-9ET, 78F0136HGB-8EU, 78F0136HGB(A1)-8EU, 78F0136HGB(A1)-8EU, 78F0136HGB(A1)-8EU, 78F0138HGB-8EU, 78F

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: 3 times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 20 to 72 hours)	IR35-207-3
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: 3 times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 20 to 72 hours)	VP15-207-3
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Table 32-1. Surface Mounting Type Soldering Conditions (2/3)

(2) μPD78F0132HGC-8BS, 78F0132HGC(A)-8BS, 78F0132HGC(A1)-8BS, 78F0133HGC-8BS, 78F0133HGC(A)-8BS, 78F0133HGC(A)-8BS, 78F0134HGC-8BS, 78F0134HGC(A)-8BS, 78F0136HGC(A)-8BS, 78F0136HGC(A1)-8BS, 78F0138HGC-8BS, 78F0138HGC(A1)-8BS, 78F0138HGC(A1)-8BS, 78F0138HGC(A1)-8BS, 78F0138HGC(A1)-8BS

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: 3 times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 20 to 72 hours)	IR35-207-3
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: 3 times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 20 to 72 hours)	VP15-207-3
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once, Preheating temperature: 120°C max. (package surface temperature), Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 20 to 72 hours)	WS60-207-1
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

(3) μPD78F0132HGB-8EU-A, 78F0132HGB(A)-8EU-A, 78F0132HGB(A1)-8EU-A, 78F0132HGC-8BS-A, 78F0132HGC(A)-8BS-A, 78F0132HGC(A)-8BS-A, 78F0132HGK(A1)-9ET-A, 78F0132HGK(A1)-9ET-A, 78F0133HGB-8EU-A, 78F0133HGB(A)-8EU-A, 78F0133HGB(A1)-8EU-A, 78F0133HGC-8BS-A, 78F0133HGC(A)-8BS-A, 78F0133HGC(A1)-8BS-A, 78F0133HGK-9ET-A, 78F0133HGK(A)-9ET-A, 78F0133HGK(A)-9ET-A, 78F0133HGK(A1)-9ET-A, 78F0134HGB-8EU-A, 78F0134HGB(A1)-8EU-A, 78F0134HGC-8BS-A, 78F0134HGC(A)-8BS-A, 78F0134HGK-9ET-A, 78F0134HGK(A)-9ET-A, 78F0134HGK(A1)-9ET-A, 78F0136HGB-8EU-A, 78F0136HGB(A)-8EU-A, 78F0136HGB(A1)-8EU-A, 78F0136HGC(A1)-8BS-A, 78F0136HGC(A1)-8BS-A, 78F0136HGC(A1)-8BS-A, 78F0136HGC(A1)-8BS-A, 78F0138HGB-8EU-A, 78F0138HGB(A1)-8EU-A, 78F0138HGB(A1)-8EU-A, 78F0138HGC(A1)-8BS-A, 78F0138HGC(A1)-8BS-A, 78F0138HGC(A1)-8BS-A, 78F0138HGK(A1)-9ET-A, 78F0138HGK(A1)-9ET-A

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or higher), Count: Three times or less, Exposure limit: 7 days Note (after that, prebake at 125°C for 20 to 72 hours)	IR60-207-3
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Remarks Products that have the part numbers suffixed by "-A" are lead-free products.

CHAPTER 33 CAUTIONS FOR WAIT

33.1 Cautions for Wait

This product has two internal system buses.

One is a CPU bus and the other is a peripheral bus that interfaces with the low-speed peripheral hardware.

Because the clock of the CPU bus and the clock of the peripheral bus are asynchronous, unexpected illegal data may be passed if an access to the CPU conflicts with an access to the peripheral hardware.

When accessing the peripheral hardware that may cause a conflict, therefore, the CPU repeatedly executes processing, until the correct data is passed.

As a result, the CPU does not start the next instruction processing but waits. If this happens, the number of execution clocks of an instruction increases by the number of wait clocks (for the number of wait clocks, refer to **Table 33-1**). This must be noted when real-time processing is performed.

33.2 Peripheral Hardware That Generates Wait

Table 33-1 lists the registers that issue a wait request when accessed by the CPU, and the number of CPU wait clocks.

Table 33-1. Registers That Generate Wait and Number of CPU Wait Clocks

Peripheral Hardware	Register	Access	Number of Wait Clocks
Watchdog timer	WDTM	Write	3 clocks (fixed)
Serial interface UART0	ASIS0	Read	1 clock (fixed)
Serial interface UART6	ASIS6	Read	1 clock (fixed)
A/D converter	ADM	Write	2 to 5 clocks ^{Note}
	ADS	Write	(when ADM.5 flag = "1")
	PFM	Write	2 to 9 clocks ^{Note} (when ADM.5 flag = "0")
	PFT	Write	(minin / Emilia ilag
	ADCR	Read	1 to 5 clocks (when ADM.5 flag = "1") 1 to 9 clocks (when ADM.5 flag = "0")
	{(1/fmacro) × 2/(1/fcpu)} + 1 *The result after the decima (1/fcpu), and is rounded up fmacro: Macro operating (When bit 5 (FR:	lating maximum number of wait clocks>	
	tcpul: Low-level width	PUL: Low-level width of CPU clock	

Note No wait cycle is generated for the CPU if the number of wait clocks calculated by the above expression is 1.

Caution When the CPU is operating on the subsystem clock and the high-speed system clock is stopped (MCC = 1), do not access the registers listed above using an access method in which a wait request is issued.

Remark The clock is the CPU clock (fcpu).

33.3 Example of Wait Occurrence

<1> Watchdog timer

<On execution of MOV WDTM, A>
Number of execution clocks: 8

(5 clocks when data is written to a register that does not issue a wait (MOV sfr, A).)

<On execution of MOV WDTM, #byte>
Number of execution clocks: 10

(7 clocks when data is written to a register that does not issue a wait (MOV sfr, #byte).)

<2> Serial interface UART6

<On execution of MOV A, ASIS6>
Number of execution clocks: 6

(5 clocks when data is read from a register that does not issue a wait (MOV A, sfr).)

<3> A/D converter

Table 33-2. Number of Wait Clocks and Number of Execution Clocks on Occurrence of Wait (A/D Converter)

<On execution of MOV ADM, A; MOV ADS, A; or MOV A, ADCR>

• When fx = 10 MHz, tcpuL = 50 ns

Value of Bit 5 (FR2) of ADM Register	fсри	Number of Wait Clocks	Number of Execution Clocks
0	fx	9 clocks	14 clocks
	fx/2	5 clocks	10 clocks
	fx/2 ²	3 clocks	8 clocks
	fx/2 ³	2 clocks	7 clocks
	fx/2 ⁴	0 clocks (1 clock ^{Note})	5 clocks (6 clocks ^{Note})
1	fx	5 clocks	10 clocks
	fx/2	3 clocks	8 clocks
	fx/2 ²	2 clocks	7 clocks
	fx/2 ³	0 clocks (1 clock ^{Note})	5 clocks (6 clocks ^{Note})
	fx/2 ⁴	0 clocks (1 clock ^{Note})	5 clocks (6 clocks ^{Note})

Note On execution of MOV A, ADCR

Remark The clock is the CPU clock (fcpu).

fx: High-speed system clock oscillation frequency

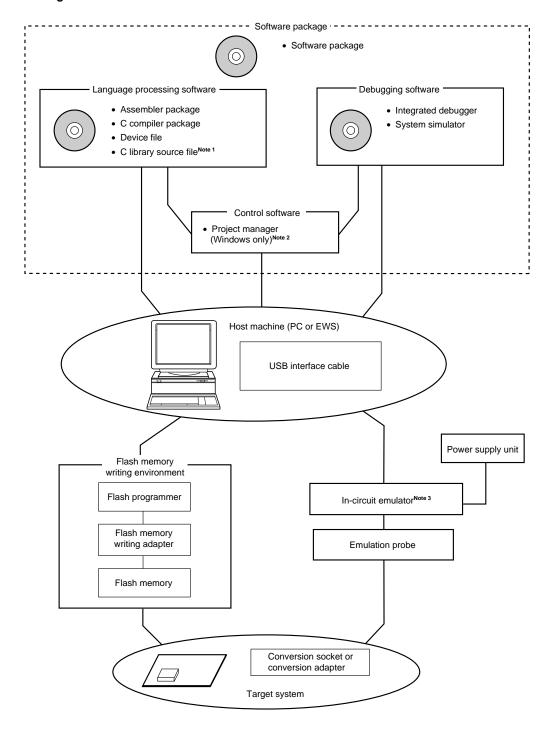
tcpul: Low-level width of CPU clock

APPENDIX A DEVELOPMENT TOOLS

The following development tools are available for the development of systems that employ the 78K0/KE1+. Figure A-1 shows the development tool configuration.

• Support for PC98-NX series

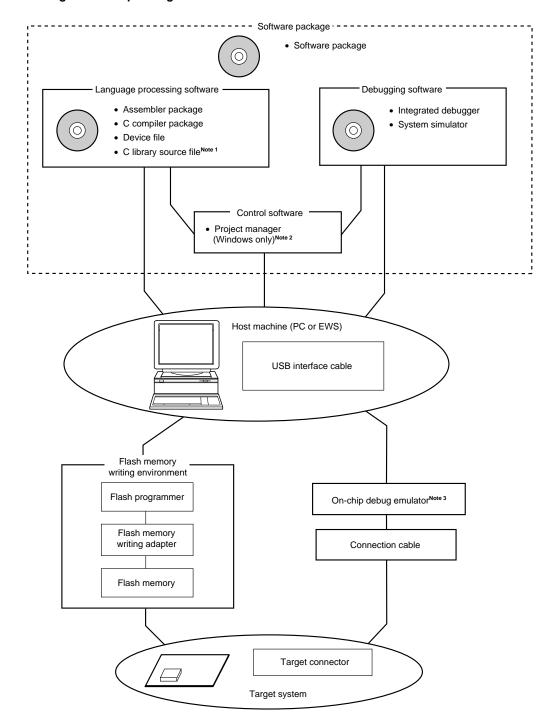
Unless otherwise specified, products supported by IBM PC/ATTM compatibles are compatible with PC98-NX series computers. When using PC98-NX series computers, refer to the explanation for IBM PC/AT compatibles.


WindowsTM

Unless otherwise specified, "Windows" means the following OSs.

- Windows 3.1
- Windows 95
- Windows 98
- Windows NTTM Ver 4.0
- Windows 2000
- Windows XPTM

Figure A-1. Development Tool Configuration (1/2)


• When using the in-circuit emulator QB-78K0KX1H

- **Notes 1.** The C library source file is not included in the software package.
 - **2.** The project manager PM+ is included in the assembler package. PM+ is only used for Windows.
 - 3. In-circuit emulator QB-78K0KX1H is supplied with integrated debugger ID78K0-QB, flash memory programmer PG-FPL, power supply unit, and USB interface cable. Any other products are sold separately.

Figure A-1. Development Tool Configuration (2/2)

• When using the on-chip debug emulator QB-78K0MINI

- **Notes 1.** The C library source file is not included in the software package.
 - **2.** The project manager PM+ is included in the assembler package. PM+ is only used for Windows.
 - **3.** On-chip debug emulator QB-78K0MINI is supplied with integrated debugger ID78K0-QB, USB interface cable, and connection cable. Any other products are sold separately.

A.1 Software Package

SP78K0	Development tools (software) common to the 78K/0 Series are combined in this package.
78K/0 Series software package	Part number: µSxxxxSP78K0

 $\textbf{Remark} \quad \times\!\!\times\!\!\times \text{ in the part number differs depending on the host machine and OS used.}$

××××	Host Machine	os	Supply Medium
AB17	PC-9800 series,	Windows (Japanese version)	CD-ROM
BB17	IBM PC/AT compatibles	Windows (English version)	

A.2 Language Processing Software

RA78K0 Assembler package	This assembler converts programs written in mnemonics into object codes executable with a microcontroller. This assembler is also provided with functions capable of automatically creating symbol tables and branch instruction optimization. This assembler should be used in combination with a device file (DF780138) (sold separately). Precaution when using RA78K0 in PC environment> This assembler package is a DOS-based application. It can also be used in Windows, however, by using the project manager (included in assembler package) on Windows. Part number: µSxxxxRA78K0
CC78K0 C compiler package	This compiler converts programs written in C language into object codes executable with a microcontroller. This compiler should be used in combination with an assembler package and device file (both sold separately). <pre> <precaution cc78k0="" environment="" in="" pc="" using="" when=""> This C compiler package is a DOS-based application. It can also be used in Windows, however, by using the project manager (included in assembler package) on Windows. </precaution></pre>
	Part number: µSxxxCC78K0
DF780138 ^{Note 1} Device file	This file contains information peculiar to the device. This device file should be used in combination with a tool (RA78K0, CC78K0, SM+ for 78K0, and ID78K0-QB) (all sold separately). The corresponding OS and host machine differ depending on the tool to be used (all sold separately).
	Part number: µSxxxxDF780138
CC78K/0-L ^{Note 2} C library source file	This is a source file of the functions that configure the object library included in the C compiler package (CC78K0). This file is required to match the object library included in the C compiler package to the user's specifications.
	Part number: μSxxxCC78K0-L

Notes 1. The DF780138 can be used in common with the RA78K0, CC78K0, SM+ for 78K0, and ID78K0-QB.

2. The CC78K0-L is not included in the software package (SP78K0).

 $\begin{array}{l} \mu \text{S} \times \times \times \text{RA78K0} \\ \mu \text{S} \times \times \times \text{CC78K0} \\ \mu \text{S} \times \times \times \times \text{CC78K0-L} \end{array}$

××××	Host Machine	OS	Supply Medium
AB17	PC-9800 series,	Windows (Japanese version)	CD-ROM
BB17	IBM PC/AT compatibles	Windows (English version)	
3P17	HP9000 series 700 [™]	HP-UX [™] (Rel. 10.10)	
3K17	SPARCstation [™]	SunOS [™] (Rel. 4.1.4), Solaris [™] (Rel. 2.5.1)	

 μ S $\times\times\times$ DF780138

××××	Host Machine	os	Supply Medium
AB13	PC-9800 series,	Windows (Japanese version)	3.5-inch 2HD FD
BB13	IBM PC/AT compatibles	Windows (English version)	

A.3 Control Software

PM+	This is control software designed to enable efficient user program development in the
Project manager	Windows environment. All operations used in development of a user program, such as
	starting the editor, building, and starting the debugger, can be performed from PM+.
	<caution></caution>
	PM+ is included in the assembler package (RA78K0).
	It can only be used in Windows.

A.4 Flash Memory Writing Tools

FlashPro4	Flash programmer dedicated to microcontrollers with on-chip flash memory.
(part number: FL-PR4, PG-FP4)	
Flash programmer	
PG-FPL	Flash memory programmer dedicated to microcontrollers with on-chip flash memory.
Flash memory programmer	Included with in-circuit emulator QB-78K0KX1H.
FA-64GB-8EU-A	Flash memory writing adapter used connected to the FlashPro4.
FA-64GC-8BS-A	FA-64GB-8EU-A: For 64-pin plastic LQFP (GB-8EU type)
FA-64GK-9ET-A	FA-64GC-8BS-A: For 64-pin plastic LQFP (GC-8BS type)
Flash memory writing adapter	FA-64GK-9ET-A: For 64-pin plastic TQFP (GK-9ET type)

Remark FL-PR4, FA-64GB-8EU-A, FA-64GC-8BS-A, and FA-64GK-9ET-A are products of Naito Densei Machida Mfg. Co., Ltd.

TEL: +81-42-750-4172 Naito Densei Machida Mfg. Co., Ltd.

A.5 Debugging Tools (Hardware)

A.5.1 When using in-circuit emulator QB-78K0KX1H

QB-78K0KX1H ^{Note} In-circuit emulator	The in-circuit emulator serves to debug hardware and software when developing application systems using the 78K0/Kx1 or 78K0/Kx1+. It supports the integrated debugger (ID78K0-QB). This emulator should be used in combination with a power supply unit and emulation probe. USB is used to connect this emulator to the host machine.	
QB-144-CA-01 Check pin adapter	This adapter is used in waveform monitoring using the oscilloscope, etc.	
QB-80-EP-01T Emulation probe	This is a flexible type probe used to connect the in-circuit emulator to the target system.	
QB-64GB-EA-01T QB-64GC-EA-01T	This adapter is used to perform the pin conversion from the in-circuit emulator to the target connector.	
QB-64GK-EA-01T	• QB-64GB-EA-01T: For 64-pin plastic LQFP (GB-8EU type)	
Exchange adapter	• QB-64GC-EA-01T: For 64-pin plastic LQFP (GC-8BS type)	
	QB-64GK-EA-01T: For 64-pin plastic TQFP (GK-9ET type)	
QB-64GB-YS-01T	This adapter is used to adjust the height between the target system and in-circuit emulator if	
QB-64GC-YS-01T	required.	
QB-64GK-YS-01T	• QB-64GB-YS-01T: For 64-pin plastic LQFP (GB-8EU type)	
Space adapter	• QB-64GC-YS-01T: For 64-pin plastic LQFP (GC-8BS type)	
	QB-64GK-YS-01T: For 64-pin plastic TQFP (GK-9ET type)	
QB-64GB-YQ-01T	This connector is used to connect the target connector to the exchange adapter.	
QB-64GC-YQ-01T	• QB-64GB-YQ-01T: For 64-pin plastic LQFP (GB-8EU type)	
QB-64GK-YQ-01T	QB-64GC-YQ-01T: For 64-pin plastic LQFP (GC-8BS type)	
YQ connector	QB-64GK-YQ-01T: For 64-pin plastic TQFP (GK-9ET type)	
QB-64GB-HQ-01T	This adapter is used to mount the target device onto the target device with socket.	
QB-64GC-HQ-01T	• QB-64GB-HQ-01T: For 64-pin plastic LQFP (GB-8EU type)	
QB-64GK-HQ-01T	• QB-64GC-HQ-01T: For 64-pin plastic LQFP (GC-8BS type)	
QB-64GK-HQ-02T	QB-64GK-HQ-01T: For 64-pin plastic TQFP (GK-9ET type) without on-chip debug function	
Mount adapter	QB-64GK-HQ-02T: For 64-pin plastic TQFP (GK-9ET type) with on-chip debug function	
QB-64GB-NQ-01T	This connector is used to mount the in-circuit emulator onto the target system.	
QB-64GC-NQ-01T	• QB-64GB-NQ-01T: For 64-pin plastic LQFP (GB-8EU type)	
QB-64GK-NQ-01T	• QB-64GC-NQ-01T: For 64-pin plastic LQFP (GC-8BS type)	
Target connector	• QB-64GK-NQ-01T: For 64-pin plastic TQFP (GK-9ET type)	

Note The QB-78K0KX1H is supplied with a power supply unit, USB interface cable, and flash memory programmer PG-FPL. It is also supplied with integrated debugger ID78K0-QB as control software.

Remark The package contents differ depending on the part number.

Noman. The paskage centente aincraepenaing on the part number.					
Package Contents	In-Circuit Emulator	Emulation Probe	Exchange Adapter	YQ Connector	Target Connector
Part Number					
QB-78K0KX1H-ZZZ	QB-78K0KX1H	Not included			
QB-78K0KX1H-T64GB		QB-80-EP-01T	QB-64GB-EA-01T	QB-64GB-YQ-01T	QB-64GB-NQ-01T
QB-78K0KX1H-T64GC			QB-64GC-EA-01T	QB-64GC-YQ-01T	QB-64GC-NQ-01T
QB-78K0KX1H-T64GK			QB-64GK-EA-01T	QB-64GK-YQ-01T	QB-64GK-NQ-01T

A.5.2 When using on-chip debug emulator QB-78K0MINI

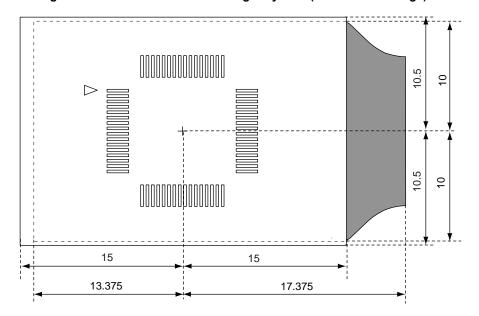
QB-78K0MINI On-chip debug emulator	The on-chip debug emulator serves to debug hardware and software when developing application systems using the 78K0/Kx1+. It supports the integrated debugger (ID78K0-QB) supplied with the QB-78K0MINI. This emulator uses a connection cable and a USB interface cable that is used to connect the host machine.
Target connector specifications	10-pin general-purpose connector (2.54 mm pitch)

A.6 Debugging Tools (Software)

SM+ for 78K0 System simulator	SM+ for 78K0 is Windows-based software. It is used to perform debugging at the C source level or assembler level while simulating the operation of the target system on a host machine. Use of SM+ for 78K0 allows the execution of application logical testing and performance testing on an independent basis from hardware development, thereby providing higher development efficiency and software quality. SM+ for 78K0 should be used in combination with the device file (DF780138) (sold separately).
ID78K0-QB Integrated debugger	Part number: μ SxxxxSM780000 This debugger supports the in-circuit emulators for the 78K0/Kx1+ Series. The ID78K0-QB is Windows-based software. It has improved C-compatible debugging functions and can display the results of tracing with the source program using an integrating window function that associates the source program, disassemble display, and memory display with the trace result. It should be used in combination with the device file (sold separately). Part number: μ SxxxxID78K0-QB

 $\textbf{Remark} \quad \times\!\!\times\!\!\times\! \text{ in the part number differs depending on the host machine and OS used.}$

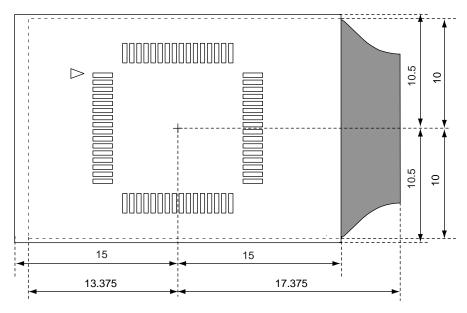
 $\mu \text{S} \times \times \times \text{SM780000} \\ \mu \text{S} \times \times \times \times \text{ID78K0-QB}$


××××	Host Machine	OS	Supply Medium
AB17	PC-9800 series,	Windows (Japanese version)	CD-ROM
BB17	IBM PC/AT compatibles	Windows (English version)	

APPENDIX B NOTES ON TARGET SYSTEM DESIGN

This section shows areas on the target system where component mounting is prohibited and areas where there are component mounting height restrictions when using the QB-78K0KX1H.

(a) For 64-pin GB package

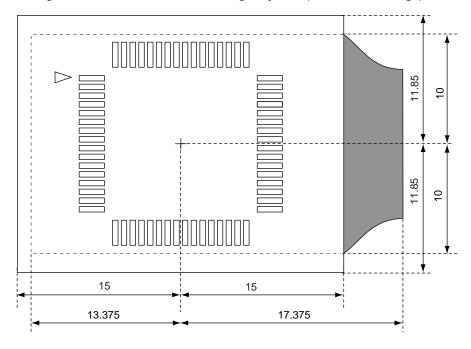

[:] Exchange adapter area: Components up to 17.45 mm in height can be mounted Note

Note Height can be regulated by using space adapters (each adds 2.4 mm)

Emulation probe tip area: Components up to 24.45 mm in height can be mounted Note

(b) For 64-pin GK package

Figure B-2. Restricted Areas on Target System (64-Pin GK Package)



- : Exchange adapter area: Components up to 17.45 mm in height can be mounted Note
- Emulation probe tip area: Components up to 24.45 mm in height can be mounted Note

Note Height can be regulated by using space adapters (each adds 2.4 mm)

(c) For 64-pin GC package

Figure B-3. Restricted Areas on Target System (64-Pin GC Package)

- : Exchange adapter area: Components up to 17.45 mm in height can be mounted Note
- Emulation probe tip area: Components up to 24.45 mm in height can be mounted Note

Note Height can be regulated by using space adapters (each adds 2.4 mm)

C.1 Register Index (In Alphabetical Order with Respect to Register Names)

[A]	
A/D conversion result register (ADCR)	254
A/D converter mode register (ADM)	251
Analog input channel specification register (ADS)	253
Asynchronous serial interface control register 6 (ASICL6)	303
Asynchronous serial interface operation mode register 0 (ASIM0)	273
Asynchronous serial interface operation mode register 6 (ASIM6)	297
Asynchronous serial interface reception error status register 0 (ASIS0)	275
Asynchronous serial interface reception error status register 6 (ASIS6)	299
Asynchronous serial interface transmission status register 6 (ASIF6)	300
[B]	
Baud rate generator control register 0 (BRGC0)	276
Baud rate generator control register 6 (BRGC6)	302
[C]	
Capture/compare control register 00 (CRC00)	146
Capture/compare control register 01 (CRC01)	146
Clock monitor mode register (CLM)	400
Clock output selection register (CKS)	244
Clock selection register 6 (CKSR6)	301
Correction address register 0 (CORAD0)	424
Correction address register 1 (CORAD1)	424
Correction control register (CORCN)	425
[E]	
8-bit timer compare register 50 (CR50)	184
8-bit timer compare register 51 (CR51)	184
8-bit timer counter 50 (TM50)	183
8-bit timer counter 51 (TM51)	183
8-bit timer H carrier control register 1 (TMCYC1)	207
8-bit timer H compare register 00 (CMP00)	202
8-bit timer H compare register 01 (CMP01)	202
8-bit timer H compare register 10 (CMP10)	202
8-bit timer H compare register 11 (CMP11)	202
8-bit timer H mode register 0 (TMHMD0)	203
8-bit timer H mode register 1 (TMHMD1)	203
8-bit timer mode control register 50 (TMC50)	187
8-bit timer mode control register 51 (TMC51)	188
External interrupt falling edge enable register (EGN)	367
External interrupt rising edge enable register (EGP)	367

[F]	
Flash programming mode control register (FLPMC)	
Flash protect command register (PFCMD)	454
Flash status register (PFS)	454
[1]	
Input switch control register (ISC)	305
Internal expansion RAM size switching register (IXS)	435
Internal memory size switching register (IMS)	434
internal oscillation mode register (RCM)	114
Interrupt mask flag register 0H (MK0H)	365
Interrupt mask flag register 0L (MK0L)	365
Interrupt mask flag register 1H (MK1H)	365
Interrupt mask flag register 1L (MK1L)	365
Interrupt request flag register 0H (IF0H)	363
Interrupt request flag register 0L (IF0L)	363
Interrupt request flag register 1H (IF1H)	363
Interrupt request flag register 1L (IF1L)	363
[K]	
Key return mode register (KRM)	377
[L]	
Low-voltage detection level selection register (LVIS)	412
Low-voltage detection register (LVIM)	411
[M]	
Main clock mode register (MCM)	115
Main OSC control register (MOC)	
Multiplication/division data register A0 (MDA0H, MDA0L)	
Multiplication/division data register B0 (MDB0)	
Multiplier/divider control register 0 (DMUC0)	
[0]	447.000
Oscillation stabilization time counter status register (OSTC)	
Oscillation stabilization time select register (OSTS)	118, 381
[P]	
Port mode register 0 (PM0)	
Port mode register 1 (PM1)	
Port mode register 12 (PM12)	
Port mode register 14 (PM14)	
Port mode register 3 (PM3)	
Port mode register 4 (PM4)	
Port mode register 5 (PM5)	
Port mode register 6 (PM6)	
Port mode register 7 (PM7)	
Port register 0 (P0)	107
Port register 1 (P1)	107

Port register 12 (P12)	107
Port register 13 (P13)	107
Port register 14 (P14)	107
Port register 2 (P2)	107
Port register 3 (P3)	107
Port register 4 (P4)	107
Port register 5 (P5)	107
Port register 6 (P6)	107
Port register 7 (P7)	107
Power-fail comparison mode register (PFM)	255
Power-fail comparison threshold register (PFT)	255
Prescaler mode register 00 (PRM00)	150
Prescaler mode register 01 (PRM01)	150
Priority specification flag register 0H (PR0H)	366
Priority specification flag register 0L (PR0L)	366
Priority specification flag register 1H (PR1H)	366
Priority specification flag register 1L (PR1L)	366
Processor clock control register (PCC)	112
Pull-up resistor option register 0 (PU0)	108
Pull-up resistor option register 1 (PU1)	108
Pull-up resistor option register 12 (PU12)	108
Pull-up resistor option register 14 (PU14)	108
Pull-up resistor option register 3 (PU3)	108
Pull-up resistor option register 4 (PU4)	108
Pull-up resistor option register 5 (PU5)	108
Pull-up resistor option register 7 (PU7)	108
[R]	
Receive buffer register 0 (RXB0)	272
Receive buffer register 6 (RXB6)	
Receive shift register 0 (RXS0)	
Remainder data register 0 (SDR0)	
Reset control flag register (RESF)	
[S]	
Serial clock selection register 10 (CSIC10)	333
Serial clock selection register 11 (CSIC11)	
Serial I/O shift register 10 (SIO10)	
Serial I/O shift register 11 (SIO11)	
Serial operation mode register 10 (CSIM10)	
Serial operation mode register 11 (CSIM11)	
16-bit timer capture/compare register 000 (CR000)	
16-bit timer capture/compare register 001 (CR001)	
16-bit timer capture/compare register 010 (CR010)	
16-bit timer capture/compare register 011 (CR011)	
16-bit timer counter 00 (TM00)	140

16-bit timer counter 01 (TM01)	140
16-bit timer mode control register 00 (TMC00)	143
16-bit timer mode control register 01 (TMC01)	143
16-bit timer output control register 00 (TOC00)	147
16-bit timer output control register 01 (TOC01)	147
m	
Timer clock selection register 50 (TCL50)	185
Timer clock selection register 51 (TCL51)	185
Transmit buffer register 10 (SOTB10)	330
Transmit buffer register 11 (SOTB11)	
Transmit buffer register 6 (TXB6)	296
Transmit shift register 0 (TXS0)	272
[w]	
Watch timer operation mode register (WTM)	
Watchdog timer enable register (WDTE)	236
Watchdog timer mode register (WDTM)	235

C.2 Register Index (In Alphabetical Order with Respect to Register Symbol)

[A]		
ADCR:	A/D conversion result register	254
ADM:	A/D converter mode register	251
ADS:	Analog input channel specification register	253
ASICL6:	Asynchronous serial interface control register 6	303
ASIF6:	Asynchronous serial interface transmission status register 6	300
ASIM0:	Asynchronous serial interface operation mode register 0	273
ASIM6:	Asynchronous serial interface operation mode register 6	297
ASIS0:	Asynchronous serial interface reception error status register 0	275
ASIS6:	Asynchronous serial interface reception error status register 6	299
[B]		
BRGC0:	Baud rate generator control register 0	
BRGC6:	Baud rate generator control register 6	302
[C]		
CKS:	Clock output selection register	
CKSR6:	Clock selection register 6	
CLM:	Clock monitor mode register	
CMP00:	8-bit timer H compare register 00	
CMP01:	8-bit timer H compare register 01	
CMP10:	8-bit timer H compare register 10	
CMP11:	8-bit timer H compare register 11	
CORAD0:	Correction address register 0	
CORAD1:	Correction address register 1	
CORCN:	Correction control register	
CR000:	16-bit timer capture/compare register 000	
CR001:	16-bit timer capture/compare register 001	
CR010:	16-bit timer capture/compare register 010	
CR011:	16-bit timer capture/compare register 011	
CR50:	8-bit timer compare register 50	
CR51:	8-bit timer compare register 51	
CRC00:	Capture/compare control register 00	
CRC01:	Capture/compare control register 01	
CSIC10:	Serial clock selection register 10	
CSIC11:	Serial clock selection register 11	
CSIM10:	Serial operation mode register 10	
CSIM11:	Serial operation mode register 11	330
[D]	Maritim lime (dividence material as winter 0	0.50
DMUC0:	Multiplier/divider control register 0	352
[E]	External interrupt falling adap anable register	207
EGN:	External interrupt falling edge enable register	
EGP:	External interrupt rising edge enable register	

[F] FLPMC:	Flash programming mode control register	452
[1]		
IF0H:	Interrupt request flag register 0H	363
IF0L:	Interrupt request flag register 0L	
IF1H:	Interrupt request flag register 1H	
IF1L:	Interrupt request flag register 1L	
IMS:	Internal memory size switching register	
ISC:	Input switch control register	
IXS:	Internal expansion RAM size switching register	
[K]		
KRM:	Key return mode register	377
[L]		
LVIM:	Low-voltage detection register	411
LVIS:	Low-voltage detection level selection register	412
[M]		
MCM:	Main clock mode register	115
MDA0H:	Multiplication/division data register A0	350
MDA0L:	Multiplication/division data register A0	350
MDB0:	Multiplication/division data register B0	351
MK0H:	Interrupt mask flag register 0H	365
MK0L:	Interrupt mask flag register 0L	365
MK1H:	Interrupt mask flag register 1H	365
MK1L:	Interrupt mask flag register 1L	365
MOC:	Main OSC control register	116
[0]		
OSTC:	Oscillation stabilization time counter status register	117, 380
OSTS:	Oscillation stabilization time select register	118, 381
[P]		
P0:	Port register 0	
P1:	Port register 1	
P12:	Port register 12	
P13:	Port register 13	
P14:	Port register 14	
P2:	Port register 2	
P3:	Port register 3	
P4:	Port register 4	
P5:	Port register 5	
P6:	Port register 6	
P7:	Port register 7	
PCC:	Processor clock control register	
PFCMD:	Flash protect command register	
PFM:	Power-fail comparison mode register	255

PFS:	Flash status register	454
PFT:	Power-fail comparison threshold register	255
PM0:	Port mode register 0	105, 153, 336
PM1:	Port mode register 1	105, 189, 208, 277, 305, 336
PM12:	Port mode register 12	105
PM14:	Port mode register 14	105, 246
PM3:	Port mode register 3	105, 189
PM4:	Port mode register 4	105
PM5:	Port mode register 5	105
PM6:	Port mode register 6	105
PM7:	Port mode register 7	105
PR0H:	Priority specification flag register 0H	366
PR0L:	Priority specification flag register 0L	366
PR1H:	Priority specification flag register 1H	366
PR1L:	Priority specification flag register 1L	366
PRM00:	Prescaler mode register 00	150
PRM01:	Prescaler mode register 01	150
PU0:	Pull-up resistor option register 0	108
PU1:	Pull-up resistor option register 1	108
PU12:	Pull-up resistor option register 12	108
PU14:	Pull-up resistor option register 14	108
PU3:	Pull-up resistor option register 3	108
PU4:	Pull-up resistor option register 4	108
PU5:	Pull-up resistor option register 5	108
PU7:	Pull-up resistor option register 7	108
[R]		
RCM:	Internal oscillation mode register	114
RESF:	Reset control flag register	398
RXB0:	Receive buffer register 0	272
RXB6:	Receive buffer register 6	296
RXS0:	Receive shift register 0	272
[S]		
SDR0:	Remainder data register 0	350
SIO10:	Serial I/O shift register 10	330
SIO11:	Serial I/O shift register 11	330
SOTB10:	Transmit buffer register 10	330
SOTB11:	Transmit buffer register 11	330
[T]		
TCL50:	Timer clock selection register 50	
TCL51:	Timer clock selection register 51	185
TM00:	16-bit timer counter 00	
TM01:	16-bit timer counter 01	
TM50:	8-bit timer counter 50	
TM51:	8-bit timer counter 51	183

TMC00:	16-bit timer mode control register 00	143
TMC01:	16-bit timer mode control register 01	143
TMC50:	8-bit timer mode control register 50	187
TMC51:	8-bit timer mode control register 51	188
TMCYC1:	8-bit timer H carrier control register 1	207
TMHMD0:	8-bit timer H mode register 0	203
TMHMD1:	8-bit timer H mode register 1	203
TOC00:	16-bit timer output control register 00	147
TOC01:	16-bit timer output control register 01	147
TXB6:	Transmit buffer register 6	296
TXS0:	Transmit shift register 0	272
[W]		
WDTE:	Watchdog timer enable register	
WDTM:	Watchdog timer mode register	235
WTM:	Watch timer operation mode register	227

APPENDIX D LIST OF CAUTIONS

This appendix lists cautions described in this document.

"Classification (hard/soft)" in table is as follows.

Hard: Cautions for microcontroller internal/external hardware
Soft: Cautions for software such as register settings or programs

(1/25)

						(1/25)	
Chapter	Classification	Function	Details of Function	Cautions	F	Page	}
Chapter 1	Hard	Pin connection	_	Connect the AVss pin to Vss.	p. 2	21	
Chapter 2	Hard	Pin functions	P31	In the μ PD78F0138HD, be sure to pull the P31 pin down after reset to prevent malfunction.	p. 3	39	
Chapter 3	Soft	Memory space	IMS: Internal memory size switching register	Regardless of the internal memory capacity, the initial values of the internal memory size switching register (IMS) and internal expansion RAM size switching register (IXS) of all products in the 78K0/KE1+ are fixed (IMS = CFH, IXS = 0CH). Therefore, set the value corresponding to each product as indicated below. In addition, set the following values to the IMS and the IXS when using the 78K0/KE1+ to evaluate the program of a mask ROM version of the 78K0/KE1.	p. 4	16	
			SFR area: Special function register	Do not access addresses to which SFRs are not assigned.	p. 5	55	
			SP: Stack pointer	Since RESET input makes the SP contents undefined, be sure to initialize the SP before using the stack.	p. 6	62	
Chapter 4	Soft	Port functions	P02, P03, P04	When P02/SO11, P03/SI11, and P04/SCK11 are used as general-purpose ports, set serial operation mode register 11 (CSIM11) and serial clock selection register 11 (CSIC11) to the default status (00H).	p. 8	36	
			P10, P11, P12	When P10/SCK10/TxD0, P11/SI10/RxD0, and P12/SO10 are used as general-purpose ports, set serial operation mode register 10 (CSIM10) and serial clock selection register 10 (CSIC10) to the default status (00H).	p. 9	90	
	Hard		P31	In the μ PD78F0138HD, be sure to pull the P31 pin down after reset to prevent malfunction.	p. 9	96	
	Soft		_	In the case of a 1-bit memory manipulation instruction, although a single bit is manipulated, the port is accessed as an 8-bit unit. Therefore, on a port with a mixture of input and output pins, the output latch contents for pins specified as input are undefined, even for bits other than the manipulated bit.	p. 1	109	

(2/25)

				(2/2		
Chapter	Classification	Function	Details of Function	Cautions	Pag	e
Chapter 5	Soft	-	PCC: Processor clock control register	Be sure to clear bit 3 to 0.	p. 113	
		Internal oscillation	RCM: Internal oscillation mode register	Make sure that bit 1 (MCS) of the main clock mode register (MCM) is 1 before setting RSTOP.	p. 114	
	Hard	Main clock	MCM: Main clock mode register	When internal oscillation clock is selected as the clock to be supplied to the CPU, the divided clock of the internal oscillator output (fx) is supplied to the peripheral hardware (fx = 240 kHz (TYP.)). Operation of the peripheral hardware with internal oscillation clock cannot be guaranteed. Therefore, when internal oscillation clock is selected as the clock supplied to the CPU, do not use peripheral hardware. In addition, stop the peripheral hardware before switching the clock supplied to the CPU from the high-speed system clock to the internal oscillation clock. Note, however, that the following peripheral hardware can be used when the CPU operates on the internal oscillation clock. • Watchdog timer • Clock monitor • 8-bit timer H1 when $f_R/2^7$ is selected as count clock • Peripheral hardware selecting external clock as the clock source (Except when external count clock of TM0n (n = 0, 1) is selected (TI00n valid edge))	p. 115	
		Subsystem clock		Set MCS = 1 and MCM0 = 1 before switching subsystem clock operation to high-speed system clock operation (bit 4 (CSS) of the processor clock control register (PCC) is changed from 1 to 0).	p. 115	
	Soft	Main clock	MOC: Main OSC control	Make sure that bit 1 (MCS) of the main clock mode register (MCM) is 0 before setting MSTOP.	p. 116	
		Subsystem clock	register	To stop high-speed system clock oscillation when the CPU is operating on the subsystem clock, set bit 7 (MCC) of the processor clock control register (PCC) to 1 (setting by MSTOP is not possible).	p. 116	
		Main clock	OSTC: Oscillation	After the above time has elapsed, the bits are set to 1 in order from MOST11 and remain 1.	p. 117	
			stabilization time counter status register	If the STOP mode is entered and then released while the internal oscillation is being used as the CPU clock, set the oscillation stabilization time as follows. • Desired OSTC oscillation stabilization time ≤ Oscillation stabilization time set by OSTS The oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS. Note, therefore, that only the status up to the oscillation stabilization time set by OSTS is set to OSTC after STOP mode is released.	p. 117	
	Hard			The wait time when STOP mode is released does not include the time after STOP mode release until clock oscillation starts ("a" below) regardless of whether STOP mode is released by RESET input or interrupt generation.	p. 117	

(3/25)

					(5)	<u> /25)</u>
Chapter	Classification	Function	Details of Function	Cautions	Pag	æ
Chapter 5	Soft	Main clock	OSTS: Oscillation	To set the STOP mode when the high-speed system clock is used as the CPU clock, set OSTS before executing a STOP instruction.	p. 118	
Cha			stabilization time select	Before setting OSTS, confirm with OSTC that the desired oscillation stabilization time has elapsed.	p. 118	
			is being used as the CPU clock, set the Desired OSTC oscillation stabilization OSTS The oscillation stabilization time countime set by OSTS. Note, therefore, the	If the STOP mode is entered and then released while the internal oscillation clock is being used as the CPU clock, set the oscillation stabilization time as follows. • Desired OSTC oscillation stabilization time ≤ Oscillation stabilization time set by OSTS The oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS. Note, therefore, that only the status up to the oscillation stabilization time set by OSTS is set to OSTC after STOP mode is released.	p. 118	
	Hard			The wait time when STOP mode is released does not include the time after STOP mode release until clock oscillation starts ("a" below) regardless of whether STOP mode is released by RESET input or interrupt generation.	p. 118	
		High- speed system clock oscillator, subsystem clock oscillator	_	When using the high-speed system clock oscillator and subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the Figures 5-8 and 5-9 to avoid an adverse effect from wiring capacitance. • Keep the wiring length as short as possible. • Do not cross the wiring with the other signal lines. • Do not route the wiring near a signal line through which a high fluctuating current flows. • Always make the ground point of the oscillator capacitor the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows. • Do not fetch signals from the oscillator. Note that the subsystem clock oscillator is designed as a low-amplitude circuit for reducing power consumption.	p. 120	
		Prescaler	_	When the internal oscillation clock is selected as the clock supplied to the CPU, the prescaler generates various clocks by dividing the internal oscillator output (fx = 240 kHz (TYP.)).	p. 122	
	Soft	Internal Oscillator	_	The RSTOP setting is valid only when "Can be stopped by software" is set for internal oscillator by the option byte. To calculate the maximum time, set $f_R = 120 \text{ kHz}$.	p. 129 p. 130	
		CPU clock	-	Selection of the CPU clock cycle division factor (PCC0 to PCC2) and switchover from the high-speed system clock to the subsystem clock (changing CSS from 0 to 1) should not beset simultaneously. Simultaneous setting is possible, however, for selection of the CPU clock cycle division factor (PCC0 to PCC2) and switchover from the subsystem clock to the high-speed system clock (changing CSS from 1 to 0). Setting the following values is prohibited when the CPU operates on the internal oscillation clock. • CSS, PCC2, PCC1, PCC0 = 0, 0, 1, 0 • CSS, PCC2, PCC1, PCC0 = 0, 0, 1, 1 • CSS, PCC2, PCC1, PCC0 = 0, 1, 0, 0	p. 131	

(4/25)

					(7	/25)
Chapter	Classification	Function	Details of Function	Cautions	Pag	Э
Chapter 6	Soft	16-bit timer/	CR00n: 16-bit timer	Set a value other than 0000H in CR00n in the mode in which clear & start occurs on a match of TM0n and CR00n.	p. 141	
Cha		event counters 00, 01 (TM00, TM01)	capture/compar e register 00n	If CR00n is cleared to 0000H in the free-running mode and in the clear mode using the valid edge of the Tl00n pin, an interrupt request (INTTM00n) is generated when the value of CR00n changes from 0000H to 0001H following TM0n overflow (FFFFH). In addition, INTTM00n is generated after a match between TM0n and CR00n, after detecting the valid edge of the Tl01n pin, or the timer is cleared by a one-shot trigger.	p. 141	
	Hard			When the valid edge of the Tl01n pin is used, P01 or P06 cannot be used as the timer output pin (T00n). When P01 or P06 is used as the T00n pin, the valid edge of the Tl01n pin cannot be used.	p. 141	
				When CR00n is used as a capture register, read data is undefined if the register read time and capture trigger input conflict (the capture data itself is the correct value). If a timer count stop and a capture trigger input conflict, the captured data is undefined.	p. 141	
	Soft			Do not rewrite CR00n during TM0n operation.	pp. 141, 154, 159, 171	
			CR01n: 16-bit timer capture/compar e register 01n	If the CR01n register is cleared to 0000H, an interrupt request (INTTM01n) is generated when the value of CR01n changes from 0000H to 0001H following TM0n overflow (FFFFH). In addition, INTTM01n is generated after a match between TM0n and CR01n, after detecting the valid edge of the Tl00n pin, or the timer is cleared by a one-shot trigger.	p. 142	
	Hard			When CR01n is used as a capture register, read data is undefined if the register read time and capture trigger input conflict (the capture data itself is the correct value). If count stop input and capture trigger input conflict, the captured data is undefined.	p. 142	
	Soft			CR01n can be rewritten during TM0n operation. For details, see Caution 2 in Figure 6-20.	p. 142	
			TMC0n: 16-bit timer mode control register 0n	16-bit timer counter 0n (TM0n) starts operation at the moment TMC0n2 and TMC0n3 are set to values other than 0, 0 (operation stop mode), respectively. Set TMC0n2 and TMC0n3 to 0, 0 to stop the operation.	p. 143	
			TMC00: 16-bit timer mode control register	Timer operation must be stopped before writing to bits other than the OVF00 flag. Set the valid edge of the TI000/P00 pin using prescaler mode register 00 (PRM00).	p. 144 p. 144	
			00	If the following modes: the mode in which clear & start occurs on match between TM00 and CR000, the mode in which clear & start occurs at the TI000 pin valid edge, or free-running mode is selected, when the set value of CR000 is FFFFH and the TM00 value changes from FFFFH to 0000H, the OVF00 flag is set to 1.	p. 144	
			TMC01: 16-bit timer mode	Timer operation must be stopped before writing to bits other than the OVF01 flag. Set the valid edge of the TI001/P05 pin using prescaler mode register	p. 145 p. 145	
			control register 01	01(PRM01). If the following modes: the mode in which clear & start occurs on match between	p. 145	
				TM01 and CR001, the mode in which clear & start occurs at the Tl001 pin valid edge, or free-running mode is selected, when the set value of CR001 is FFFFH and the TM01 value changes from FFFFH to 0000H, the OVF01 flag is set to 1.	μ	

(5/25)Classification Function Page Details of Cautions Chapter **Function** Soft CRC00: 16-bit Timer operation must be stopped before setting CRC00. p. 146 timer/ Capture/ When the mode in which clear & start occurs on a match between TM00 and p. 146 event compare control CR000 is selected with 16-bit timer mode control register 00 (TMC00), CR000 counters register 00 should not be specified as a capture register. 00, 01 p. 146 To ensure that the capture operation is performed properly, the capture trigger (TM00, requires a pulse longer than two cycles of the count clock selected by prescaler TM01) mode register 00 (PRM00). CRC01: Soft Timer operation must be stopped before setting CRC01. p. 147 Capture/ When the mode in which clear & start occurs on a match between TM01 and p. 147 compare control CR001 is selected with 16-bit timer mode control register 01 (TMC01), CR001 register 01 should not be specified as a capture register. p. 147 Hard To ensure that the capture operation is performed properly, the capture trigger requires a pulse longer than two cycles of the count clock selected by prescaler mode register 01 (PRM01). Soft TOC00: 16-bit Timer operation must be stopped before setting other than TOC004. p. 148 timer output If LVS00 and LVR00 are read, 0 is read. p. 148 control register OSPT00 is automatically cleared after data is set, so 0 is read. p. 148 00 Do not set OSPT00 to 1 other than in one-shot pulse output mode. p. 148 Hard p. 148 A write interval of two cycles or more of the count clock selected by prescaler mode register 00 (PRM00) is required to write to OSPT00 successively. Soft Do not set LVS00 to 1 before TOE00, and do not set LVS00 and TOE00 to 1 p. 148 🗀 simultaneously. p. 148 \square Perform <1> and <2> below in the following order, not at the same time. <1> Set TOC001, TOC004, TOE00, OSPE00: Timer output operation setting <2> Set LVS00, LVR00: Timer output F/F setting TOC01: 16-bit Timer operation must be stopped before setting other than TOC014. p. 149 timer output If LVS01 and LVR01 are read, 0 is read. p. 149 control register p. 149 \square OSPT01 is automatically cleared after data is set, so 0 is read. 01 p. 149 Do not set OSPT01 to 1 other than in one-shot pulse output mode. Hard A write interval of two cycles or more of the count clock selected by prescaler p. 149 lacksquaremode register 01 (PRM01) is required to write to OSPT01 successively. Soft Do not set LVS01 to 1 before TOE01, and do not set LVS01 and TOE01 to 1 p. 149 \square simultaneously. p. 149 L Perform <1> and <2> below in the following order, not at the same time. <1> Set TOC011, TOC014, TOE01, OSPE01: Timer output operation setting <2> Set LVS01, LVR01: Timer output F/F setting Hard PRM00: p. 151 \square When the internal oscillation clock is selected as the clock to be supplied to the Prescaler mode CPU, the clock of the internal oscillator is divided and supplied as the count clock. register 00 If the count clock is the internal oscillation clock, the operation of 16-bit timer/event counter 00 is not guaranteed. When an external clock is used and when the internal oscillation clock is selected and supplied to the CPU, the operation of 16-bit timer/event counter 00 is not guaranteed, either, because the internal oscillation clock is supplied as the sampling clock to eliminate noise. Soft Always set data to PRM00 after stopping the timer operation. p. 151 If the valid edge of the TI000 pin is to be set for the count clock, do not set the p. 151 clear & start mode using the valid edge of the TI000 pin and the capture trigger.

(6/25)

						6/25)
Chapter	Classification	Function	Details of Function	Cautions	Pa	је
Chapter 6	Soft	16-bit timer/ event counters 00, 01 (TM00, TM01)	PRM00: Prescaler mode register 00	If the TI000 or TI010 pin is high level immediately after system reset, the rising edge is immediately detected after the rising edge or both the rising and falling edges are set as the valid edge(s) of the TI000 pin or TI010 pin to enable the operation of 16-bit timer counter 00 (TM00). Care is therefore required when pulling up the TI000 or TI010 pin. However, if the TI000 or TI010 pin is high level when re-enabling operation after the operation has been stopped, the rising edge is not detected.	p. 15	
	Hard			When the valid edge of the Tl010 pin is used, P01 cannot be used as the timer output pin (TO00). When P01 is used as the TO00 pin, the valid edge of the Tl010 pin cannot be used.	p. 15	
			PRM01: Prescaler mode register 01	When the internal oscillation clock is selected as the clock to be supplied to the CPU, the clock of the internal oscillator is divided and supplied as the count clock. If the count clock is the internal oscillation clock, the operation of 16-bit timer/event counter 00 is not guaranteed. When an external clock is used and when the internal oscillation clock is selected and supplied to the CPU, the operation of 16-bit timer/event counter 00 is not guaranteed, either, because the internal oscillation clock is supplied as the sampling clock to eliminate noise.	p. 15	3 🗆
	Soft			Always set data to PRM01 after stopping the timer operation.	p. 15	3 🗆
	S			If the valid edge of the TI001 pin is to be set for the count clock, do not set the clear & start mode using the valid edge of the TI001 pin and the capture trigger.	p. 150	, \Box
				If the TI001 or TI011 pin is high level immediately after system reset, the rising edge is immediately detected after the rising edge or both the rising and falling edges are set as the valid edge(s) of the TI001 pin or TI011 pin to enable the operation of 16-bit timer counter 01 (TM01). Care is therefore required when pulling up the TI001 or TI011 pin. However, if the TI001 or TI011 pin is high level when re-enabling operation after the operation has been stopped, the rising edge is not detected.	p. 150	} □
	Hard			When the valid edge of the Tl011 pin is used, P06 cannot be used as the timer output pin (T001). When P06 is used as the T001 pin, the valid edge of the Tl011 pin cannot be used.	p. 15	, 🗆
	Soft			CR01n: 16-bit timer capture/compar e register 01n	To change the value of the duty factor (the value of the CR01n register) during operation, see Caution 2 in Figure 6-20 PPG Output Operation Timing.	p. 15
			CR00n, CR01n: 16-bit timer	Values in the following range should be set in CR00n and CR01n: 0000H ≤ CR01n < CR00n ≤ FFFFH	p. 158	, \Box
			capture/compar e registers 00n, 01n	The pulse generated through PPG output has a cycle of [CR00n setting value + 1], and a duty of [(CR01n setting value + 1)/(CR00n setting value + 1)].	p. 158	3 🗆
			PPG output	In the PPG output operation, change the pulse width (rewrite CR01n) during TM0n operation using the following procedure. <1> Disable the timer output inversion operation by match of TM0n and CR01n (TOC0n4 = 0) <2> Disable the INTTM01n interrupt (TMMK01n = 1) <3> Rewrite CR01n <4> Wait for 1 cycle of the TM0n count clock <5> Enable the timer output inversion operation by match of TM0n and CR01n (TOC0n4 = 1) <6> Clear the interrupt request flag of INTTM01n (TMIF01n = 0) <7> Enable the INTTM01n interrupt (TMMK01n = 0)	p. 159	, 🗆

(7/25)Classification Function Details of Cautions Page Chapter **Function** Soft 16-bit Pulse width To use two capture registers, set the TI00n and TI01n pins. p. 160 timer/ measurement event External event p. 170 When reading the external event counter count value, TM0n should be read. counters counter 00.01 One-shot pulse p. 173 \square Do not set the OSPT0n bit to 1 while the one-shot pulse is being output. To (TM00, output: output the one-shot pulse again, wait until the current one-shot pulse output is TM01) Software trigger Hard When using the one-shot pulse output of 16-bit timer/event counter 0n with a p. 173 software trigger, do not change the level of the TI00n pin or its alternate-function port pin. Because the external trigger is valid even in this case, the timer is cleared and started even at the level of the TI00n pin or its alternate-function port pin, resulting in the output of a pulse at an undesired timing. Soft Do not set the CR00n and CR01n registers to 0000H. p. 174 16-bit timer counter 0n starts operating as soon as a value other than 00 p. 175 (operation stop mode) is set to the TMC0n3 and TMC0n2 bits. Hard One-shot pulse Even if the external trigger is generated again while the one-shot pulse is output, p. 175 🗀 output: External it is ignored. Soft trigger p. 176 Do not set the CR00n and CR01n registers to 0000H. p. 177 🗀 16-bit timer counter 0n starts operating as soon as a value other than 00 (operation stop mode) is set to the TMC0n3 and TMC0n2 bits. Hard Timer start An error of up to one clock may occur in the time required for a match signal to be p. 178 \perp errors generated after timer start. This is because 16-bit timer counter 0n (TM0n) is started asynchronously to the count clock. p. 178 Soft 16-bit timer In the mode in which clear & start occurs on a match between TM0n and CR00n, capture/compar set 16-bit timer capture/compare register 00n (CR00n) to other than 0000H. This e register setting means a 1-pulse count operation cannot be performed when 16-bit timer/event counter On is used as an external event counter. Capture register The values of 16-bit timer capture/compare registers 00n and 01n (CR00n and p. 178 🗀 data retention CR01n) are not guaranteed after 16-bit timer/event counter 0n has been stopped. timing p. 178 \square Valid edge Set the valid edge of the TI00n pin after setting bits 2 and 3 (TMC0n2 and setting TMC0n3) of 16-bit timer mode control register 0n (TMC0n) to 0, 0, respectively, and then stopping timer operation. The valid edge is set using bits 4 and 5 (ES0n0 and ES0n1) of prescaler mode register 0n (PRM0n). One-shot pulse When a one-shot pulse is output, do not set the OSPT0n bit to 1. Do not output p. 178 output: Software the one-shot pulse again until INTTM00n, which occurs upon a match with the trigger CR00n register, or INTTM01n, which occurs upon a match with the CR01n register, occurs. One-shot pulse p. 178 If the external trigger occurs again while a one-shot pulse is output, it is ignored. output: External trigger Hard One-shot pulse p. 178 🗀 When using the one-shot pulse output of 16-bit timer/event counter 0n with a output function software trigger, do not change the level of the TI00n pin or its alternate function port pin. Because the external trigger is valid even in this case, the timer is cleared and started even at the level of the TI00n pin or its alternate function port pin, resulting in the output of a pulse at an undesired timing.

(8/25)

					(8	/25)	
Chapter	Classification	Function	Details of Function	Cautions	Pag	е	
Chapter 6		16-bit timer/ event counters 00, 01 (TM00, TM01)	OVF0n flag operation	The OVF0n flag is also set to 1 in the following case. When any of the following modes is selected: the mode in which clear & start occurs on a match between TM0n and CR00n, the mode in which clear & start occurs at the Tl00n valid edge, or the free-running mode → CR00n is set to FFFFH → TM0n is counted up from FFFFH to 0000H. Even if the OVF0n flag is cleared before the next count clock is counted (before	p. 179		
				TM0n becomes 0001H) after the occurrence of TM0n overflow, the OVF0n flag is re-set newly so this clear is not valid.	ρ. 170		
				Conflict operation	When a read period of the 16-bit timer capture/compare register (CR00n/CR01n) and a capture trigger input (CR00n/CR01n used as capture register) conflict, the priority is given to the capture trigger input. The data read from CR00n/CR01n is undefined.	p. 179	
						Timer operation	Even if 16-bit timer counter 0n (TM0n) is read, the value is not captured by 16-bit timer capture/compare register 01n (CR01n).
	Hard			Regardless of the CPU's operation mode, when the timer stops, the input signals to the Tl00n/Tl01n pins are not acknowledged.	p. 180		
				The one-shot pulse output mode operates correctly only in the free-running mode and the mode in which clear & start occurs at the Tl00n valid edge. In the mode in which clear & start occurs on a match between the TM0n register and CR00n register, one-shot pulse output is not possible because an overflow does not occur.	p. 180		
			Capture operation	If the TI00n pin valid edge is specified as the count clock, a capture operation by the capture register specified as the trigger for the TI00n pin is not possible.	p. 180		
				To ensure the reliability of the capture operation, the capture trigger requires a pulse longer than two cycles of the count clock selected by prescaler mode register 0n (PRM0n).	p. 180		
				The capture operation is performed at the falling edge of the count clock. An interrupt request input (INTTM00n/INTTM01n), however, is generated at the rise of the next count clock.	p. 180		
			Compare operation	A capture operation may not be performed for CR00n/CR01n set in compare mode even if a capture trigger has been input.	p. 180		
			Edge detection	If the TI00n or TI01n pin is high level immediately after system reset and the rising edge or both the rising and falling edges are specified as the valid edge of the TI00n or TI01n pin to enable the 16-bit timer counter 0n (TM0n) operation, a rising edge is detected immediately after the operation is enabled. Be careful therefore when pulling up the TI00n or TI01n pin. However, if the TI00n or TI01n pin is high level when re-enabling operation after the operation has been stopped, the rising edge is not detected.	p. 180		
					The sampling clock used to remove noise differs when the TI00n pin valid edge is used as the count clock and when it is used as a capture trigger. In the former case, the count clock is fx, and in the latter case the count clock is selected by prescaler mode register 0n (PRM0n). The capture operation is started only after a valid edge is detected twice by sampling, thus eliminating noise with a short pulse width.	p. 180	

(9/25)Classification Function Page Details of Cautions Chapter **Function** Soft Chapter 7 8-bit CR5n: 8-bit In the mode in which clear & start occurs on a match of TM5n and CR5n p. 184 timer/ timer compare (TMC5n6 = 0), do not write other values to CR5n during operation. event register 5n In PWM mode, make the CR5n rewrite interval 3 count clocks of the count clock p. 184 counters (clock selected by TCL5n) or more. 50, 51 TCL50: Timer p. 185 When the internal oscillation clock is selected as the clock to be supplied to the (TM50, clock selection CPU, the clock of the internal oscillator is divided and supplied as the count clock. TM51) register 50 If the count clock is the internal oscillation clock, the operation of 8-bit timer/event counter 50 is not guaranteed. When rewriting TCL50 to other data, stop the timer operation beforehand. p. 185 Soft Be sure to clear bits 3 to 7 to 0. p. 185 TCL51: Timer p. 186 When the internal oscillation clock is selected as the clock to be supplied to the clock selection CPU, the clock of the internal oscillator is divided and supplied as the count clock. register 51 If the count clock is the internal oscillation clock, the operation of 8-bit timer/event counter 51 is not guaranteed. When rewriting TCL51 to other data, stop the timer operation beforehand. p. 186 Be sure to clear bits 3 to 7 to 0. p. 186 TMC5n: 8-bit The settings of LVS5n and LVR5n are valid in other than PWM mode. p. 188 timer mode Perform <1> to <4> below in the following order, not at the same time. p. 188 control register <1> Set TMC5n1, TMC5n6: Operation mode setting 5n <2> Set TOE5n to enable output: Timer output enable <3> Set LVS5n, LVR5n (see Caution 1): Timer F/F setting <4> Set TCE5n p. 188 🗀 Stop operation before rewriting TMC5n6. pp. 190, \square Interval Do not write other values to CR5n during operation. timer/square 193 waveform output PWM output p. 194 In PWM mode, make the CR5n rewrite interval 3 count clocks of the count clock (clock selected by TCL5n) or more. When reading from CR5n between <1> and <2> in Figure 7-15, the value read p. 197 differs from the actual value (read value: M, actual value of CR5n: N). Hard Timer start error An error of up to one clock may occur in the time required for a match signal to be p. 198 generated after timer start. This is because 8-bit timer counters 50 and 51 (TM50, TM51) are started asynchronously to the count clock. CMP0n: 8-bit Chapter 8 Soft 8-bit CMP0n cannot be rewritten during timer count operation. p. 202 timers H0. timer H H1 compare (TMH0, register 0n TMH1) CMP1n: 8-bit In the PWM output mode and carrier generator mode, be sure to set CMP1n p. 202 timer H when starting the timer count operation (TMHEn = 1) after the timer count operation was stopped (TMHEn = 0) (be sure to set again even if setting the compare register 1n same value to CMP1n). p. 205 Hard TMHMD0: 8-bit When the internal oscillation clock is selected as the clock to be supplied to the timer H mode CPU, the clock of the internal oscillator is divided and supplied as the count clock. register 0 If the count clock is the internal oscillation clock, the operation of 8-bit timer H0 is

not guaranteed

(10/25)

					(10	/25
Chapter	Classification	Function	Details of Function	Cautions	Page	е
sr 8	Soft	8-bit	TMHMD0: 8-bit	When TMHE0 = 1, setting the other bits of the TMHMD0 register is prohibited.	p. 205	
Chapter 8	S	timers H0, H1 (TMH0, TMH1)	timer H mode register 0	In the PWM output mode, be sure to set 8-bit timer H compare register 10 (CMP10) when starting the timer count operation (TMHE0 = 1) after the timer count operation was stopped (TMHE0 = 0) (be sure to set again even if setting the same value to CMP10).	p. 205	
	Hard		TMHMD1: 8-bit timer H mode register 1	When the internal oscillation clock is selected as the clock to be supplied to the CPU, the clock of the internal oscillator is divided and supplied as the count clock. If the count clock is the internal oscillation clock, the operation of 8-bit timer H1 is not guaranteed (except when CKS12, CKS11, CKS10 = 1, 0, 1 $(f_R/2^7)$).	p. 207	
	Soft			When TMHE1 = 1, setting the other bits of the TMHMD1 register is prohibited.	p. 207	
	S			In the PWM output mode and carrier generator mode, be sure to set 8-bit timer H compare register 11 (CMP11) when starting the timer count operation (TMHE1 = 1) after the timer count operation was stopped (TMHE1 = 0) (be sure to set again even if setting the same value to CMP11).	p. 207	
				When the carrier generator mode is used, set so that the count clock frequency of TMH1 becomes more than 6 times the count clock frequency of TM51.	p. 207	
	Hard		PWM output	In PWM output mode, three operation clocks (signal selected using the CKSn2 to CKSn0 bits of the TMHMDn register) are required to transfer the CMP1n register value after rewriting the register.	p. 213	
	Soft			Be sure to set the CMP1n register when starting the timer count operation (TMHEn = 1) after the timer count operation was stopped (TMHEn = 0) (be sure to set again even if setting the same value to the CMP1n register).	p. 213	
				Make sure that the CMP1n register setting value (M) and CMP0n register setting value (N) are within the following range. $00H \leq CMP1n \text{ (M)} < CMP0n \text{ (N)} \leq FFH$	p. 214	
			Carrier generator mode (TMH1 only)	Do not rewrite the NRZB1 bit again until at least the second clock after it has been rewritten, or else the transfer from the NRZB1 bit to the NRZ1 bit is not guaranteed.	p. 219	
				When 8-bit timer/event counter 51 is used in the carrier generator mode, an interrupt is generated at the timing of <1>. When 8-bit timer/event counter 51 is used in a mode other than the carrier generator mode, the timing of the interrupt generation differs.	p. 219	
				Be sure to set the CMP11 register when starting the timer count operation (TMHE1 = 1) after the timer count operation was stopped (TMHE1 = 0) (be sure to set again even if setting the same value to the CMP11 register).	p. 221	
				Set so that the count clock frequency of TMH1 becomes more than 6 times the count clock frequency of TM51.	p. 221	
				Set the values of the CMP01 and CMP11 registers in a range of 01H to FFH.	p. 221	
				In the carrier generator mode, three operating clocks (signal selected by CKS12 to CKS10 bits of TMHMD1 register) or more are required from when the CMP11 register value is changed to when the value is transferred to the register.	p. 221	
				Be sure to set the RMC1 bit before the count operation is started.	p. 221	

(11/25)

					· · · ·	/25)
Chapter	Classification	Function	Details of Function	Cautions	Pag	е
Chapter 9	Soft	Watch timer	WTM: Watch timer operation mode register	Do not change the count clock and interval time (by setting bits 4 to 7 (WTM4 to WTM7) of WTM) during watch timer operation.	p. 228	
	Hard		Interrupt request	When operation of the watch timer and 5-bit counter is enabled by the watch timer mode control register (WTM) (by setting bits 0 (WTM0) and 1 (WTM1) of WTM to 1), the interval until the first interrupt request (INTWT) is generated after the register is set does not exactly match the specification made with bits 2 and 3 (WTM2 and WTM3) of WTM. Subsequently, however, the INTWT signal is generated at the specified intervals.	p. 231	
Chapter 10	Soft	Watchdog timer	WDTM: Watchdog timer mode register	If data is written to WDTM, a wait cycle is generated. Do not write data to WDTM when the CPU is operating on the subsystem clock and the high-speed system clock is stopped. For details, see CHAPTER 33 CAUTIONS FOR WAIT.	p. 236	
Ö				Set bits 7, 6, and 5 to 0, 1, and 1, respectively (when "internal oscillator cannot be stopped" is selected by the option byte, other values are ignored).	p. 236	
				After reset is released, WDTM can be written only once by an 8-bit memory manipulation instruction. If writing attempted a second time, an internal reset signal is generated. If the source clock to the watchdog timer is stopped, however, an internal reset signal is generated when the source clock to the watchdog timer resumes operation.	p. 236	
				WDTM cannot be set by a 1-bit memory manipulation instruction.	p. 236	
				If "internal oscillator can be stopped by software" is selected by the option byte and the watchdog timer is stopped by setting WDCS4 to 1, the watchdog timer does not resume operation even if WDCS4 is cleared to 0. In addition, the internal reset signal is not generated.	p. 236	
				WDTE: Watchdog timer enable register	If a value other than ACH is written to WDTE, an internal reset signal is generated. If the source clock to the watchdog timer is stopped, however, an internal reset signal is generated when the source clock to the watchdog timer resumes operation.	p. 236
				If a 1-bit memory manipulation instruction is executed for WDTE, an internal reset signal is generated. If the source clock to the watchdog timer is stopped, however, an internal reset signal is generated when the source clock to the watchdog timer resumes operation.	p. 236	
				The value read from WDTE is 9AH (this differs from the written value (ACH)).	p. 236	Ш
	Hard		When "internal oscillator cannot be stopped" is selected by option byte	In this mode, operation of the watchdog timer absolutely cannot be stopped even during STOP instruction execution. For 8-bit timer H1 (TMH1), a division of the internal oscillation clock can be selected as the count source, so clear the watchdog timer using the interrupt request of TMH1 before the watchdog timer overflows after STOP instruction execution. If this processing is not performed, an internal reset signal is generated when the watchdog timer overflows after STOP instruction execution.	p. 238	
			When "internal oscillator can be stopped by software" is selected by option byte	In this mode, watchdog timer operation is stopped during HALT/STOP instruction execution. After HALT/STOP mode is released, counting is started again using the operation clock of the watchdog timer set before HALT/STOP instruction execution by WDTM. At this time, the counter is not cleared to 0 but holds its value.	p. 239	
Chapter 12	Soft	A/D converter	ADM: A/D converter mode	A/D conversion must be stopped before rewriting bits FR0 to FR2 to values other than the identical data.	p. 252	
Chap	Hard		register	For the sampling time of the A/D converter and the A/D conversion start delay time, see (11) in 12.6 Cautions for A/D Converter.	p. 252	

(12/25)

					(12	/25)	
Chapter	Classification	Function	Details of Function	Cautions	Pag	Э	
Chapter 12	Soft	A/D converter	ADM: A/D converter mode register	If data is written to ADM, a wait cycle is generated. Do not write data to ADM when the CPU is operating on the subsystem clock and the high-speed system clock is stopped. For details, see CHAPTER 33 CAUTIONS FOR WAIT.	p. 252		
Ö			ADS: Analog	Be sure to clear bits 3 to 7 of ADS to 0.	p. 253		
			input channel specification register	If data is written to ADS, a wait cycle is generated. Do not write data to ADS when the CPU is operating on the subsystem clock and the high-speed system clock is stopped. For details, see CHAPTER 33 CAUTIONS FOR WAIT.	p. 253		
			ADCR: A/D conversion result register	When writing to the A/D converter mode register (ADM) and analog input channel specification register (ADS), the contents of ADCR may become undefined. Read the conversion result following conversion completion before writing to ADM and ADS. Using timing other than the above may cause an incorrect conversion result to be read.	-		
					If data is read from ADCR, a wait cycle is generated. Do not read data from ADCR when the CPU is operating on the subsystem clock and the high-speed system clock is stopped. For details, see CHAPTER 33 CAUTIONS FOR WAIT.	p. 254	
					PFM: Power-fail comparison mode register	If data is written to PFM, a wait cycle is generated. Do not write data to PFM when the CPU is operating on the subsystem clock and the high-speed system clock is stopped. For details, see CHAPTER 33 CAUTIONS FOR WAIT.	p. 255
			PFT: Power-fail comparison threshold register	If data is written to PFT, a wait cycle is generated. Do not write data to PFT when the CPU is operating on the subsystem clock and the high-speed system clock is stopped. For details, see CHAPTER 33 CAUTIONS FOR WAIT.	p. 255		
			A/D conversion	Make sure the period of <1> to <3> is 14 μ s or more.	p. 261		
			operation	It is no problem if the order of <1> and <2> is reversed.	p. 261		
				<1> can be omitted. However, do not use the first conversion result after <3> in this case.	p. 261		
				The period from <4> to <7> differs from the conversion time set using bits 5 to 3 (FR2 to FR0) of ADM. The period from <6> to <7> is the conversion time set using FR2 to FR0.	p. 261		
			Power-fail	Make sure the period of <3> to <6> is 14 μ s or more.	p. 261		
			detection	It is no problem if order of <3>, <4>, and <5> is changed.	p. 261		
			function	<3> must not be omitted if the power-fail function is used.	p. 261		
				The period from $<7>$ to $<11>$ differs from the conversion time set using bits 5 to 3 (FR2 to FR0) of ADM. The period from $<9>$ to $<11>$ is the conversion time set using FR2 to FR0.	p. 261	Ш	
	Hard		Operating current in standby mode	The A/D converter stops operating in the standby mode. At this time, the operating current can be reduced by clearing bit 7 (ADCS) and bit 0 (ADCE) of the A/D converter mode register (ADM) to 0 (see Figure 12-2).	p. 264		
			ANI0 to ANI7 input range	Observe the rated range of the ANI0 to ANI7 input voltage. If a voltage of AV_{REF} or higher and AV_{SS} or lower (even in the range of absolute maximum ratings) is input to an analog input channel, the converted value of that channel becomes undefined. In addition, the converted values of the other channels may also be affected.	p. 264		
	Soft		Conflict operation	ADCR read has priority. After the read operation, the new conversion result is written to ADCR.	p. 264		
				ADM or ADS write has priority. ADCR write is not performed, nor is the conversion end interrupt signal (INTAD) generated.	p. 264		

(13/25)

	, ,	1	T .		(1,	3/25)	
Chapter	Classification	Function	Details of Function	Cautions	Pag	ge	
Chapter 12	Hard	A/D converter	Noise countermeasures	To maintain the 10-bit resolution, attention must be paid to noise input to the AV _{REF} pin and pins ANI0 to ANI7. Because the effect increases in proportion to the output impedance of the analog input source, it is recommended that a capacitor be connected externally, as shown in Figure 12-19, to reduce noise.	p. 264	. 🗆	
			ANI0/P20 to ANI7/P27	The analog input pins (ANI0 to ANI7) are also used as input port pins (P20 to P27). When A/D conversion is performed with any of ANI0 to ANI7 selected, do not access port 2 while conversion is in progress; otherwise the conversion resolution may be degraded.	p. 265	; <u> </u>	
				If a digital pulse is applied to the pins adjacent to the pins currently used for A/D conversion, the expected value of the A/D conversion may not be obtained due to coupling noise. Therefore, do not apply a pulse to the pins adjacent to the pin undergoing A/D conversion.	p. 265	; <u> </u>	
				Input impedance of ANI0 to ANI7 pins	In this A/D converter, the internal sampling capacitor is charged and sampling is performed for approx. one sixth of the conversion time. Since only the leakage current flows other than during sampling and the current for charging the capacitor also flows during sampling, the input impedance fluctuates and has no meaning. To perform sufficient sampling, however, it is recommended to make the output impedance of the analog input source 10 $k\Omega$ or lower, or connect a capacitor of around 100 pF to the ANI0 to ANI7 pins (see Figure 12-19).	p. 265	; 🗆
				AV _{REF} pin input impedance	A series resistor string of several tens of $k\Omega$ is connected between the AV _{REF} and AV _{SS} pins. Therefore, if the output impedance of the reference voltage source is high, this will result in a series connection to the series resistor string between the AV _{REF} and AV _{SS} pins, resulting in a large reference voltage error.	p. 265	; <u> </u>
	Soft		Interrupt request flag (ADIF)	The interrupt request flag (ADIF) is not cleared even if the analog input channel specification register (ADS) is changed. Therefore, if an analog input pin is changed during A/D conversion, the A/D conversion result and ADIF for the pre-change analog input may be set just before the ADS rewrite. Caution is therefore required since, at this time, when ADIF is read immediately after the ADS rewrite, ADIF is set despite the fact A/D conversion for the post-change analog input has not ended. When A/D conversion is stopped and then resumed, clear ADIF before the A/D conversion operation is resumed.	p. 266	i 🗆	
			Conversion result just after A/D conversion start	The A/D conversion value immediately after A/D conversion starts may not fall within the rating range if the ADCS bit is set to 1 within 14 μ s after the ADCE bit was set to 1, or if the ADCS bit is set to 1 with the ADCE bit = 0. Take measures such as polling the A/D conversion end interrupt request (INTAD) and removing the first conversion result.	p. 266		
			A/D conversion result register (ADCR) read operation	When a write operation is performed to the A/D converter mode register (ADM) and analog input channel specification register (ADS), the contents of ADCR may become undefined. Read the conversion result following conversion completion before writing to ADM and ADS. Using a timing other than the above may cause an incorrect conversion result to be read.	p. 266		
	Hard		A/D converter sampling time and A/D conversion start delay time	The A/D converter sampling time differs depending on the set value of the A/D converter mode register (ADM). The delay time exists until actual sampling is started after A/D converter operation is enabled. When using a set in which the A/D conversion time must be strictly observed, care is required for the contents shown in Figure 12-21 and Table 12-3.	p. 267	· 🗖	

(14/25)

					(14	/25)	
Chapter	Classification	Function	Details of Function	Cautions	Pag	е	
Chapter 12	Hard	A/D converter	Register generating wait cycle	Do not read data from the ADCR register and do not write data to the ADM, ADS, PFM, and PFT registers while the CPU is operating on the subsystem clock and while high-speed system clock oscillation is stopped.	p. 267		
Chapter 13	Soft	Serial interface UART0	erface	If clock supply to serial interface UART0 is not stopped (e.g., in the HALT mode), normal operation continues. If clock supply to serial interface UART0 is stopped (e.g., in the STOP mode), each register stops operating, and holds the value immediately before clock supply was stopped. The TxD0 pin also holds the value immediately before clock supply was stopped and outputs it. However, the operation is not guaranteed after clock supply is resumed. Therefore, reset the circuit so that POWER0 = 0, RXE0 = 0, and TXE0 = 0.	p. 269		
				Set POWER0 = 1 and then set TXE0 = 1 (transmission) or RXE0 = 1 (reception) to start communication.	p. 269		
				TXE0 and RXE0 are synchronized by the base clock (fxclko) set by BRGC0. To enable transmission or reception again, set TXE0 or RXE0 to 1 at least two clocks of base clock after TXE0 or RXE0 has been cleared to 0. If TXE0 or RXE0 is set within two clocks of base clock, the transmission circuit or reception circuit may not be initialized.	p. 269		
				Set transmit data to TXS0 at least two base clocks after setting POWER0 = 1 and one base clock after setting TXE0 = 1.	p. 269		
			TXS0: Transmit shift register 0	Do not write the next transmit data to TXS0 before the transmission completion interrupt signal (INTST0) is generated.	p. 272		
				Set transmit data to TXS0 at least two base clocks after setting POWER0 = 1 and one base clock after setting TXE0 = 1.	p. 272		
			ASIM0: Asynchronous serial interface operation mode register 0	At startup, set POWER0 to 1 and then set TXE0 to 1. To stop the operation, clear TXE0 to 0, and then clear POWER0 to 0.	p. 274		
				At startup, set POWER0 to 1 and then set RXE0 to 1. To stop the operation, clear RXE0 to 0, and then clear POWER0 to 0.	p. 274		
				Set POWER0 to 1 and then set RXE0 to 1 while a high level is input to the RxD0 pin. If POWER0 is set to 1 and RXE0 is set to 1 while a low level is input, reception is started.	p. 274		
				TXE0 and RXE0 are synchronized by the base clock (fxclk0) set by BRGC0. To enable transmission or reception again, set TXE0 or RXE0 to 1 at least two clocks of base clock after TXE0 or RXE0 has been cleared to 0. If TXE0 or RXE0 is set within two clocks of base clock, the transmission circuit or reception circuit may not be initialized.	p. 274		
				Set transmit data to TXS0 at least two base clocks after setting POWER0 = 1 and one base clock after setting TXE0 = 1.	p. 274		
				Clear the TXE0 and RXE0 bits to 0 before rewriting the PS01, PS00, and CL0 bits.	p. 274		
				Make sure that TXE0 = 0 when rewriting the SL0 bit. Reception is always performed with "number of stop bits = 1", and therefore, is not affected by the set value of the SL0 bit.	p. 274		
				Be sure to set bit 0 to 1.	p. 274		
			ASIS0: Asynchronous	The operation of the PE0 bit differs depending on the set values of the PS01 and PS00 bits of asynchronous serial interface operation mode register 0 (ASIM0).	p. 275		
			serial interface reception error	Only the first bit of the receive data is checked as the stop bit, regardless of the number of stop bits.	p. 275		
					If an overrun error occurs, the next receive data is not written to receive buffer register 0 (RXB0) but discarded.	p. 275	

(15/25)

_			,		(/25)	
Chapter	Classification	Function	Details of Function	Cautions	Pag	Э	
Chapter 13	Soft	Serial interface UART0	ASIS0: Asynchronous serial interface reception error	If data is read from ASISO, a wait cycle is generated. Do not read data from ASISO when the CPU is operating on the subsystem clock and the high-speed system clock is stopped. For details, see CHAPTER 33 CAUTIONS FOR WAIT.	p. 275		
	Hard		BRGC0: Baud rate generator control register 0	When the internal oscillation clock is selected as the clock to be supplied to the CPU, the clock of the internal oscillator is divided and supplied as the count clock. If the base clock is the internal oscillation clock, the operation of serial interface UART0 is not guaranteed.	p. 277		
	Soft			Make sure that bit 6 (TXE0) and bit 5 (RXE0) of the ASIM0 register = 0 when rewriting the MDL04 to MDL00 bits.	p. 277		
	Hard			The baud rate value is the output clock of the 5-bit counter divided by 2.	p. 277		
	Soft		POWER0, TXE0, RXE0: Bits 7, 6, and 5 of ASIM0	Clear POWER0 to 0 after clearing TXE0 and RXE0 to 0 to set the operation stop mode. To start the operation, set POWER0 to 1, and then set TXE0 and RXE0 to 1.	p. 278		
			UART mode	Take relationship with the other party of communication when setting the port mode register and port register.	p. 279		
			UART transmission	After transmit data is written to TXS0, do not write the next transmit data before the transmission completion interrupt signal (INTST0) is generated.	p. 282		
			UART reception	Be sure to read receive buffer register 0 (RXB0) even if a reception error occurs. Otherwise, an overrun error will occur when the next data is received, and the reception error status will persist.	p. 283		
				Reception is always performed with the "number of stop bits = 1". The second stop bit is ignored.	p. 283		
				Be sure to read asynchronous serial interface reception error status register 0 (ASIS0) before reading RXB0.	p. 283		
					Baud rate error	Keep the baud rate error during transmission to within the permissible error range at the reception destination.	p. 286
				Make sure that the baud rate error during reception satisfies the range shown in (4) Permissible baud rate range during reception.	p. 286		
			Allowable baud rate range during reception	Make sure that the baud rate error during reception is within the permissible error range, by using the calculation expression shown below.	p. 288		
Chapter 14	Hard	Serial interface UART6	UART mode	The TxD6 output inversion function inverts only the transmission side and not the reception side. To use this function, the reception side must be ready for reception of inverted data.	p. 290		
Ö	Soft			If clock supply to serial interface UART6 is not stopped (e.g., in the HALT mode), normal operation continues. If clock supply to serial interface UART6 is stopped (e.g., in the STOP mode), each register stops operating, and holds the value immediately before clock supply was stopped. The TxD6 pin also holds the value immediately before clock supply was stopped and outputs it. However, the operation is not guaranteed after clock supply is resumed. Therefore, reset the circuit so that POWER6 = 0, RXE6 = 0, and TXE6 = 0.	p. 290		
				If data is continuously transmitted, the communication timing from the stop bit to the next start bit is extended two operating clocks of the macro. However, this does not affect the result of communication because the reception side initializes the timing when it has detected a start bit. Do not use the continuous transmission function if UART6 is used in the LIN communication operation.	p. 290		

(16/25)

					(16	(25)
Chapter	Classification	Function	Details of Function	Cautions	Page	Э
Chapter 14	Soft	Serial interface	TXB6: Transmit buffer register 6	Do not write data to TXB6 when bit 1 (TXBF6) of asynchronous serial interface transmission status register 6 (ASIF6) is 1.	p. 296	
Chap		UART6		Do not refresh (write the same value to) TXB6 by software during a communication operation (when bit 7 (POWER6) and bit 6 (TXE6) of asynchronous serial interface operation mode register 6 (ASIM6) are 1 or when bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 are 1).	p. 296	
			ASIM6: Asynchronous	At startup, set POWER6 to 1 and then set TXE6 to 1. To stop the operation, clear TXE6 to 0, and then clear POWER6 to 0.	p. 298	
			serial interface operation mode	At startup, set POWER6 to 1 and then set RXE6 to 1. To stop the operation, clear RXE6 to 0, and then clear POWER6 to 0.	p. 298	
			register 6	Set POWER6 to 1 and then set RXE6 to 1 while a high level is input to the RxD6 pin. If POWER6 is set to 1 and RXE6 is set to 1 while a low level is input, reception is started.	p. 298	
				Clear the TXE6 and RXE6 bits to 0 before rewriting the PS61, PS60, and CL6 bits.	p. 298	
				Fix the PS61 and PS60 bits to 0 when UART6 is used in the LIN communication operation.	p. 298	
				Make sure that TXE6 = 0 when rewriting the SL6 bit. Reception is always performed with "the number of stop bits = 1", and therefore, is not affected by the set value of the SL6 bit.	p. 298	
				Make sure that RXE6 = 0 when rewriting the ISRM6 bit.	p. 298	
			ASIS6: Asynchronous serial interface reception error status register 6	The operation of the PE6 bit differs depending on the set values of the PS61 and PS60 bits of asynchronous serial interface operation mode register 6 (ASIM6).	p. 299	
				The first bit of the receive data is checked as the stop bit, regardless of the number of stop bits.	p. 299	
				If an overrun error occurs, the next receive data is not written to receive buffer register 6 (RXB6) but discarded.	p. 299	
				If data is read from ASIS6, a wait cycle is generated. Do not read data from ASIS6 when the CPU is operating on the subsystem clock and the high-speed system clock is stopped. For details, see CHAPTER 33 CAUTIONS FOR WAIT.	p. 299	
			ASIF6: Asynchronous serial interface	To transmit data continuously, write the first transmit data (first byte) to the TXB6 register. After that, be sure to check that the TXBF6 flag is "0". If so, write the next transmit data (second byte) to the TXB6 register. If data is written to the	p. 300	
			transmission status register 6	TXB6 register while the TXBF6 flag is "1", the transmit data cannot be guaranteed.		
				To initialize the transmission unit upon completion of continuous transmission, be sure to check that the TXSF6 flag is "0" after generation of the transmission completion interrupt, and then execute initialization. If initialization is executed while the TXSF6 flag is "1", the transmit data cannot be guaranteed.	p. 300	
	Hard		CKSR6: Clock selection register 6	When the internal oscillation clock is selected as the clock to be supplied to the CPU, the clock of the internal oscillator is divided and supplied as the count clock. If the base clock is the internal oscillation clock, the operation of serial	p. 301	
	_			interface UART6 is not guaranteed.		_
	Soft		BRGC6: Baud	Make sure POWER6 = 0 when rewriting TPS63 to TPS60. Make sure that bit 6 (TXE6) and bit 5 (RXE6) of the ASIM6 register = 0 when	p. 301 p. 302	
	Hard		rate generator control register 6	rewriting the MDL67 to MDL60 bits. The baud rate is the output clock of the 8-bit counter divided by 2.	p. 302	

(17/25)

					(17	/25)
Chapter	Classification	Function	Details of Function	Cautions	Pag	е
Chapter 14	Soft	Serial interface UART6	ASICL6: Asynchronous serial interface control register 6	ASICL6 can be refreshed (the same value is written) by software during a communication operation (when bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1 or bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 = 1). Note, however, that communication is started by the refresh operation because bit 6 (SBRT6) of ASICL6 is cleared to 0 when communication is completed (when an interrupt signal is generated).	p. 303	
				In the case of an SBF reception error, return the mode to the SBF reception mode. The status of the SBRF6 flag is held (1).	p. 304	
				Before setting the SBRT6 bit, make sure that bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 = 1.	p. 304	
			ASICL6: Asynchronous	The read value of the SBRT6 bit is always 0. SBRT6 is automatically cleared to 0 after SBF reception has been correctly completed.	p. 304	
			serial interface control register	Before setting the SBTT6 bit to 1, make sure that bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1.	p. 304	
			6	The read value of the SBTT6 bit is always 0. SBTT6 is automatically cleared to 0 at the end of SBF transmission.	p. 304	
				Before rewriting the DIR6 and TXDLV6 bits, clear the TXE6 and RXE6 bits to 0.	p. 304	
				When using the 78K0/KE1+ to evaluate the program of a mask ROM version of the 78K0/KE1, set the SBTT6, SBL62, SBL61, and SBL60 bits to 0, 1, 0, 1, respectively.	p. 304	
			POWER6, TXE6, RXE6: Bits 7, 6, and 5 of ASIM6	Clear POWER6 to 0 after clearing TXE6 and RXE6 to 0 to set the operation stop mode. To start the operation, set POWER6 to 1, and then set TXE6 and RXE6 to 1.	p. 306	
			UART mode	Take relationship with the other party of communication when setting the port mode register and port register.	p. 307	
			Parity type and operation	Fix the PS61 and PS60 bits to 0 when the device is incorporated in LIN.	p. 311	
			Continuous transmission	The TXBF6 and TXSF6 flags of the ASIF6 register change from "10" to "11", and to "01" during continuous transmission. To check the status, therefore, do not use a combination of the TXBF6 and TXSF6 flags for judgment. Read only the TXBF6 flag when executing continuous transmission.	p. 313	
				When the device is incorporated in a LIN, the continuous transmission function cannot be used. Make sure that asynchronous serial interface transmission status register 6 (ASIF6) is 00H before writing transmit data to transmit buffer register 6 (TXB6).	p. 313	
			TXBF6 during continuous transmission: Bit 1 of ASIF6	To transmit data continuously, write the first transmit data (first byte) to the TXB6 register. Be sure to check that the TXBF6 flag is "0". If so, write the next transmit data (second byte) to the TXB6 register. If data is written to the TXB6 register while the TXBF6 flag is "1", the transmit data cannot be guaranteed.	p. 313	
			TXSF6 during continuous transmission: Bit 0 of ASIF6	To initialize the transmission unit upon completion of continuous transmission, be sure to check that the TXSF6 flag is "0" after generation of the transmission completion interrupt, and then execute initialization. If initialization is executed while the TXSF6 flag is "1", the transmit data cannot be guaranteed.	p. 313	
				During continuous transmission, an overrun error may occur, which means that the next transmission was completed before execution of INTST6 interrupt servicing after transmission of one data frame. An overrun error can be detected by developing a program that can count the number of transmit data and by referencing the TXSF6 flag.	p. 313	

(18/25)

					(10	/25)
Chapter	Classification	Function	Details of Function	Cautions	Pag	Э
Chapter 14	Soft	Serial interface UART6	Normal reception	Be sure to read receive buffer register 6 (RXB6) even if a reception error occurs. Otherwise, an overrun error will occur when the next data is received, and the reception error status will persist.	p. 317	
Ö				Reception is always performed with the "number of stop bits = 1". The second stop bit is ignored.	p. 317	
				Be sure to read asynchronous serial interface reception error status register 6 (ASIS6) before reading RXB6.	p. 317	
			Serial clock generation	Keep the baud rate error during transmission to within the permissible error range at the reception destination.	p. 323	
				Make sure that the baud rate error during reception satisfies the range shown in (4) Permissible baud rate range during reception.	p. 323	
			Permissible baud rate range during reception	Make sure that the baud rate error during reception is within the permissible error range, by using the calculation expression shown below.	p. 325	
15	Soft	Serial	SOTB1n:	Do not access SOTB1n when CSOT1n = 1 (during serial communication).	p. 330	
Chapter 15	S	interfaces CSI10,	Transmit buffer register 1n	The SSI11 pin can be used in the slave mode. For details of the transmission/reception operation, see 15.4.2 (2) Communication operation.	p. 330	
O		CSI11	SIO1n: Serial I/O	Do not access SIO1n when CSOT1n = 1 (during serial communication).	p. 330	
			shift register 1n	The SSI11 pin can be used in the slave mode. For details of the reception operation, see 15.4.2 (2) Communication operation.	p. 330	
			CSIM1n: Serial operation mode register 1n	Be sure to clear bit 5 to 0.	p. 331	
	Hard		CSIC10: Serial clock selection register 10	When the internal oscillation clock is selected as the clock supplied to the CPU, the clock of the internal oscillator is divided and supplied as the serial clock. At this time, the operation of serial interface CSI10 is not guaranteed.	p. 334	
	Soft			Do not write to CSIC10 while CSIE10 = 1 (operation enabled).	p. 334	
	S			When using P10/SCK10/TxD0, P11/SI10/RxD0, and P12/SO10 as general-purpose port pins, set CSIC10 in the default status (00H).	p. 334	
				The phase type of the data clock is type 1 after reset.	p. 334	
	Hard		CSIC11: Serial clock selection register 11	When the internal oscillation clock is selected as the clock supplied to the CPU, the clock of the internal oscillator is divided and supplied as the serial clock. At this time, the operation of serial interface CSI10 is not guaranteed.	p. 335	
	Soft			Do not write to CSIC11 while CSIE11 = 1 (operation enabled).	p. 335	
	S			When using P02/SO11, P03/SI11, and P04/SCK11 as general-purpose port pins, set CSIC10 in the default status (00H).	p. 335	
				The phase type of the data clock is type 1 after reset.	p. 335	
			3-wire serial I/O mode	Take relationship with the other party of communication when setting the port mode register and port register.	p. 338	
			Communication operation	Do not access the control register and data register when CSOT1n = 1 (during serial communication).	p. 341	
				When using serial interface CSI11, wait for the duration of at least one clock before the clock operation is started to change the level of the SSI11 pin in the slave mode; otherwise, malfunctioning may occur.	p. 341	
			SO1n output	If a value is written to TRMD1n, DAP1n, and DIR1n, the output value of SO1n changes.	p. 347	

(19/25)

					(19/2	.0)	
Chapter	Classification	Function	Details of Function	Cautions	Page		
Chapter 16	Soft	divider Remainder data		The value read from SDR0 during operation processing (while bit 7 (DMUE) of multiplier/divider control register 0 (DMUC0) is 1) is not guaranteed.	p. 350		
hap			register 0	SDR0 is reset when the operation is started (when DMUE is set to 1).	p. 350		
			MDA0H, MDA0L:	MDA0H is cleared to 0 when an operation is started in the multiplication mode (when multiplier/divider control register 0 (DMUC0) is set to 81H).	p. 350		
			Multiplication/ division data register A0	Do not change the value of MDA0 during operation processing (while bit 7 (DMUE) of multiplier/divider control register 0 (DMUC0) is 1). Even in this case, the operation is executed, but the result is undefined.	p. 350		
				The value read from MDA0 during operation processing (while DMUE is 1) is not guaranteed.	p. 350		
			MDB0: Multiplication/ division data	Do not change the value of MDB0 during operation processing (while bit 7 (DMUE) of multiplier/divider control register 0 (DMUC0) is 1). Even in this case, the operation is executed, but the result is undefined.	p. 351		
			register B0	Do not clear MDB0 to 0000H in the division mode. If set, undefined operation results are stored in MDA0 and SDR0.	p. 351		
				DMUC: Multiplier/divide r control register 0	If DMUE is cleared to 0 during operation processing (when DMUE is 1), the operation result is not guaranteed. If the operation is completed while the clearing instruction is being executed, the operation result is guaranteed, provided that the interrupt flag is set.	p. 352	
				Do not change the value of DMUSEL0 during operation processing (while DMUE is 1). If it is changed, undefined operation results are stored in multiplication/division data register A0 (MDA0) and remainder data register 0 (SDR0).	p. 352		
				If DMUE is cleared to 0 during operation processing (while DMUE is 1), the operation processing is stopped. To execute the operation again, set multiplication/division data register A0 (MDA0), multiplication/division data register B0 (MDB0), and multiplier/divider control register 0 (DMUC0), and start the operation (by clearing DMUE to 1).	p. 352		
Chapter 17	Soft	Interrupt	IF1H: Interrupt request flag register	Be sure to clear bits 4 to 7 of IF1H to 0.	p. 363		
Ö			IF0L, IF0H, IF1L, IF1H: Interrupt	When operating a timer, serial interface, or A/D converter after standby release, operate it once after clearing the interrupt request flag. An interrupt request flag may be set by noise.	p. 363		
			request flag registers	Use the 1-bit memory manipulation instruction (CLR1) for manipulating the flag of the interrupt request flag register. A 1-bit manipulation instruction such as "IFOL.0 = 0;" and "_asm("clr1 IFOL, 0");" should be used when describing in C language, because assembly instructions after compilation must be 1-bit memory manipulation instructions (CLR1). If an 8-bit memory manipulation instruction "IFOL & = 0xfe;" is described in C language, for example, it is converted to the following three assembly instructions after compilation: mov a, IFOL and a, #0FEH mov IFOL, a In this case, at the timing after "mov a, IFOL" to "mov IFOL, a", if the request flag of another bit of the identical interrupt request flag register (IFOL) is set to 1, it is cleared to 0 by "mov IFOL, a". Therefore, care must be exercised when using the 8-bit memory manipulation instruction in C language.	p. 364		
			MK1H: Interrupt mask flag register	Be sure to set bits 4, 6, and 7 of MK1H to 1. Be sure to clear bit 5 of MK1H to 0.	p. 365		

(20/25)

					(20)/25)	
Chapter	Classification	Function	Details of Function	Cautions	Pag	e	
Chapter 17	Soft	Interrupt	PR1H: Priority specification flag register	Be sure to set bits 4 to 7 of PR1H to 1.	p. 366		
jo			EGP, EGN: External interrupt rising/falling edge enable registers	Select the port mode by clearing EGPn and EGNn to 0 because an edge may be detected when the external interrupt function is switched to the port function.	p. 367		
			Software interrupt request acknowledgement	Do not use the RETI instruction for restoring from the software interrupt.	p. 371		
			Interrupt request hold	The BRK instruction is not one of the above-listed interrupt request hold instructions. However, the software interrupt activated by executing the BRK instruction causes the IE flag to be cleared. Therefore, even if a maskable interrupt request is generated during execution of the BRK instruction, the interrupt request is not acknowledged.	p. 375		
er 18	Soft	Key interrupt	KRM: Key return mode	If any of the KRM0 to KRM7 bits used is set to 1, set bits 0 to 7 (PU70 to PU77) of the corresponding pull-up resistor register 7 (PU7) to 1.	p. 377		
Chapter 18		function	register	If KRM is changed, the interrupt request flag may be set. Therefore, disable interrupts and then change the KRM register. After that, clear the interrupt request flag and then enable interrupts.	p. 377		
				The bits not used in the key interrupt mode can be used as normal ports.	p. 377		
Chapter 19	Soft	Standby function	_	The RSTOP setting is valid only when "Can be stopped by software" is set for internal oscillator by the option byte.	p. 378		
Chap	Hard	5	Hard		STOP mode can be used only when CPU is operating on the high-speed system clock or internal oscillation clock. HALT mode can be used when CPU is operating on the high-speed system clock, internal oscillation clock, or subsystem clock. However, when the STOP instruction is executed during internal oscillation clock operation, the high-speed system clock oscillator stops, but internal oscillator does not stop.	p. 379	
				When shifting to the STOP mode, be sure to stop the peripheral hardware operation before executing STOP instruction.	p. 379		
	Soft		STOP mode, HALT mode	The following sequence is recommended for operating current reduction of the A/D converter when the standby function is used: First clear bit 7 (ADCS) of the A/D converter mode register (ADM) to 0 to stop the A/D conversion operation, and then execute the HALT or STOP instruction.	p. 379		
	Hard		STOP mode	If the internal oscillator is operating before the STOP mode is set, oscillation of the internal oscillation clock cannot be stopped in the STOP mode. However, when the internal oscillation clock is used as the CPU clock, the CPU operation is stopped for $17/f_R$ (s) after STOP mode is released.	p. 379		
	Soft		OSTC: Oscillation	After the above time has elapsed, the bits are set to 1 in order from MOST11 and remain 1.	p. 380		
			stabilization time counter status register	If the STOP mode is entered and then released while the internal oscillation clock is being used as the CPU clock, set the oscillation stabilization time as follows. • Desired OSTC oscillation stabilization time ≤ Oscillation stabilization time set by OSTS The oscillation stabilization time counter counts only during the oscillation stabilization time set by OSTS. Therefore, note that only the statuses during the oscillation stabilization time set by OSTS are set to OSTC after STOP mode has been released.	p. 380		

(21/25)

					\= ''	(25)
Chapter	Classification	Function	Details of Function	Cautions		е
Chapter 19	Hard	Standby function	OSTC: Oscillation stabilization time counter status register	The wait time when STOP mode is released does not include the time after STOP mode release until clock oscillation starts ("a" below) regardless of whether STOP mode is released by RESET input or interrupt generation.	p. 380	
	Soft		OSTS: Oscillation	To set the STOP mode when the high-speed system clock is used as the CPU clock, set OSTS before executing a STOP instruction.	p. 381	
			stabilization time select	Before setting OSTS, confirm with OSTC that the desired oscillation stabilization time has elapsed	p. 381	
			register	If the STOP mode is entered and then released while the internal oscillation clock is being used as the CPU clock, set the oscillation stabilization time as follows. • Desired OSTC oscillation stabilization time ≤ Oscillation stabilization time set by OSTS The oscillation stabilization time counter counts only during the oscillation stabilization time set by OSTS. Therefore, note that only the statuses during the oscillation stabilization time set by OSTS are set to OSTC after STOP mode has been released.	p. 381	
	Hard			The wait time when STOP mode is released does not include the time after STOP mode release until clock oscillation starts ("a" below) regardless of whether STOP mode is released by RESET input or interrupt generation.	p. 381	
	Soft		STOP mode setting and operation status	Because the interrupt request signal is used to release the standby mode, if there is an interrupt source with the interrupt request flag set and the interrupt mask flag reset, the standby mode is immediately released if set. Thus, the STOP mode is reset to the HALT mode immediately after execution of the STOP instruction and the system returns to the operating mode as soon as the wait time set using the oscillation stabilization time select register (OSTS) has elapsed.	p. 387	
20	Hard	Reset	_	For an external reset, input a low level for 10 μ s or more to the RESET pin.	p. 391	
Chapter 20	H	function		During reset input, the high-speed system clock and internal oscillation clock stop oscillating.	p. 391	
О				When the STOP mode is released by a reset, the STOP mode contents are held during reset input. However, the port pins become high-impedance, except for P130, which is set to low-level output.	p. 391	
				An LVI circuit internal reset does not reset the LVI circuit.	p. 392	
			Reset timing due to watchdog timer overflow	A watchdog timer internal reset resets the watchdog timer.	p. 393	
	Soft		RESF: Reset control flag register	Do not read data by a 1-bit memory manipulation instruction.	p. 398	
Chapter 21	Soft	Clock monitor	CLM: Clock monitor mode	Once bit 0 (CLME) is set to 1, it cannot be cleared to 0 except by RESET input or the internal reset signal.	p. 400	
Cha			register	If the reset signal is generated by the clock monitor, CLME is cleared to 0 and bit 1 (CLMRF) of the reset control flag register (RESF) is set to 1.	p. 400	

(22/25)

					(22	2/25)				
Chapter	Classification	Function	Details of Function	Cautions	Pag	е				
Chapter 22	Š	Power-on-clear on-clear circuit functions Power-on-clear circuit function Power-on-clear circuit function Power-on-clear circuit function Power-on-clear circuit function Power-on-clear circuit functin Power-on-clear circuit function Power-on-clear circuit function		If an internal reset signal is generated in the POC circuit, the reset control flag register (RESF) is cleared to 00H.	p. 406					
Chap	<u>_</u>	circuit (POC)		The supply voltage is V_{DD} = 2.0 to 5.5 V when the internal oscillation clock or subsystem clock is used, but be sure to use the standard products and (A) grade products in a voltage range of 2.2 to 5.5 V because the detection voltage (V _{POC}) of the POC circuit is 2.1 V ±0.1 V.	p. 406					
				The supply voltage is V_{DD} = 2.0 to 5.5 V when the internal oscillation clock is used, but be sure to use the (A1) grade products in a voltage range of 2.25 to 5.5 V because the detection voltage (V_{POC}) of the POC circuit is 2.0 to 2.25 V.	p. 406					
	Soft		Cautions for power-on-clear circuit	In a system where the supply voltage (V_{DO}) fluctuates for a certain period in the vicinity of the POC detection voltage (V_{POC}) , the system may be repeatedly reset and released from the reset status. In this case, the time from release of reset to the start of the operation of the microcontroller can be arbitrarily set by taking the following action.	p. 408					
Chapter 23		Low- voltage detector	LVIM: Low- voltage detection register	To stop LVI, follow either of the procedures below. • When using 8-bit memory manipulation instruction: Write 00H to LVIM. • When using 1-bit memory manipulation instruction: Clear LVION to 0.	p. 411					
Ö		(LVI)	LVIS: Low-	Be sure to clear bits 4 to 7 to 0.	p. 412					
					voltage detection level selection register	Clear all port pins after the supply voltage (VDD) exceeds the preset detection voltage (VLVI) after POC release in the (A1) grade products.	p. 412			
			When used as reset	<1> must always be executed. When LVIMK = 0, an interrupt may occur immediately after the processing in <3>.	p. 413					
				If supply voltage $(V_{DD}) \ge$ detection voltage (V_{LVI}) when LVIMD is set to 1, an internal reset signal is not generated.	p. 413					
					Cautions for low- voltage detector	In a system where the supply voltage (V _{DD}) fluctuates for a certain period in the vicinity of the LVI detection voltage (V _{LVI}), the operation is as follows depending on how the low-voltage detector is used. (1) When used as reset The system may be repeatedly reset and released from the reset status. In this case, the time from release of reset to the start of the operation of the microcontroller can be arbitrarily set by taking action (a) below. (2) When used as interrupt	p. 417			
24	<u>p</u>	Option	0084H/1084H	Interrupt requests may be frequently generated. Take action (b) below. Be sure to set 00H (disabling on-chip debug operation) to 0084H for products not	p. 420					
Chapter 24	co .	byte	byte	byte	byte	byte		equipped with the on-chip debug function (μ PD78F0132H, 78F0133H, 78F0134H, 78F0136H, and 78F0138H). Also set 00H to 1084H because 0084H and 1084H are switched at boot swapping.		
				To use the on-chip debug function with a product equipped with the on-chip debug function (µPD78F0138HD), set 02H or 03H to 0084H. Set a value that is the same as that of 0084H to 1084H because 0084H and 1084H are switched at boot swapping.	p. 420					
			0081H/1081H, 0082H/1082H, 0083H/1083H	Be sure to set 00H to 0081H, 0082H, and 0083H (0081H/1081H, 0082H/1082H, and 0083H/1083H when the boot swap function is used).	p. 420					
			0080H/1080H	If LSROSC = 0 (oscillation can be stopped by software), the count clock is not supplied to the watchdog timer in the HALT and STOP modes, regardless of the setting of bit 0 (RSTOP) of the internal oscillation mode register (RCM). When 8-bit timer H1 operates with the internal oscillation clock, the count clock is supplied to 8-bit timer H1 even in the HALT/STOP mode.	p. 421					
				Be sure to clear bit 1 to 7 to 0.	p. 421					

(23/25)

Function State St	and bit 3 (COREN1) of the are 0. be set in CORAD0 and DRAD1. tion (CALLT instruction): and 1 (CORAD0, CORAD1) AD1) should be set when when the correction branch ORAD1 when COREN0 or	p. 423 p. 424 p. 424 p. 424	
CORADO, CORADO and CORAD1 when bit 1 (CORENO) correction control register (CORCN: see Figure 25-3) at correction control register (CORAD0 and CORAD0 and CORAD0, CORAD0 and CORAD0, CORAD0 and Correction address registers 0 and 1 (CORAD0 and CORAD0 and CORAD0 and CORAD0 and Correction address registers 0 and 1 (CORAD0 and CORAD0 and Correction address registers 0 and 1 (CORAD0 and CORAD0 and Correction address registers 0 and 1 (CORAD0 and	and bit 3 (COREN1) of the are 0. be set in CORAD0 and DRAD1. tion (CALLT instruction): and 1 (CORAD0, CORAD1) AD1) should be set when when the correction branch ORAD1 when COREN0 or	p. 424 p. 424 p. 424	
CORRADI. Correction address registers 0 and 1 Correction address registers 0 and 1 Correction address registers 0 and 1 Cautions for ROM correction Correction address value in table area of table reference instruct 0040H to 007FH Address value in vector table area: 0000H to 003FH Address values set in correction address registers 0 ard must be addresses where instruction codes are stored. Correction enable flag (CORENO, COREN1) is 0 (with its in disabled state). If address is set to CORAD0 or COREN1 is 1 (when the correction branch is in enabled branch may start with the different address from the set the address value of instruction immediately sets the correction enable flag (COREN0, COREN1) to register 0 or 1 (CORAD0, CORAD1); the correction branch is in enabled branch may start with the different address from the set the address value in table area of table referinstruction) (0040H to 007FH), and the address value in to 003FH) to correction address registers 0 and 1 (CORDO). CORAD1); the correction branch is in enabled branch may start with the different address value in table area of table referinstruction) (0040H to 007FH), and the address value in to 003FH) to correction address registers 0 and 1 (CORDO). CORAD1); the correction branch is in enabled branch may start with the different address value in table area of table referinstruction) (0040H to 007FH), and the address value in to 003FH) to correction address registers 0 and 1 (CORDO). CORAD1 (CORDO) to 003FH) to correction address registers 0 and 1 (CORDO). The correction address registers 0 and 1 (CORDO) to 003FH. Flash memory Flash memory Internal memory size in titalization. Also, when using the 78k in titalization. Also, when using the 78k in titalization. Also, when using the 78k in Table 26-2 at initialization. Also, when using the 78k in Table 26-2 at initialization.	be set in CORAD0 and DRAD1. tion (CALLT instruction): and 1 (CORAD0, CORAD1) AD1) should be set when when the correction branch ORAD1 when COREN0 or	p. 424	
address registers 0 and 1 Do not set the following addresses to CORAD0 and CO • Address value in table area of table reference instruct 0040H to 007FH • Address value in vector table area: 0000H to 003FH Cautions for ROM correction Correction address registers 0 and 1 (CORAD0, CORA the correction enable flag (COREN0, COREN1) is 0 (w is in disabled state). If address is set to CORAD0 or C COREN1 is 1 (when the correction branch is in enabled branch may start with the different address from the se Do not set the address value of instruction immediately sets the correction enable flag (COREN0, COREN1) to register 0 or 1 (CORAD0, CORAD1); the correction bra Do not set the address value in table area of table refe instruction) (0040H to 007FH), and the address value in to 003FH) to correction address registers 0 and 1 (COR Do not set two addresses immediately after the instruct correction address registers 0 and 1 (CORAD0, CORA mapped terminal address of these instructions is N, do of N + 1 and N + 2.) Flash memory Flash memory Flash memory version and then mass-producing it v version, be sure to conduct sufficient evaluations for th engineering samples) of the mask ROM versions. IMS: Internal memory size IMS: Internal memory size Imagisters 0 and 1 (DRAD0, CORA) Do not set two addresses immediately after the instruct correction address registers 0 and 1 (CORAD0, CORA mapped terminal address of these instructions is N, do of N + 1 and N + 2.) There are differences in noise immunity and noise radi memory and mask ROM versions. When pre-producin the flash memory version and then mass-producing it v version, be sure to conduct sufficient evaluations for th engineering samples) of the mask ROM versions. Imagisters 0 and 1 (RORAD0, CORAD0,	DRAD1. tion (CALLT instruction): nd 1 (CORAD0, CORAD1) . AD1) should be set when when the correction branch ORAD1 when COREN0 or	p. 424	
Address value in table area of table reference instruction to 0040H to 007FH Address value in vector table area: 0000H to 003FH Address values set in correction address registers 0 are must be addresses where instruction codes are stored. Correction address registers 0 and 1 (CORAD0, CORAM) the correction enable flag (COREN0, COREN1) is 0 (where it is in disabled state). If address is set to CORAD0 or COREN1 is 1 (when the correction branch is in enabled branch may start with the different address from the set in the correction enable flag (COREN0, COREN1) to register 0 or 1 (CORAD0, CORAD1); the correction branch may start with the different address from the set in the correction enable flag (COREN0, COREN1) to register 0 or 1 (CORAD0, CORAD1); the correction branch may start with the different address from the set in the correction enable flag (COREN0, COREN1) to register 0 or 1 (CORAD0, CORAD1); the correction branch may start with the different address from the set in the correction enable flag (COREN0, COREN1) to register 0 or 1 (CORAD0, CORAD1); the correction branch branch may start with the different address from the set instruction) (0040H to 007FH), and the address value in to 003FH) to correction address registers 0 and 1 (CORAD0, CORAD1); the correction address registers 0 and 1 (CORAD0, CORAD1); the correction address registers 0 and 1 (CORAD0, CORAD1); the correction address registers 0 and 1 (CORAD0, CORAD1); the address value in the address value in the output of the set of the correction address registers 0 and 1 (CORAD0, CORAD1); the correction address registers 0 and 1 (CORAD0, CORAD1); the correction address registers 0 and 1 (CORAD0, CORAD1); the correction address registers 0 and 1 (CORAD0, CORAD1); the correction address registers 0 and 1 (CORAD0, CORAD1); the correction address registers 0 and 1 (CORAD0, CORAD1); the correction address registers 0 and 1 (CORAD0, CORAD1); the correction address registers 0 and 1 (CORAD0, CORAD1); the correction address registers 0 and 1 (CORAD0, CORAD1)	and 1 (CORAD0, CORAD1) AD1) should be set when when the correction branch ORAD1 when COREN0 or		
Cautions for ROM correction Address values set in correction address registers 0 are must be addresses where instruction codes are stored. Correction address registers 0 and 1 (CORADO, CORATHE correction enable flag (CORENO, COREN1) is 0 (which is in disabled state). If address is set to CORADO or COREN1 is 1 (when the correction branch is in enabled branch may start with the different address from the set Do not set the address value of instruction immediately sets the correction enable flag (CORENO, COREN1) to register 0 or 1 (CORADO, CORAD1); the correction branch branch may start with the different address from the set Do not set the address value in table area of table referinstruction) (0040H to 007FH), and the address value in to 003FH) to correction address registers 0 and 1 (CORADO, CORAMINE) may be addressed in the correction branch may start with the different address from the set Do not set the address value of instruction immediately sets the correction enable flag (CORENO, COREN1) to register 0 or 1 (CORADO, CORAD1); the correction branch may start with the different address from the set set was addressed in the address value in to 003FH) to correction address registers 0 and 1 (CORAD0, CORAMINE) may be addressed in the address value in the address value in table area of table reference in address registers 0 and 1 (CORAD0, CORAMINE) may be addressed in the address value in the set of the address value in the set of	AD1) should be set when when the correction branch ORAD1 when COREN0 or		_
ROM correction must be addresses where instruction codes are stored. Correction address registers 0 and 1 (CORADO, CORAM the correction enable flag (CORENO, COREN1) is 0 (we is in disabled state). If address is set to CORADO or COREN1 is 1 (when the correction branch is in enabled branch may start with the different address from the set of the address value of instruction immediately sets the correction enable flag (CORENO, COREN1) to register 0 or 1 (CORADO, CORAD1); the correction branch of the correction enable flag (CORENO), COREN1) to correction address value in table area of table referinstruction) (0040H to 007FH), and the address value in to 003FH) to correction address registers 0 and 1 (CORADO, CORAM) to 007FH), and the address value in to 003FH) to correction address registers 0 and 1 (CORADO, CORAM) and the correction address registers 0 and 1 (CORADO, CORAM) and the address of these instructions is N, do of N + 1 and N + 2.) Flash memory Flash memory Flash memory In the reare differences in noise immunity and noise radion memory and mask ROM versions. When pre-producing the flash memory version and then mass-producing it wersion, be sure to conduct sufficient evaluations for the engineering samples) of the mask ROM versions. IMS: Internal memory size The initial value of IMS is CFH. Be sure to set each province in Table 26-2 at initialization. Also, when using the 78king and the registers of the sure to set each province in Table 26-2 at initialization. Also, when using the 78king and the registers of the sure to set each province in the province in Table 26-2 at initialization. Also, when using the 78king and the registers of the sure to set each province in the province in t	AD1) should be set when when the correction branch ORAD1 when COREN0 or		
the correction enable flag (COREN0, COREN1) is 0 (w is in disabled state). If address is set to CORAD0 or C COREN1 is 1 (when the correction branch is in enabled branch may start with the different address from the set Do not set the address value of instruction immediately sets the correction enable flag (COREN0, COREN1) to register 0 or 1 (CORAD0, CORAD1); the correction branch branch may start with the different address from the set Do not set the address value of instruction immediately sets the correction enable flag (COREN0, COREN1) to register 0 or 1 (CORAD0, CORAD1); the correction branch	hen the correction branch ORAD1 when COREN0 or	p. 432	
sets the correction enable flag (COREN0, COREN1) to register 0 or 1 (CORAD0, CORAD1); the correction brace Do not set the address value in table area of table refer instruction) (0040H to 007FH), and the address value in to 003FH) to correction address registers 0 and 1 (CORAD0, CORAD1). Do not set two addresses immediately after the instruction address registers 0 and 1 (CORAD0, CORAD1). The properties of these instructions is N, do of N + 1 and N + 2.) Flash memory Flash memory Flash memory and mask ROM versions. When pre-producin the flash memory version and then mass-producing it version, be sure to conduct sufficient evaluations for the engineering samples) of the mask ROM versions. IMS: Internal memory size IMS: Internal memory size The initial value of IMS is CFH. Be sure to set each properties of the properties of		p. 432	
instruction) (0040H to 007FH), and the address value in to 003FH) to correction address registers 0 and 1 (COR Do not set two addresses immediately after the instruction address registers 0 and 1 (CORADO, CORA mapped terminal address of these instructions is N, do of N + 1 and N + 2.) Flash memory Flash memory There are differences in noise immunity and noise radiately after the instruction address registers 0 and 1 (CORADO, CORA mapped terminal address of these instructions is N, do of N + 1 and N + 2.) There are differences in noise immunity and noise radiately after the instruction address registers 0 and 1 (CORADO, CORA mapped terminal address of these instructions is N, do of N + 1 and N + 2.) There are differences in noise immunity and noise radiately after the instruction address registers 0 and 1 (CORADO, CORA mapped terminal address of these instructions is N, do of N + 1 and N + 2.) There are differences in noise immunity and noise radiately after the instruction address registers 0 and 1 (CORADO, CORA mapped terminal address of these instructions is N, do of N + 1 and N + 2.) There are differences in noise immunity and noise radiately after the instruction address registers 0 and 1 (CORADO, CORA mapped terminal address of these instructions is N, do of N + 1 and N + 2.) There are differences in noise immunity and noise radiately after the instruction address registers 0 and 1 (CORADO, CORA mapped terminal address of these instructions is N, do of N + 1 and N + 2.) There are differences in noise immunity and noise radiately after the instruction address registers 0 and 1 (CORADO, CORA mapped terminal address registers 0 and 1 (CORADO, CORA mapped terminal address registers 0 and 1 (CORADO, CORA mapped terminal address registers 0 and 1 (CORADO, CORA mapped terminal address registers 0 and 1 (CORADO, CORA mapped terminal address registers 0 and 1 (CORADO, CORADO, CORA	1, to correction address	p. 432	
correction address registers 0 and 1 (CORAD0, CORA mapped terminal address of these instructions is N, do of N + 1 and N + 2.) Flash memory Flash memory Flash memory There are differences in noise immunity and noise radio memory and mask ROM versions. When pre-producing the flash memory version and then mass-producing it version, be sure to conduct sufficient evaluations for the engineering samples) of the mask ROM versions. IMS: Internal memory size IMS: Internal memory size The initial value of IMS is CFH. Be sure to set each province in Table 26-2 at initialization. Also, when using the 78 in Table 26-2 at initialization.	n vector table area (0000H	p. 432	
the flash memory version and then mass-producing it version, be sure to conduct sufficient evaluations for the engineering samples) of the mask ROM versions. IMS: Internal memory size in Table 26-2 at initialization. Also, when using the 78km.	D1). (That is, when the	p. 432	
memory size in Table 26-2 at initialization. Also, when using the 78k	g an application set with with the mask ROM	p. 433	
switching program of a mask ROM version of the 78K0/KE1, be seem shown in Table 26-2.	K0/KE1+ to evaluate the	p. 434	
IXS: Internal expansion RAM size switching register The initial value of IXS is 0CH. Be sure to set each proint in Table 26-3 at initialization. Also, when using the 78k program of a mask ROM version of the 78K0/KE1, be shown in Table 26-3.	K0/KE1+ to evaluate the	p. 435	
UART6 When UART6 is selected, the receive clock is calculate command sent from the dedicated flash programmer at been received.		p. 449	
FLPMC: Flash-programming Be sure to keep FWEDIS at 0 until writing or erasing of completed.	the flash memory is	p. 453	
mode control Make sure that FWEDIS = 1 in the normal mode.		p. 453	
register Manipulate FLSPM1 and FLSPM0 after execution bran The address of the flash memory is specified by an add when FLSPM1 = 0 or the set value of the firmware writ the on-board mode, the specifications of FLSPM1 and		p. 453	

(24/25)

	_				· · · · · · · · · · · · · · · · · · ·	/25)				
Chapter	Classification	Function	Details of Function	Cautions		!				
Chapter 27	Hard	Page debug function The μPD78F0138HD has an on-chip debug function. Do not use this production because its reliability cannot be guaranteed after the conclusion chip debug function has been used, given the issue of the number of times the flash memory can be rewritten. NEC Electronics does not accept complaints concerning this product.		p. 463						
			When using X1	Input the clock from the X1 pin during on-chip debugging.	p. 463					
			and X2 pins	Control the X1 and X2 pins by externally pulling down the P31 pin.	p. 463					
Chapter 29, 30	SElectrical specifications (standard products, (A) grade		μPD78F0138HD	The μ PD78F0138HD has an on-chip debug function. Do not use this product for mass production because its reliability cannot be guaranteed after the onchip debug function has been used, given the issue of the number of times the flash memory can be rewritten. NEC Electronics does not accept complaints concerning this product.	p. 478					
			products), Electrical specifications ((A1) grade products)	products), Electrical specifications ((A1) grade	Electrical specifications ((A1) grade	Electrical specifications ((A1) grade	Electrical specifications ((A1) grade ((A1	Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.	pp. 478, 479, 495, 496	
			High-speed system clock (crystal/ ceramic) oscillator	When using the crystal/ceramic oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance. Keep the wiring length as short as possible. Do not cross the wiring with the other signal lines. Do not route the wiring near a signal line through which a high fluctuating current flows. Always make the ground point of the oscillator capacitor the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows. Do not fetch signals from the oscillator. Since the CPU is started by the internal oscillation clock after reset, check	pp. 480, 497					
				the oscillation stabilization time of the high-speed system clock using the oscillation stabilization time counter status register (OSTC). Determine the oscillation stabilization time of the OSTC register and oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.	497					
			Recommended oscillator constants	The oscillator constants shown above are reference values based on evaluation in a specific environment by the resonator manufacturer. If it is necessary to optimize the oscillator characteristics in the actual application, apply to the resonator manufacturer for evaluation on the implementation circuit. The oscillation voltage and oscillation frequency only indicate the oscillator characteristic. Use the 78K0/KE1+ so that the internal operation conditions are within the specifications of the DC and AC characteristics.	p. 481					

(25/25)

					(=0:	23)
Chapter	Classification	Function	Details of Function	Cautions	Page	
Chapter 29, 30	Hard	Electrical specifications (standard products, (A) grade products), Electrical specifications ((A1) grade products)	Subsystem clock oscillator	enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance. Keep the wiring length as short as possible. Do not cross the wiring with the other signal lines. Do not route the wiring near a signal line through which a high fluctuating current flows. Always make the ground point of the oscillator capacitor the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows. Do not fetch signals from the oscillator.	pp. 482, 498	
				The subsystem clock oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the high-speed system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.	pp. 482, 498	
Chapter 31	Hard	Recommend ed soldering conditions	-	Do not use different soldering methods together (except for partial heating).	pp. 515, 516, 517	
Chapter 32	Soft	Wait	-	When the CPU is operating on the subsystem clock and the high-speed system clock is stopped (MCC = 1), do not access the registers listed above using an access method in which a wait request is issued.	p. 519	

APPENDIX E REVISION HISTORY

E.1 Major Revisions in This Edition

Page	Description
Throughout	Addition of product name, specification, and classification by case on (A) grade products and (A1) grade products
	Deletion of description regarding 64-pin plastic FBGA (8 \times 8)
	Modification of Note and Caution in serial operation mode register (CSIM10) and serial clock selection register (CSIC10)
p. 17	Addition of Note 2 to 1.1 Features
p. 18	Modification of 1.3 Ordering Information
p. 30	Addition of Note 3 to 1.7 Outline of Functions (1/2)
p. 31	Addition of Note 3 to 1.7 Outline of Functions (2/2)
p. 47	Modification of Figure 3-1. Memory Map (μPD78F0132H)
p. 48	Modification of Figure 3-2. Memory Map (μPD78F0133H)
p. 49	Modification of Figure 3-3. Memory Map (µPD78F0134H)
p. 50	Modification of Figure 3-4. Memory Map (μPD78F0136H)
p. 51	Modification of Figure 3-5. Memory Map (μPD78F0138H)
p. 52	Modification of Figure 3-6. Memory Map (μPD78F0138HD)
p. 60	Modification of Notes 1 and 2 in Figure 3-12. Correspondence Between Data Memory and Addressing (μPD78F0138HD)
p. 113	Addition of Note 5 to Figure 5-2. Format of Processor Clock Control Register (PCC)
p. 114	Addition of Note 2 to Table 5-2. Relationship Between CPU Clock and Minimum Instruction Execution Time
p. 130	Addition of Note to Table 5-5. Maximum Time Required to Switch Between Internal Oscillation Clock and High-Speed System Clock
p. 248	Modification of Figure 12-2. Circuit Configuration of Series Resistor String
p. 264	Modification of description in 12.6 (1) Operating current in standby mode
p. 269	Addition of Caution 4 to 13.1 (2) Asynchronous serial interface (UART) mode
p. 272	Addition of Caution 2 to 13.2 (3) Transmit shift register 0 (TXS0)
p. 274	Addition of Caution 5 to Figure 13-2. Format of Asynchronous Serial Interface Operation Mode Register 0 (ASIM0)
p. 406	Addition of Caution 3 to 22.1 Functions of Power-on-Clear Circuit
p. 412	Modification of Note and addition of Caution 2 in Figure 23-3. Format of Low-Voltage Detection Level Selection Register (LVIS)
p. 420	Revision of CHAPTER 24 OPTION BYTE
p. 449	Modification of Table 26-8. Communication Modes
p. 462	Modification of Notes 1 and 2 in Figure 26-23. Memory Map and Boot Area (6) μPD78F0138HD
p. 463	Revision of CHAPTER 27 ON-CHIP DEBUG FUNCTION (µPD78F0138HD ONLY)
p. 479	Addition of "Storage temperature (In flash memory blank state)" to Absolute Maximum Ratings in CHAPTER 29 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS, (A) GRADE PRODUCTS)
p. 495	Addition of CHAPTER 30 ELECTRICAL SPECIFICATIONS ((A1) GRADE PRODUCTS)
p. 515	Revision of CHAPTER 32 RECOMMENDED SOLDERING CONDITIONS

E.2 Revision History up to Previous Edition

The following table shows the revision history up to this edition. The "Applied to:" column indicates the chapters of each edition in which the revision was applied.

(1/2)

		(1/2)	
Edition	Description	Applied to:	
2nd edition	Addition of μPD78F0138HF1-BA2, 78F0138HDGK-8A8, and 78F0138HDF1-BA2 to 1.3 Ordering Information	CHAPTER 1 OUTLINE	
	Modification of 1.5 Kx1 Series Lineup		
	Modification of recommended connection for unused RESET pin in Table 2-2. Pin I/O Circuit Types	CHAPTER 2 PIN FUNCTIONS	
	Addition of Cautions 1 and 2 to Figure 5-7 Format of Oscillation Stabilization Time Select Register (OSTS)	CHAPTER 5 CLOCK GENERATOR	
	Deletion of (7) System wait control register (VSWC) in 5.3 Registers Controlling Clock Generator		
	Addition of description for when used as capture register to Interrupt request generation column in Figure 6-6 Format of 16-Bit Timer Mode Control Register 00 (TMC00)	CHAPTER 6 16-BIT TIMER/EVENT	
	Addition of description for when used as capture register to Interrupt request generation column in Figure 6-7 Format of 16-Bit Timer Mode Control Register 01 (TMC01)	COUNTER 00 AND 01	
	Modification of Note 1 and correction of Cautions 4 and 5 in Figure 6-12 Format of Prescaler Mode Register 00 (PRM00)		
	Modification of Note 1 and correction of Cautions 4 and 5 in Figure 6-13 Format of Prescaler Mode Register 01 (PRM01)		
	Modification of Note in Figure 7-5. Format of Timer Clock Selection Register 50 (TCL50)	CHAPTER 7 8-BIT TIMER/EVENT	
	Modification of Note in Figure 7-6. Format of Timer Clock Selection Register 51 (TCL51)	COUNTERS 50 AND 51	
	Modification of Note 1 in Figure 8-5. Format of 8-Bit Timer H Mode Register 0 (TMHMD0)	CHAPTER 8 8-BIT TIMERS H0 AND H1	
	Modification of Note in Figure 8-6. Format of 8-Bit Timer H Mode Register 1 (TMHMD1)		
	Correction of Table 10-1 Loop Detection Time of Watchdog Timer	CHAPTER 10 WATCHDOG TIMER	
	Addition of Note to Figure 11-2 Format of Clock Output Selection Register (CKS)	CHAPTER 11 CLOCK OUTPUT/BUZZER OUTPUT CONTROLLER	
	Modification of Note 1 in Figure 13-4 Format of Baud Rate Generator Control Register 0 (BRGC0)	CHAPTER 13 SERIAL INTERFACE UARTO	
	Modification of Note 1 in Figure 14-8. Format of Clock Selection Register 6 (CKSR6)	CHAPTER 14 SERIAL	
	Modification of (h) SBF transmission in 14.4.2 Asynchronous serial interface (UART) mode	INTERFACE UART6	
	Modification of Note in Figure 15-5 Format of Serial Clock Selection Register 10 (CSIC10)	CHAPTER 15 SERIAL INTERFACES CSI10	
	Modification of Note in Figure 15-6 Format of Serial Clock Selection Register 11 (CSIC11)	AND CSI11	

(2/2)

Edition	Description	Applied to:
2nd edition	Modification of Caution 3 in Figure 17-2 Format of Interrupt Request Flag Registers (IF0L, IF0H, IF1L, IF1H)	CHAPTER 17 INTERRUPT FUNCTIONS
	Addition of Cautions 1 and 2 to Figure 19-2 Format of Oscillation Stabilization Time Select Register (OSTS)	CHAPTER 19 STANDBY FUNCTION
	Modification of Figure 20-1 Block Diagram of Reset Function	CHAPTER 20 RESET FUNCTION
	Modification of Note in Figure 23-3 Format of Low-Voltage Detection Level Selection Register (LVIS)	CHAPTER 23 LOW- VOLTAGE DETECTOR
	Modification of Figure 26-11 FLMD1 Pin Connection Example	CHAPTER 26 FLASH
	Addition of description to 26.6.7 Power supply	MEMORY
	Revision of CHAPTER from target specifications to official specifications	CHAPTER 29 ELECTRICAL SPECIFICATIONS
	Addition of package drawings of 64-pin plastic FBGA (6 \times 6) and 64-pin plastic LQFP (12 \times 12)	CHAPTER 30 PACKAGE DRAWINGS
	Addition of CHAPTER	CHAPTER 31 RECOMMENDED SOLDERING CONDITIONS
	Revision of APPENDIX	APPENDIX A DEVELOPMENT TOOLS
	Revision of APPENDIX	APPENDIX B NOTES ON TARGET SYSTEM DESIGN
	Addition of APPENDIX	APPENDIX D LIST OF CAUTIONS
	Addition of APPENDIX	APPENDIX E REVISION HISTORY

For further information, please contact:

NEC Electronics Corporation

1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8668, Japan Tel: 044-435-5111

Tel: 044-435-5111 http://www.necel.com/

[America]

NEC Electronics America, Inc.

2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-588-6000
800-366-9782
http://www.am.necel.com/

[Europe]

NEC Electronics (Europe) GmbH

Arcadiastrasse 10 40472 Düsseldorf, Germany Tel: 0211-65030 http://www.eu.necel.com/

Hanover Office

Podbielskistrasse 166 B 30177 Hannover Tel: 0 511 33 40 2-0

Munich Office

Werner-Eckert-Strasse 9 81829 München Tel: 0 89 92 10 03-0

Stuttgart Office

Industriestrasse 3 70565 Stuttgart Tel: 0 711 99 01 0-0

United Kingdom Branch

Cygnus House, Sunrise Parkway Linford Wood, Milton Keynes MK14 6NP, U.K. Tel: 01908-691-133

Succursale Française

9, rue Paul Dautier, B.P. 52 78142 Velizy-Villacoublay Cédex France

Tel: 01-3067-5800

Sucursal en España

Juan Esplandiu, 15 28007 Madrid, Spain Tel: 091-504-2787

Tyskland Filial

Täby Centrum Entrance S (7th floor) 18322 Täby, Sweden Tel: 08 638 72 00

Filiale Italiana

Via Fabio Filzi, 25/A 20124 Milano, Italy Tel: 02-667541

Branch The Netherlands

Steijgerweg 6 5616 HS Eindhoven The Netherlands Tel: 040 265 40 10

[Asia & Oceania]

NEC Electronics (China) Co., Ltd

7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: 010-8235-1155 http://www.cn.necel.com/

NEC Electronics Shanghai Ltd.

Room 2511-2512, Bank of China Tower, 200 Yincheng Road Central, Pudong New Area, Shanghai P.R. China P.C:200120 Tel: 021-5888-5400 http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.

12/F., Cityplaza 4, 12 Taikoo Wan Road, Hong Kong Tel: 2886-9318 http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan, R. O. C. Tel: 02-8175-9600 http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.

238A Thomson Road, #12-08 Novena Square, Singapore 307684 Tel: 6253-8311 http://www.sq.necel.com/

NEC Electronics Korea Ltd.

11F., Samik Lavied'or Bldg., 720-2, Yeoksam-Dong, Kangnam-Ku, Seoul, 135-080, Korea Tel: 02-558-3737 http://www.kr.necel.com/