

Ceramic Chip Capacitors

Table of Contents

How to Order - AVX Part Number Explanation	2-	-3
COG (NP0) Dielectric General Specifications Specifications and Test Methods Capacitance Range		. 5
U Dielectric General Information. Capacitance Range. Designer Kits.	9- 1	10
X7R Dielectric General Specifications Specifications and Test Methods Capacitance Range		12 13
X7S Dielectric General Specifications Specifications and Test Methods Capacitance Range	1	17
X5R Dielectric General Specifications		20
Y5V Dielectric General Specifications Specifications and Test Methods Capacitance Range		24
MLCC Tin/Lead Termination General Specifications Capacitance Range	27-	26 31
Automotive MLCC General Specifications		33 35
MLCC with Soft Termination General Description Specifications and Test Methods Capacitance Range	37- 3	38
Capacitor Array General Description Capacitance Range Multi-Value Capacitor Array (IPC) Part and Pad Layout Dimensions		41 42
Low Inductance Capacitors Introduction	44-4	45 47
High Voltage Chips for 600V to 5000V Applications	52-5	53
MIL-PRF-55681/Chips Part Number Example (CDR01 thru CDR06) Military Part Number Identification (CDR01 thru CDR06) Part Number Example (CDR31 thru CDR35) Military Part Number Identification (CDR31) Military Part Number Identification (CDR32) Military Part Number Identification (CDR33/34/35)	F	56
Packaging of Chip Components Embossed Carrier Configuration - 8 & 12mm Tape Paper Carrier Configuration - 8 & 12mm Tape Bulk Case Packaging	6 	60 61 62
Basic Capacitor Formulas		64 69

How to Order

Commercial Surface Mount Chips

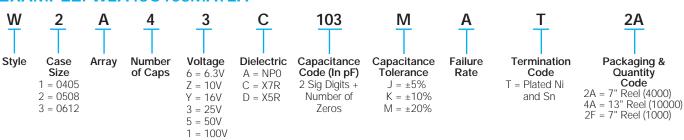
EXAMPLE: 08055A101JAT2A

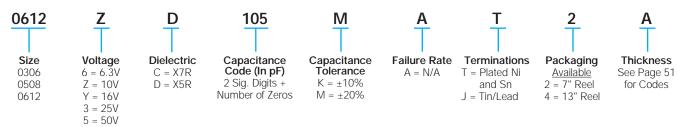
0805	5	A	101	<u>J*</u>	<u>A</u>	<u> </u>	2	A
Size (L" x W") 0201 0402 0603 0805 1206 1210 1812 1825 2220 2225	Voltage 4 = 4V 6 = 6.3V Z = 10V Y = 16V 3 = 25V D = 35V 5 = 50V 1 = 100V 2 = 200V 7 = 500V	Dielectric A = NPO(COG) C = X7R D = X5R G = Y5V U = U Series W = X6S Z = X7S	Capacitance 2 Sig. Fig + No. of Zeros Examples: 100 = 10 pF 101 = 100 pF 102 = 1000 pF 223 = 22000 pF 224 = 220000 pF 105 = 1µF 106 = 10µF 107 = 100µF	Tolerance $B = \pm .10 \text{ pF}$ $C = \pm .25 \text{ pF}$ $D = \pm .50 \text{ pF}$ $F = \pm 1\% (≥ 10 \text{ pF})$ $G = \pm 2\% (≥ 10 \text{ pF})$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$ $Z = +80\%, -20\%$ $P = +100\%, -0\%$	Failure Rate A = N/A 4 = Automotive	Terminations T = Plated Ni and Sn T = Gold Plated J = Tin/Lead Contact Factory For 1 = Pd/Ag Term Z = Soft Termination	Packaging Available 2 = 7" Reel 4 = 13" Reel 7 = Bulk Cass. 9 = Bulk Contact Factory For Multiples	Special Code A = Std.
		Factory for Voltages 9 = 300V X = 350V 8 = 400V	For values below 10 pF, use "R" in place of Decimal point, e.g., 9.1 pF = 9R1.			* B, C & D tolerance fo Standard Tape and R depends upon chip s See individual part ta each capacitance val	leel material (Paper ize and thickness. bles for tape mater	,

High Voltage Surface Mount Chips

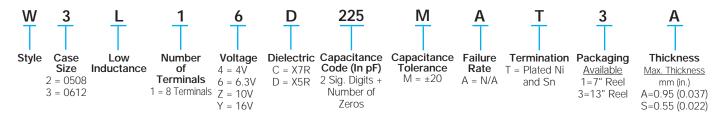
EXAMPLE: 1808AA271KA11A

1808	Α	Α	271	K		Α	1	1A
T	T	T	T	T	_	T	Ţ	T
AVX	Voltage	Temperature	Capacitance	Capaci	itance	Failure	Termination	Packaging/Marking
Style	C = 600V	Coefficient	Code	Tolera	ance	Rate	1= Pd/Ag	1A = 7" Reel
1206	A = 1000V	A = COG	(2 significant digits	COG: J	$= \pm 5\%$	A=Not	T = Plated Ni	Unmarked
1210	S = 1500V	C = X7R	+ no. of zeros)	K	$= \pm 10\%$	Applicable	and Sn	3A = 13" Reel
1808	G = 2000V		Examples:	M	$= \pm 20\%$			Unmarked
1812	W = 2500V		10 pF = 100	X7R: K	$= \pm 10\%$			9A = Bulk/Unmarked
1825	H = 3000V		100 pF = 101	M	$= \pm 20\%$			
2220	J = 4000V	1	1,000 pF = 102	Ζ	= +80%,			
2225	K = 5000V	22	2,000 pF = 223		-20%			
3640		220	0.000 pF = 224					
			$1 \mu F = 105$					


How to Order


Capacitor Array

EXAMPLE: W2A43C103MAT2A


Low Inductance Capacitors (LICC)

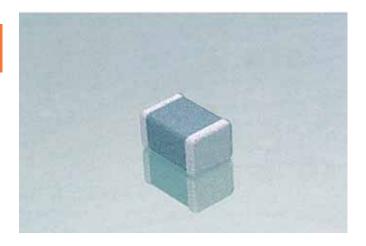
EXAMPLE: 0612ZD105MAT2A

Interdigitated Capacitors (IDC)

EXAMPLE: W3L16D225MAT3A

Decoupling Capacitor Arrays (LICA)

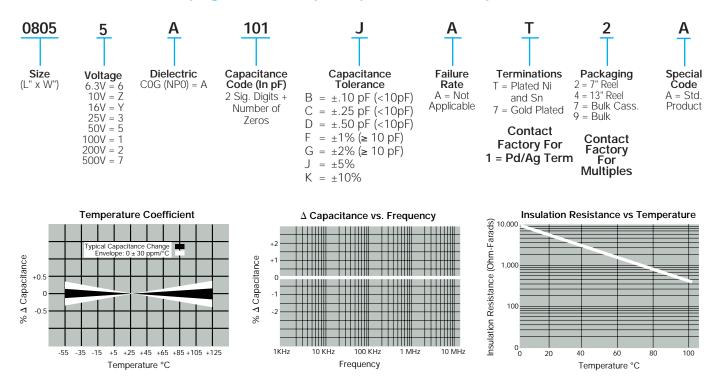
EXAMPLE: LICA3T183M3FC4AA

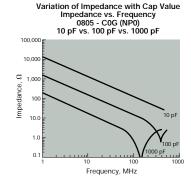


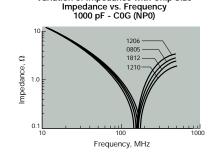
facing up C = 4"x4" Waffle Pack w/ clear lid

COG (NPO) Dielectric

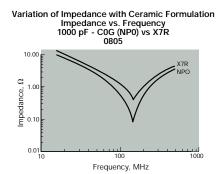
General Specifications




COG (NPO) is the most popular formulation of the "temperature-compensating," EIA Class I ceramic materials. Modern COG (NPO) formulations contain neodymium, samarium and other rare earth oxides.


COG (NP0) ceramics offer one of the most stable capacitor dielectrics available. Capacitance change with temperature is 0 $\pm 30 ppm/^{\circ}C$ which is less than $\pm 0.3\%$ Δ C from -55°C to +125°C. Capacitance drift or hysteresis for COG (NP0) ceramics is negligible at less than $\pm 0.05\%$ versus up to $\pm 2\%$ for films. Typical capacitance change with life is less than $\pm 0.1\%$ for COG (NP0), one-fifth that shown by most other dielectrics. COG (NP0) formulations show no aging characteristics.

The COG (NP0) formulation usually has a "Q" in excess of 1000 and shows little capacitance or "Q" changes with frequency. Their dielectric absorption is typically less than 0.6% which is similar to mica and most films.


PART NUMBER (see page 2 for complete part number explanation)

Variation of Impedance with Chip Size

C0G (NP0) Dielectric

Specifications and Test Methods

	ter/Test	NP0 Specification Limits	Measuring Conditions			
	perature Range	-55°C to +125°C	Temperature Cycle Chamber			
Capac	itance	Within specified tolerance	Freq.: 1.0 MHz ± 10% for cap ≤ 1000 pF			
	2	<30 pF: Q≥ 400+20 x Cap Value	1.0 kHz ± 10% for cap > 1000 pF			
		≥30 pF: Q≥ 1000 100,000MΩ or 1000MΩ - μF,	Voltage: 1.0Vrms ± .2V Charge device with rated voltage for			
Insulation	Resistance	whichever is less	60 ± 5 secs @ room temp/humidity			
Dielectric	Strength	No breakdown or visual defects	Charge device with 300% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150% of rated			
	Appearance	No defects	voltage for 500V devices. Deflection: 2mm			
Resistance to	Capacitance Variation	±5% or ±.5 pF, whichever is greater	Test Time: 30 seconds			
Flexure Stresses	Q	Meets Initial Values (As Above)	V			
Insulation Resistance		≥ Initial Value x 0.3	90 mm —			
Solde	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic solder at 230 ± 5°C for 5.0 ± 0.5 seconds			
	Appearance	No defects, <25% leaching of either end terminal				
Resistance to Solder Heat Capacitance Variation Q Insulation Resistance Dialoctric		≤ ±2.5% or ±.25 pF, whichever is greater	Dip device in eutectic solder at 260°C for 60			
		Meets Initial Values (As Above)	seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties.			
		Meets Initial Values (As Above)	g			
	Dielectric Strength	Meets Initial Values (As Above)				
	Appearance	No visual defects	Step 1: -55°C ± 2° 30 ± 3 minutes			
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater	Step 2: Room Temp ≤ 3 minutes			
Thermal Shock	Q	Meets Initial Values (As Above)	Step 3: +125°C ± 2° 30 ± 3 minutes			
oo.k	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp ≤ 3 minutes			
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and measure after 24 hours at room temperature			
	Appearance	No visual defects				
	Capacitance Variation	≤ ±3.0% or ± .3 pF, whichever is greater	Charge device with twice rated voltage in			
Load Life	Q (C=Nominal Cap)	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	test chamber set at 125°C ± 2°C for 1000 hours (+48, -0).			
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamber and stabilize at room temperature for 24 hours			
	Dielectric Strength	Meets Initial Values (As Above)	before measuring.			
	Appearance	No visual defects				
	Capacitance Variation	≤ ±5.0% or ± .5 pF, whichever is greater	Store in a test chamber set at 85°C ± 2°C/			
Load Humidity	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	85% ± 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied.			
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber and stabilize at room temperature for 24 ± 2 hours			
Dielectric Strength		Meets Initial Values (As Above)	before measuring.			

C0G (NP0) Dielectric

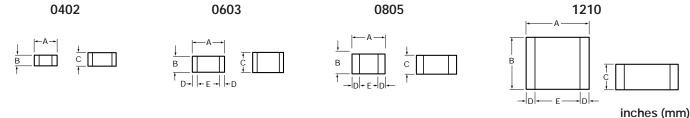
									a	_										⊐		
SIZI	E	_	0201			0402			06	603				0805					12	206		
Solder	ing	Re	eflow Or	nly	R	eflow O	nly		Reflo	w Only			Re	eflow/Wa	ve				Reflow	v/Wave		
Packaç			All Pape			All Pape				aper				er/Embo				P		mbosse	ed	
(L) Length	MM (in.)		0.60 ± 0.0 024 ± 0.0			1.00 ± 0.1 .040 ± 0.0				± 0.15 ± 0.006)				2.01 ± 0.20 079 ± 0.00						± 0.20 ± 0.008)		
(W) Width	MM (in.)		0.30 ± 0.0			0.50 ± 0.1 .020 ± 0.0				± 0.15 ± 0.006)				1.25 ± 0.20 049 ± 0.00						± 0.20 ± 0.008)		
(t) Terminal	ММ	C).15 ± 0.0	5	(0.25 ± 0.1	5		0.35	± 0.15			(0.50 ± 0.25	5				0.50 :	± 0.25		
	(in.) WVDC	10	006 ± 0.0	25	16	.010 ± 0.0	50	6.3	25	± 0.006)	100	16	25	020 ± 0.0° 50	100	200	16	25	50	± 0.010)	200	500
Cap	0.5			А	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
(pF)	1.0 1.2			A A	C	C	C	G G	G G	G	G	J J	J	J	J	J	J	J	J	J	J J	J
	1.5			A	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	1.8 2.2			A A	00	C	C	G G	G G	G G	G G	J	J	J	J	J	J	J	J	J	J	J
	2.7			A	C	C	С	G G	G G	G G	G G	J	J	J	J	J	J	J	J	J	J	J
	3.3 3.9			A A	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	4.7 5.6			A A	C	C	C	G G	G G	G G	G G	J J	J	J	J	J	J	J	J	J	J	J
	6.8			A	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	8.2 10			A A	C	C	C	G G	G G	G G	G G	J J	J	J	J	J	J	J	J	J	J	J
	12			Α	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	15 18			A	C	C	C	G G	G G	G	G	J	J	J	J	J	J	J	J	J	J	J
	22			Α	С	С	С	G	G	G	G	J	J	J	J	J	Ĵ	J	J	J	J	J
	27 33			A	C	C	C	G G	G G	G	G	J	J	J	J	J	J	J	J	J	J	J
	39		A		С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
-	47 56		A		C	C	C	G G	G G	G	G	J	J	J	J	J	J	J	J	J	J	J
	68	٨	Α		C	C	C	G	G	G	G	J	J	J	J J	J	J J	J	J	J J	J J	J
	82 100	A A			С	С	C	G G	G G	G	G G	J	J	J	J	J	J	J	J	J	J	J
	120 150				C	C	C	G G	G G	G G	G G	J	J	J	J J	J J	J	J	J J	J	J J	J
	180				C	С	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	220 270				C	С	С	G G	G	G	G G	J	J	J	J	J M	J	J	J	J	J J	M M
	330				C			G	G	G	G	J	J	J	J	М	J	J	J	J	J	М
	390 470							G G	G G	G		J J	J	J	J	M M	J	J	J	J	J J	M M
	560							G G	G	G		J	J	J	J	М	J	J	J	J	J -	M P
	680 820							G	G G	G G		J	J	J	J	М	J	J	J	J	J M	Р
	1000 1200							G	G	G		J	J	J	J		J	J	J	J	00	
	1500											J	J	J			J	J	J	М	Q	
	1800 2200											J J	J	J M			J	J	M M	M P		
	2700											J	J	М			Ĵ	J	М	Р		
	3300 3900											N N	N N	M M			J	J	M M	P P		
	4700			>	<u> </u>	√ W_						N	N				J	J	М	Р		
	5600 6800		*	_r	$\overline{}$		Ţ					N N	N				J M	M	M			
Cap	8200 0.010)_	. كلر	Ψ'					N N					M M	M				
(μF)	0.012												1				1.71	171				
	0.015 0.018				⁻t								-				-	-				
	0.022																					
	0.027 0.033																_	 				
	0.039 0.047																					
	0.068																					
	0.082 0.1																					
	WVDC	10	16	25	16	25	50	6.3	25	50	100	16	25	50	100	200	16	25	50	100	200	500
	SIZE		0201			0402			06					0805						:06		
Letter	A 0.33	0.8		E	G	3	J 0.94	K		M .27	N	1.5		Q 1.70	X		Y	2.7				
Max. Thickness	0.33 (0.013)	(0.0)		0.71 (0.028)	(0.03		0.94	(0.040		050)	(0.055)	(0.0)		1.78 0.070)	2.29		.54 100)	(0.11				
	,			PAPER	<u> </u>				,				MBOSS				, ,					

C0G (NP0) Dielectric

Capacitance Range

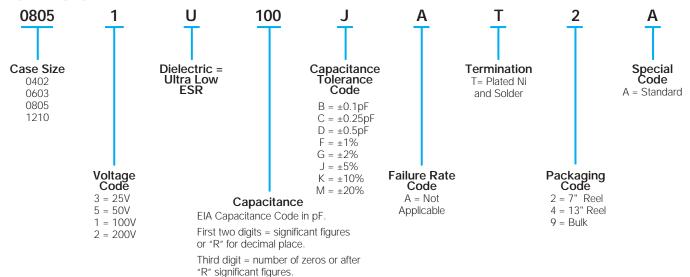
SIZ	E			1210					1812				18	325			2	225	
Solde				eflow On					eflow Or					w Only				ow Only	
Packa (L) Length	MM		3	er/Embos 3.20 ± 0.20)				Emboss 1.50 ± 0.3)			4.50	bossed ± 0.30			5.72	nbossed 2 ± 0.25	
(W) Width	(in.) MM		2	126 ± 0.00 2.50 ± 0.20)			3	177 ± 0.0 3.20 ± 0.2)			6.40				6.35	± 0.010) ± 0.25	
(t) Terminal	(in.) MM			0.98 ± 0.00 0.50 ± 0.25			+		126 ± 0.0 0.61 ± 0.3				(0.252 :	± 0.016) ± 0.36			0.64	± 0.010) ± ± 0.39	
(i) Terminal	(in.) WVDC	25	50	020 ± 0.01	200	500	25	50	024 ± 0.0	14) 200	500	50	(0.024 :	± 0.014)	500	50	(0.025	± 0.015)	500
Cap (pF)	0.5 1.0																		
(pi)	1.2																		
-	1.5 1.8																		
	2.2 2.7															سر ا	1		N_
	3.3 3.9															($\widehat{}$	\]	ĴŢĪ
	4.7 5.6																$\overline{}$		
	6.8 8.2																⁴ t		
	10					J													
	12 15					J J													
	18 22					J													
-	27 33					J													
	39 47					J J													
	56 68					J													
	82					J													
	100 120					J													
	150 180					J													
	220 270					J													
	330 390					J													
	470					M													
	560 680	J	J	J	J	М													
	820 1000	J	J	J	J	M	K	K	K	K	M	M	M	M		М	M	Р	
	1200 1500	J	J	J	M M		K K	K K	K K	K K	M M	M M	M M	M M		M M	M M	P P	
	1800 2200	J	J	J	M Q		K K	K K	K K	K K	M P	M M	M M	M M		M M	M M	P P	
	2700 3300	J	J	J	Q		K	K K	K K	P P	Q	M	M M	M M		M M	M	P	
	3900	J	J	M			K K	K K	K K	P P	Q	M M	M	М		M M	M M	P P	
	4700 5600	J	J	M			K	K	M	Р	Q X	M	M	M		М	М	Р	
	6800 8200	J	J				K K	K M	M M	X X		M M	M M	M	P P	M M	M M	P P	
Cap (μF)	0.010 0.012	N N	N N				K K	M M	M	Х		M M	M M		Р	M M	M M	P P	Q Q
	0.015 0.018						M M	M M				M P	M M			M M	M M	Y	Q Q
	0.022 0.027						M M	M P				P				M P	Y Y	Y	
	0.033						M	P P								P P	Y	Z	
	0.039 0.047						M X	Р								Р	Y	Z	
	0.068 0.082						X	X								P P			
	0.1 WVDC	25	50	100	200	500	Y 25	Y 50	100	200	500	50	100	200	500	Q 50	100	200	500
SIZI				1210					1812		•			325			22		
Letter Max.	A 0.33	0.5		E 0.71	G		J 0.94	K		M 27	N 1.40	P 1.52	Q 1.78	3 2.2		Y	Z 2.79		
Thickness	(0.013)	(0.0))22)	(0.028)	(0.03		0.94	(0.040		050)	(0.055)	(0.060) (0.07	0.0			0.110)		
			F	PAPER								EMI	BOSSED						

RF/Microwave C0G (NP0) Capacitors



Ultra Low ESR, "U" Series, COG (NP0) Chip Capacitors

GENERAL INFORMATION


"U" Series capacitors are COG (NPO) chip capacitors specially designed for "Ultra" low ESR for applications in the communications market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0603, 0805, and 1210.

DIMENSIONS: inches (millimeters)

Size Α В C D Ε 0.024 (0.6) max 0402 0.039±0.004 (1.00±0.1) 0.020±0.004 (0.50±0.1) N/A N/A 0603 0.060±0.010 (1.52±0.25) 0.030 ± 0.010 (0.76±0.25) 0.036 (0.91) max 0.010±0.005 (0.25±0.13) 0.030 (0.76) min 0805 0.079±0.008 (2.01±0.2) 0.049±0.008 (1.25±0.2) 0.040±0.005 (1.02±0.127) 0.020±0.010 (0.51±0.255) 0.020 (0.51) min 1210 0.126 ± 0.008 (3.2±0.2) 0.098 ± 0.008 (2.49±0.2) 0.050±0.005 (1.27±0.127) 0.025±0.015 (0.635±0.381) 0.040 (1.02) min

HOW TO ORDER

ELECTRICAL CHARACTERISTICS

Capacitance Values and Tolerances:

Size 0402 - 0.2 pF to 22 pF @ 1 MHz Size 0603 - 1.0 pF to 100 pF @ 1 MHz Size 0805 - 1.6 pF to 160 pF @ 1 MHz Size 1210 - 2.4 pF to 1000 pF @ 1 MHz

Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

Insulation Resistance (IR):

 $10^{12} \Omega$ min. @ 25°C and rated WVDC 10¹¹ Ω min. @ 125°C and rated WVDC

Working Voltage (WVDC):

Working Voltage Size 50, 25 WVDC 0603 -200, 100, 50 WVDC 0805 -200, 100 WVDC 1210 -200, 100 WVDC

Dielectric Working Voltage (DWV):

250% of rated WVDC

Equivalent Series Resistance Typical (ESR):

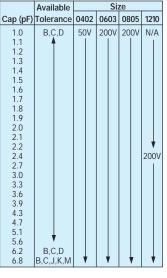
See Performance Curve, page 9 See Performance Curve, page 9 See Performance Curve, page 9 See Performance Curve, page 9

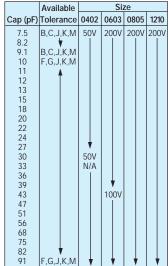
Marking: Laser marking EIA J marking standard (except 0603) (capacitance code and

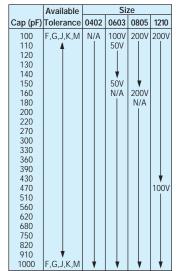
tolerance upon request).

MILITARY SPECIFICATIONS

Meets or exceeds the requirements of MIL-C-55681


RF/Microwave C0G (NP0) Capacitors



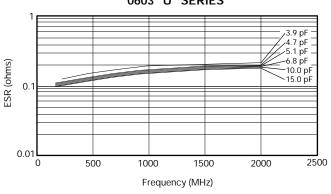

Ultra Low ESR, "U" Series, C0G (NP0) Chip Capacitors

CAPACITANCE RANGE

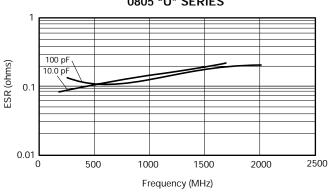
	Available		Siz	ze	
Cap (pF)	Tolerance	0402	0603	0805	1210
0.2	B,C	50V	N/A	N/A	N/A
0.3	 				
0.4	♦				
0.5	B,C				
0.6	B,C,D				
0.7	A				
0.8					
0.9	B,Ċ,D	▼	\ \	♦	\ \

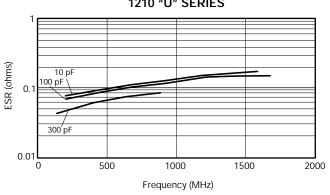
ULTRA LOW ESR, "U" SERIES

TYPICAL ESR vs. FREQUENCY 0402 "U" SERIES ESR (ohms)


0.01

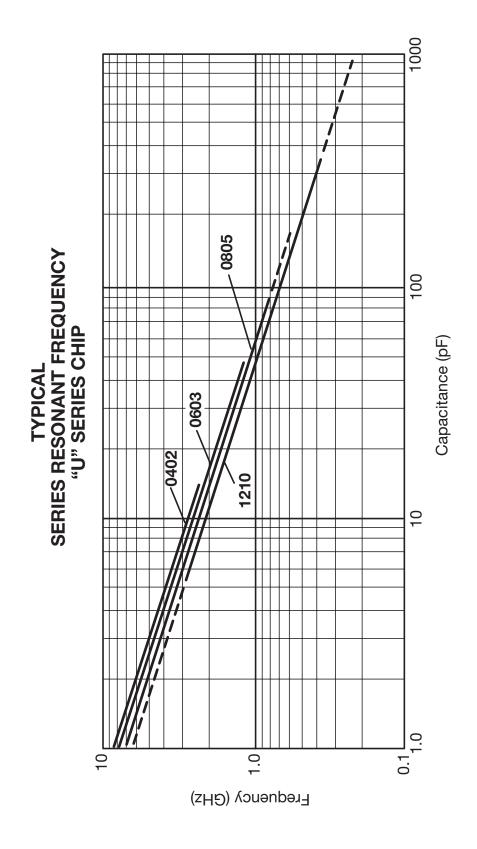
Frequency (MHz)


1500


TYPICAL ESR vs. FREQUENCY 0603 "U" SERIES

TYPICAL ESR vs. FREQUENCY 0805 "U" SERIES

TYPICAL ESR vs. FREQUENCY 1210 "U" SERIES


ESR Measured on the Boonton 34A

RF/Microwave C0G (NP0) Capacitors

Ultra Low ESR, "U" Series, C0G (NP0) Chip Capacitors

Designer Kits

"U" SERIES KITS

Solder Plated, Nickel Barrier

0402

	Kit 5000 UZ*									
Cap. Value pF	Tol.†	Cap. Value pF	Tol.†							
0.5 1.0 1.5 1.8 2.2 2.4 3.0 3.6	B B B B B B B	4.7 5.6 6.8 8.2 10.0 12.0 15.0	B B B J J							

^{* 150} Capacitors 10 each of 15 values.

0603

	Kit 4000 UZ**										
Cap. Value pF	Tol.†	Cap. Value pF	Tol.†								
1.0	±.25pF	6.8	±.25pF								
1.2	±.25pF	7.5	±.25pF								
1.5	±.25pF	8.2	±.25pF								
1.8	±.25pF	10.0	±5%								
2.0	±.25pF	12.0	±5%								
2.4	±.25pF	15.0	±5%								
2.7	±.25pF	18.0	±5%								
3.0	±.25pF	22.0	±5%								
3.3	±.25pF	27.0	±5%								
3.9	±.25pF	33.0	±5%								
4.7	±.25pF	39.0	±5%								
5.6	±.25pF	47.0	±5%								

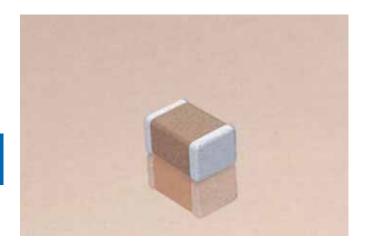
^{** 240} Capacitors 10 each of 24 values.

0805

	ı	Kit 3000) UZ***	:	
Cap. Value pF	Tol.†	Cap. Value pF	Tol.†	Cap. Value pF	Tol.†
1.0	С	7.5	С	33	J
1.5	С	8.2	С	36	J
2.2	С	9.1	С	39	J
2.4	С	10.0	J	47	J
2.7	С	12.0	J	56	J
3.0	С	15.0	J	68	J
3.3	С	18.0	J	82	J
3.9	С	22.0	J	100	J
4.7	С	24.0	J	130	J
5.6	С	27.0	J	160	J

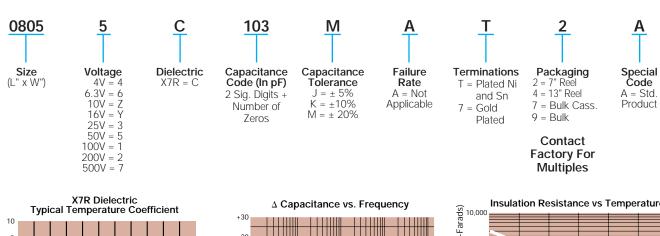
1210

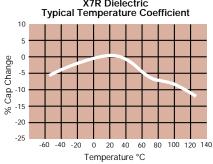
	Kit 3500 UZ***								
Cap. Value pF	Tol.†	Cap. Value pF	Tol.†	Cap. Value pF	Tol.†				
2.2	С	18	J	68	J				
2.7	C C	20	J	82	J				
4.7	С	24	J	100	J				
5.1	C C	27	J	120	J				
6.8	С	30	J	130	J				
8.2	С	36	J	240	J				
9.1	С	39	J	300	J				
10	J	47	J	390	J				
13	J	51	J	470	J				
15	J	56	J	680	J				


^{*** 300} Capacitors 10 each of 30 values.

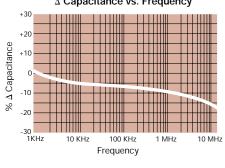
†Tolerance – B = $\pm 0.1pF$ C = $\pm 0.25pF$ J = $\pm 5\%$

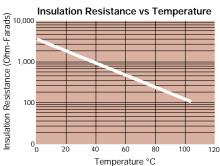
General Specifications

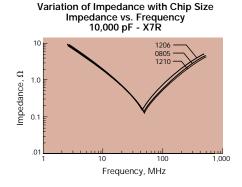


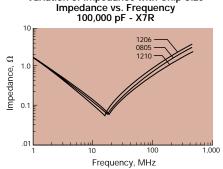

X7R formulations are called "temperature stable" ceramics and fall into EIA Class II materials. X7R is the most popular of these intermediate dielectric constant materials. Its temperature variation of capacitance is within $\pm 15\%$ from -55° C to $\pm 125^{\circ}$ C. This capacitance change is non-linear.

Capacitance for X7R varies under the influence of electrical operating conditions such as voltage and frequency.


X7R dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable.


PART NUMBER (see page 2 for complete part number explanation)


Variation of Impedance with Cap Value



Impedance vs. Frequency
1,000 pF vs. 10,000 pF - X7R
0805

10.00 pF
10,000 pF

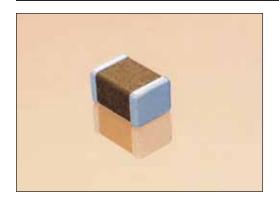
Variation of Impedance with Chip Size

Specifications and Test Methods

Operating Temperature Range -55°C to +125°C Temperature Cycle Chamber Capacitance Within specified tolerance ≤ 2.5% for ≥ 50V DC rating Freq.: 1.0 kHz ± 10% -3.0% for 35V DC rating Weltage 1.0 kHz ± 10%	er		
≤ 2.5% for ≥ 50V DC rating Freq.: 1.0 kHz ± 10%			
≤ 2.5% for ≥ 50V DC rating Freq.: 1.0 kHz ± 10%			
Dissipation Factor ≤ 3.0% for 25V DC rating Voltage: 1.0Vrms ± .2V			
≤ 3.5% IOI TOV DC Talling FOI Cap > 10 µF, 0.5 VITHS @ 12	20Hz		
≤ 5.0% for ≤ 10V DC rating			
Insulation Resistance 100,000MΩ or 1000MΩ - μ F, Charge device with rated voltage			
whichever is less 120 ± 5 secs @ room temp/nur			
Dielectric Strength No breakdown or visual defects 1-5 seconds, w/charge and discharge limited to 50 mA (max)	Note: Charge device with 150% of rated		
Appearance No defects Deflection: 2mm			
Conscitance Toot Time 20 seconds			
Resistance to Variation ≤ ±12%			
Flexure			
Stresses Factor Meets Initial Values (As Above)			
Insulation			
Resistance ≥ Initial Value x 0.3	-		
Solderability ≥ 95% of each terminal should be covered with fresh solder Dip device in eutectic solder at 23 for 5.0 ± 0.5 seconds	0 ± 5°C		
Appearance No defects, <25% leaching of either end terminal			
Capacitance ≤ ±7.5%			
Variation Dip device in outcetic solder at 260	1°C for 60		
Posistance to DISSIPATION Moots Initial Values (As Abovo) seconds. Store at room temperature			
Solder Heat Factor Resource Programmes and Programmes P			
Insulation Moots Initial Values (As Abovo)			
Resistance			
Dielectric Strength Meets Initial Values (As Above)			
Appearance No visual defects Step 1: -55° C \pm 2° 30 \pm 3 mir	าแร		
Canaditanas			
Variation ≤ ±7.5% Step 2: Room Temp ≤ 3 minute	eS		
Dissination			
Thermal Shock Meets Initial Values (As Above) Step 3: +125°C ± 2° 30 ± 3 mir	nutes		
I INSUITATION I	00		
Resistance			
Dielectric Strength Meets Initial Values (As Above) Repeat for 5 cycles and measure a	after		
Strength 24 ± 2 nours at room temperature			
Appearance No visual defects			
Capacitance ≤ ±12.5% Charge device with twice rated vol			
Variation test chamber set at 125°C ± 2 Dissipation for 1000 hours (+48, -0)			
Load Life Factor ≤ Initial Value x 2.0 (See Above)			
Insulation Remove from test chamber and si	tahilize		
Resistance ≥ Initial Value x 0.3 (See Above) at room temperature for 24 ± 2 h			
Dielectric hefore measuring			
Strength Meets Initial Values (As Above)			
Appearance No visual defects Store in a test chamber set at 95°C	, 20C1		
Capacitance Store in a test chamber set at 85°C			
Variation (4.4. O) with rated voltage app			
Load Humidity Dissipation Factor Initial Value x 2.0 (See Above) Remove from chamber and stabi			
Pesistance ≥ Initial Value x 0.3 (See Above) room temperature and humidity	y for		
Dielectric Strength Meets Initial Values (As Above) 24 ± 2 hours before measurin	ıy.		

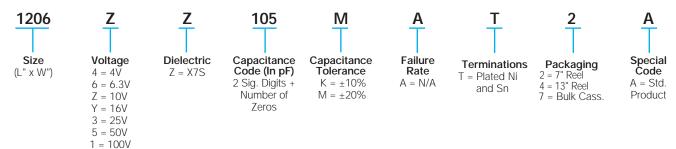
Capacitance Range

				-				m					0										
SIZI	Ε	0201		0402	!			0603					80	805						1206			
Solder	ina	Reflow Only	Re	flow C)nlv		Re	eflow Or	nlv				Reflov	v/Wave					Ref	ow/Wa	ave		
Packag		All Paper		All Pap				All Pape				F		mbossec	1		 			/Embo			
	MM	0.60 ± 0.03		00 ± 0 .				$.60 \pm 0.1$						± 0.20			\vdash			20 ± 0.2			
(L) Length	(in.)	(0.024 ± 0.001)		$40 \pm 0.$				0.03 ± 0.0						± 0.008)						26 ± 0.0			
(W) Width	MM	0.30 ± 0.03		50 ± 0.				.81 ± 0.1						± 0.20						60 ± 0.2			
(**) ********	(in.)	(0.011 ± 0.001)		20 ± 0 .				0.032 ± 0.0						± 0.008)						63 ± 0.0			
(t) Terminal	MM (in.)	0.15 ± 0.05 (0.006 ± 0.002)		25 ± 0. 10 ± 0.				.35 ± 0.1 014 ± 0.0						± 0.25 ± 0.010)						50 ± 0.2 20 ± 0.0			
	WVDC	16	16	25	50	10	16	25	50	100	10	16	25	50	100	200	10	16	25	50	100	200	500
Cap	100	A	10	2.5	30	10	10	23	30	100	10	10	23	30	100	200	10	10	23	30	100	200	300
(pF)	150	A																					
4 7	220	Α			С																		
-	330	А			С				G	G	J	J	J	J	J	J							K
	470	А			С				G	G	J	J	J	J	J	J							K
	680	A			С	\vdash			G	G	J	J	J	J	J	J	_					\square	K
	1000 1500	A			C				G G	G G	J	J J	J	J	J	J			J	- 1			K
	2200				C				G	G	J	J	J		J		J	J]	J	J	J	M
-	3300		+	С	С				G	G	J	J	J	1		J	J	1	J	J	1	J	M
	4700			C					G		Ĵ	Ĵ	Ĵ	Ĵ	J	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	M
	6800		С	С					G		J	J	J	J	J	J	J	J	J	J	J	J	Р
Cap	0.010		С						G		J	J	J	J	J	J	J	J	J	J	J	J	Р
(μF	0.015		С					G	G		J	J	J	J	J	J	J	J	J	J	J	M	
	0.022		С					G			J	J	J	J		M	J	J	J	J	J	M	<u> </u>
	0.033 0.047						G	G G			J	J J	J	J J	M M		J	J	J	J	J	M M	
	0.047						G	G			J	J	J		IVI]]		P	
	0.10		1			G	G	G			J	J	J	Ĵ			J	J	Ĵ	J	M		
	0.15					G					J	J	J				J	J	J	J			
	0.22					G					J	J	М				J	J	J	J			
	0.33										M	M					J	J	М	M			
	0.47					I					N	M					M	M	M				
-	0.68		-		_	_					N N						M	M	Q			\vdash	
	1.5			ار_		\sim	<u>_W</u> -	•			IN						P	IVI	Q				
	2.2		~	تر>	\leq		J),	ÎT									Q						
	3.3		1	() _	. كر																
	4.7			_	$\overline{}$																		
	10		4		4	- v											_					\square	<u> </u>
	22 47				- 1	T I																	
	100			ı	i	1 1																	
	WVDC	16	16	25	50	10	16	25	50	100	10	16	25	50	100	200	10	16	25	50	100	200	500
	SIZE	0201		0402				0603		100	10			305	100	200	1			1206	100	200	000
																V .	٠.,						
Letter	Α	C	E 0.71		G	J		1.00	1		N 1 40		P	Q 1.70		X	Y		Z				
Max. Thickness	0.33 (0.013)	0.56 (0.022)	0.71 (0.028)		0.86 .034)	0.94 (0.037	7)	1.02 (0.040)	(0.0		1.40 (0.055)		.52 060)	1.78 (0.070)		2.29 1.090)	2.5		2.79 (0.110)				
HICKHESS	(0.013)	, ,	` '	,	.034)	(0.037)	(0.040)	(0.0	130)	(0.000)	,		, ,	(0	1.090)	(0.11	JU)	(0.110)				
			PAPER									Ŀ	MBO	SSED									

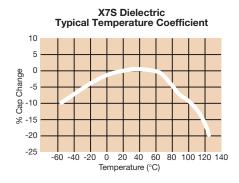


Capacitance Range

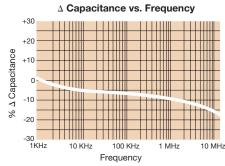
SIZ	ZΕ				1210					18	12			18	25		22	20		22	25
Solde	ering			Ref	low Onl	У				Reflov	v Only			Reflov	v Only		Reflo	v Only	İ	Reflo	w Only
Packa	aging				/Embos					All Emb				All Emb				bossed			bossed
(L) Length	MM (in.)				0 ± 0.20 6 ± 0.00					4.50 ± (0.177 ±				4.50 ± (0.177 ±			5.70 ± (0.225 ±			5.72 ± (0.225 ±	
(W) Width	MM			2.5	0 ± 0.20	<i>'</i>				3.20 ±	0.20			6.40 ±	: 0.40		5.00 ±	£ 0.40		6.35 ±	0.25
(t) Terminal	(in.) MM				8 ± 0.00 0 ± 0.25					(0.126 ± 0.61 ±				(0.252 ± 0.61 ±			0.197 :			(0.250 ± 0.64 ±	
(t) Terrillia	(in.) WVDC	10	1 1/		0 ± 0.01		1 200	I 500		(0.024 ±		F00		(0.024 ±	100	()	(0.025 ±		200	(0.025 ±	
Cap	100	10	16	25	50	100	200	500	50	100	200	500		50	100	6.3	50	100	200	50	100
(pF)	150																		1-	>	~W
	220 330								_									<u> </u>	<u></u> ر	<	∑
	470																		(-		IJ <u>↓</u> '
	680																	L		<u> </u>	
	1000 1500	J	J	J	J	J	J	M												t	
	2200	J	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	М												'	
	3300 4700	J	J	J	J	J	J	M													
	6800	J]	J	J	J	J	M													
Сар	0.010	J	J	J	J	J	J	М	K	K	K	K		M	М	Х	Х	Х	Х	М	Р
(μF	0.015 0.022	J	J	J	J	J	J	P Q	K K	K K	K K	P P		M M	M M	X	X	X	X	M M	P P
	0.022	J	J	J	J	J	J	Q	K	K	K	X		M	M	X	X	X	X	M	P
	0.047	J	J	J	J	J	J		K	K	K	Z		M	М	X	X	X	Х	М	Р
	0.068	J	J	J	J	J	M		K	K	K			M	M	X	X	X	X	M M	P P
	0.15	Ĵ	Ĵ	Ĵ	Ĵ	M			Κ	K	Р			M	M	X	X	X	X	M	P
	0.22	J	J	J	J	P Z			K	K	Р			M	M	X	X	X		M M	P P
	0.33	M	M	M	M	Z			K	P				M	M	X	X	X		M	P
	0.68	М	М	Р	Х	Z			М	Q				M		Χ	Χ	X		М	Р
	1.0 1.5	N N	N N	Р	X	Z			M	Х				M M				Z		M M	P X
	2.2	14	14	Χ					Z					IVI						M	X
	3.3 4.7	Q	Z																		
	10	Z																			
	22																				
	47 100																				
	WVDC	10	16	25	50	100	200	500	50	100	200	500		50	100	6.3	50	100	200	50	100
SIZ	E			1	210					18	12			18	25		22	220		22	25
Letter	Α		С	Е		G		J	K		M		N	Р	Q	Х		Υ	7	Z	
Max.	0.33	C).56	0.71		0.86	0.	.94	1.0)2	1.27	1.	.40	1.52	1.78	2.2	19	2.54	2.	79	
Thickness	(0.013)	(0.	.022)	(0.02	/	0.034)	(0.0	037)	(0.0	40)	(0.050)	(0.0	055)	(0.060	/ / /	(0.0	90)	(0.100)	(0.1	10)	
			PAPER											EM	BOSSED						

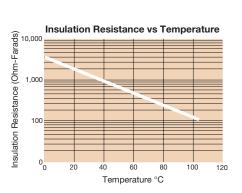

GENERAL DESCRIPTION

X7S formulations are called "temperature stable" ceramics and fall into EIA Class II materials. X7S is the most popular of these intermediate dielectric constant materials. Its temperature variation of capacitance is within $\pm 22\%$ from -55° C to $\pm 125^{\circ}$ C. This capacitance change is non-linear.

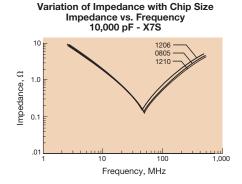

Capacitance for X7S varies under the influence of electrical operating conditions such as voltage and frequency.

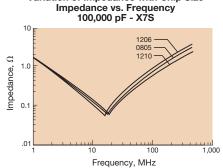
X7S dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable.


PART NUMBER (see page 2 for complete part number explanation)



TYPICAL ELECTRICAL CHARACTERISTICS

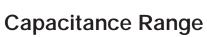

2 = 200V



Impedance vs. Frequency 1,000 pF vs. 10,000 pF - X7S 0805

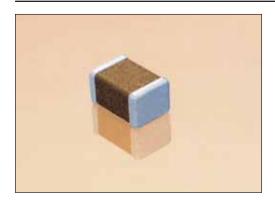
Variation of Impedance with Cap Value

Variation of Impedance with Chip Size



Specifications and Test Methods

Parame	ter/Test	X7S Specification Limits	Measuring	
Operating Tem	perature Range	-55°C to +125°C	Temperature C	ycle Chamber
Capac Dissipation		Within specified tolerance ≤ 2.5% for ≥ 50V DC rating ≤ 3.0% for 25V DC rating ≤ 3.5% for 16V DC rating ≤ 5.0% for ≤ 10V DC rating	Freq.: 1.0 k Voltage: 1.0 For Cap > 10 μF, (Vrms ± .2V
Insulation I	Resistance	100,000MΩ or 1000MΩ - μ F, whichever is less	Charge device with 120 ± 5 secs @ roo	om temp/humidity
Dielectric	cerature Range tance In Factor Resistance Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor	No breakdown or visual defects	Charge device with 300 1-5 seconds, w/charge limited to 50	and discharge current
		No defects	Deflectio	
Resistance to	Variation	≤ ±12%	Test Time: 3	30 seconds 7 1mm/sec
Flexure Stresses	Factor	Meets Initial Values (As Above)	V	
		≥ Initial Value x 0.3	90 r	
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.	
	rerature Range tance In Factor Resistance Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance ability Appearance Capacitance Variation Dissipation Factor Insulation Resistance Uariation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength	No defects, <25% leaching of either end terminal		
	Variation	≤ ±7.5%	Dip device in eutectic s	solder at 260°C for 60
Resistance to Solder Heat		Meets Initial Values (As Above)	seconds. Store at room hours before measuring	temperature for 24 \pm 2
Solder Heat	Resistance	Meets Initial Values (As Above)	Tiours perore measuring	g electrical properties.
		Meets Initial Values (As Above)		
		No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
SHOCK		Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Strength	Meets Initial Values (As Above)	Repeat for 5 cycles ar 24 ± 2 hours at room	
		No visual defects	Observation in the control of the co	
	Variation	≤ ±12.5%	Charge device with to test chamber set	at 125°C ± 2°C
Load Life	Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou	
		≥ Initial Value x 0.3 (See Above)	Remove from test ch at room temperatur	re for 24 ± 2 hours
		Meets Initial Values (As Above)	before me	easuring.
	Appearance	No visual defects	Store in a test chamb	or sot at 85°C ± 2°C/
	Variation	≤ ±12.5%	85% ± 5% relative hu	midity for 1000 hours
Load Humidity	Dissipation	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	0 11
j	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from cham room temperature	and humidity for
	Appearance Capacitance Variation Dissipation Factor Insulation Resistance ability Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Dissipation Factor Insulation	Meets Initial Values (As Above)	24 ± 2 hours be	iore measuifig.

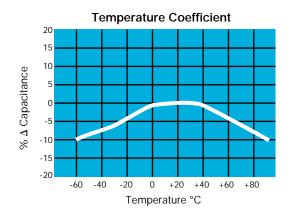


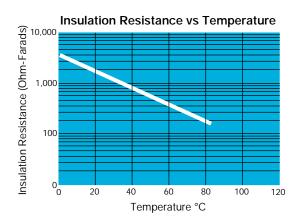
				E			П						
SIZE		0402		0603		0805	12	.06	121	0			
Soldering	g	Reflow C	nly	Reflow Onl	y Re	flow/Wave	Reflov	//Wave	Reflow	Only			
Packaging	g	All Pap		All Paper		r/Embossed		mbossed	Paper/Em				
(L) Length	MM (in.)	1.00 ± 0. (0.040 ± 0.1		1.60 ± 0.15 (0.063 ± 0.00)		.01 ± 0.20 .079 ± 0.008)	3.20	± 0.20 ± 0.008)	3.20 ± (0.126 ±				
0.4.0.1.4.5.1.4.5	(in.) MM	0.50 ± 0.0		0.81 ± 0.15		.25 ± 0.20		± 0.006) ± 0.20	2.50 ±				
(W) Width	(in.)	(0.020 ± 0.0)	004)	(0.032 ± 0.00)	5) (0.0	0.008) ± 0.008	(0.063	± 0.008)	(0.098 ±	0.008)			
(t) Terminal	MM (in.)	0.25 ± 0. (0.010 ± 0.0		0.35 ± 0.15 (0.014 ± 0.00)		.50 ± 0.25 020 ± 0.010)		± 0.25 ± 0.010)	0.50 ± (0.020 ±				
W	/VDC	6.3	300)	6.3	5) (0.0	4	6.3	10	6.3				
Сар	100							İ	i				
(pF)	150 220							~					
	330				_		†	سنزك		*			
	470						<u> </u>		、),)			
-	680 1000						۲ ر	<u> </u>					
	1500							سا					
	2200							*t	1				
	3300						Γ	i					
	4700 6800												
	0.010												
	0.015												
	0.022	С			_								
	0.033	C											
0	0.068	С											
	0.10	С											
	0.15 0.22												
	0.33			G									
	0.47			G									
	1.0			G G									
	1.5					N	Q						
	2.2					N	Q						
	3.3					N	Q Q						
	4.7 10					N	Q	Q					
	22								Z				
	47												
\A.	100 /VDC	6.3		6.3	-	4	6.3	10	6.3				
	IZE	0.3		0603		0805		206	121				
							•						
Letter	Α	C	E 0.71	G	J	K	M	N	P 1.50	Q	X	Y	
Max.	0.33	0.56 (0.022)	0.71 (0.028)	0.86 (0.034)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	(0.
Thickness	(0.013)												

General Specifications



5 = 50V

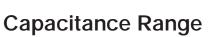

GENERAL DESCRIPTION


- General Purpose Dielectric for Ceramic Capacitors
- EIA Class II Dielectric
- Temperature variation of capacitance is within ±15% from -55°C to +85°C
- · Well suited for decoupling and filtering applications
- Available in High Capacitance values (up to 100μF)

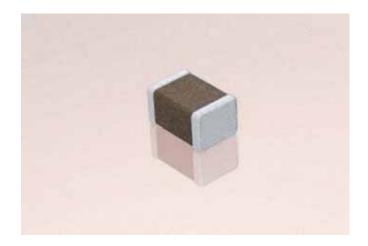
PART NUMBER (see page 2 for complete part number explanation)

TYPICAL ELECTRICAL CHARACTERISTICS

Specifications and Test Methods


Paramet	ter/Test	X5R Specification Limits	Measuring	Conditions
Operating Temp		-55°C to +85°C	Temperature C	
Capac	itance	Within specified tolerance		
		≤ 2.5% for ≥ 50V DC rating	Freq.: 1.0 k	
Dissipatio	n Factor	≤ 3.0% for 25V DC rating	Voltage: 1.0	
•		≤ 3.5% for 16V DC rating	For Cap > 10 μF, (0.5Vrms @ 120Hz
		≤ 5.0% for ≤ 10V DC rating	Charge device with	a ratad valtaga for
Insulation F	Resistance	100,000Μ Ω or 500Μ Ω - μ F, whichever is less	Charge device with	
		Willicitievel is less	120 ± 5 secs @ roo Charge device with 300	
Dielectric	Strength	No breakdown or visual defects	1-5 seconds, w/charge limited to 50	and discharge current max)
	Appearance	No defects	Deflectio	
		≤ ±12%	Test Time: 3	30 seconds
Resistance to			\setminus	1mm/sec
Flexure		Meets Initial Values (As Above)	· · ·	
Stresses		,		
		≥ Initial Value x 0.3	90 r	mm —
		≥ 95% of each terminal should be covered	Dip device in eutectic	solder at 230 + 5°C
Solder	ability	with fresh solder	for 5.0 ± 0 .	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance	≤ ±7.5%		
	Variation	<u> </u>	Dip device in eutectic s	solder at 260°C for 60
Resistance to		Meets Initial Values (As Above)	seconds. Store at room	
Solder Heat		Wicets William Values (157156Ve)	hours before measuring	
		Meets Initial Values (As Above)		
		, ,		
		Meets Initial Values (As Above)		
	esistance Appearance Capacitance Variation Dissipation Factor Insulation Resistance ability Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
		≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
		≤ ±7.570	Step 2. Room remp	≤ 3 Hilliutes
Thermal		Meets Initial Values (As Above)	Step 3: +85°C ± 2°	30 ± 3 minutes
Shock		ivicets itilitial values (As Above)	31ep 3. +03 C ± 2	30 ± 3 Hilliutes
		Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
			Repeat for 5 cycles an	
		Meets Initial Values (As Above)	24 ± 2 hours at room	
		No visual defects		
		≤ ±12.5%	Charge device with 1 test chamber set at 85°0	
		≤ ±12.570	(+48, -0). Note: Contact	
		≤ Initial Value x 2.0 (See Above)	CV devices that are teste	
Load Life		initial value x 2.0 (See Above)		
		≥ Initial Value x 0.3 (See Above)	Remove from test ch	amber and stabilize
		((((((((((((((((((((at room temperatur	
		Meets Initial Values (As Above)	before me	easuring.
	Appearance	No visual defects		1 10500 2007
	Capacitance	≤ ±12.5%	Store in a test chambe	
	Variation	≤ ±12.5%	85% ± 5% relative hur	
Load	Dissipation	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	a voitage applied.
Humidity	Factor	Similar value x 2.0 (See Above)	Remove from cham	ber and stabilize at
	Insulation	≥ Initial Value x 0.3 (See Above)	room temperature	
	Resistance		24 ± 2 hours bef	
	Dielectric Strongth	Meets Initial Values (As Above)		Ŭ
	Strength	` '		

												1	ш					0			
SIZI	E		0201				0402					06	603					90	305		
Solder	rina		Reflow Only			R	eflow Onl	V				Reflo	w Only					Reflov	v/Wave		
Packag			All Paper				All Paper						Paper			 	-		mbosse	d	
	MM		0.60 ± 0.03				1.00 ± 0.1			 			± 0.15						± 0.20		
(L) Length	(in.)	(0.024 ± 0.001				0.040 ± 0.0						± 0.006)					(0.079	± 0.008)		
(W) Width	MM		0.30 ± 0.03				0.50 ± 0.1						± 0.15						± 0.20		
	(in.) MM	(0.011 ± 0.001) 0.15 ± 0.05				0.020 ± 0.0						± 0.006)						± 0.008)		
(t) Terminal	(in.)	(0.15 ± 0.05 0.006 ± 0.002				0.25 ± 0.10 0.010 ± 0.00						± 0.15 ± 0.006)						± 0.25 ± 0.010)		
	WVDC	10	16	25	4	6.3	10	16	25	4	6.3	10	16	25	35	6.3	10	16	25	35	50
Cap	100			A			1					1	1			1		1.0			
(pF)	150			Α												l		-		₹ \\\	
	220			A															\sim		•
	330			A												l	~ (<u> </u>	_))	ÎΤ
	470			A												l	Ĺ	_) _	٠	•
	680 1000			A A						-			-			—					
	1500		Α	А												l		-	- T		
	2200	А	Ā													l		ı			
	3300	A																			
	4700	А														l					
	6800	А																			
Cap	0.010	А							С												
(μF	0.015								С						G						
	0.022 0.033								С	-					G G	_					
	0.047				C									G	G						
	0.068				C									G		1					N
	0.10				С									G							N
	0.15				CC									G		l				N	
	0.22						С						G	G						N	
	0.33 0.47				C	С							G G	G		l			N N		
	0.47				C								G			l		N	N N		
-	1.0				C	С				 	G	G	G			 		N	N		
	1.5															l	N	N			
	2.2									G	G						N	N			
	3.3																N				
	4.7									G	G					N	N				
	6.8 10									-		-				N					
	22															IN					
	47															l					
	100															1					
	WVDC	10	16	25						4	6.3	10	16	25	35	6.3	10	16	25	35	50
	SIZE		0201		0402							0	603					0	805		
Letter	А	С	E									Р	Q		Х	Υ		Z			
Max.	0.33	0.56	0.71	0.86	G J K M 86 0.94 1.02 1.27							1.52	1.78		2.29	2.54		2 .79			
Thickness	(0.013)	(0.022)	(0.028)	(0.034)	(0.03		(0.040)	(0.0)		1.40 (0.055		1.060)	(0.070		1.090)	(0.10).110)			
	(0.0.0)	(0.022)	PAPER	(0.001)	(0.0)	- / /	(0.0.0)	,0.0	- 0/	,0.000	, ,	EMBO		, (, 0,	(00	-, (0				
			LVLFK									LIVIDO	JJLD								



SIZ	E.			1206						121)					1812	
Solde	rina		F	Reflow/Wav						Reflow	Only					Reflow Only	
Packa				per/Emboss						per/Em						All Embossed	
(L) Length	MM			3.20 ± 0.20						3.20 ± 0	.20					4.50 ± 0.30	
(L) Length	(in.)		(1	0.126 ± 0.008)				((0.126 ± 0						(0.177 ± 0.012)	
(W) Width	MM (in.)		(1	1.60 ± 0.20 0.063 ± 0.008	١				((2.50 ± 0 0.098 ± 0						3.20 ± 0.20 (0.126 ± 0.008)	
W T 1	MM			0.50 ± 0.000	')					0.50 ± 0						0.61 ± 0.36	
(t) Terminal	(in.)			0.020 ± 0.010)					0.020 ± 0						(0.024 ± 0.014)	
	WVDC	6.3	10	16	25	35	6.	3	10	16	2	5	35	6.3		10	25
Cap	100														I		1
(pF)	150																\sim W \sim
	220 330													+	~		→
	470																. <i>D</i> ₹'
	680																
	1000															مبدأ	
	1500															Tt	
	2200													_			
	3300 4700																
	6800																
Сар	0.010													1			
(μF	0.015																
	0.022						_										
	0.033																
	0.047 0.068																
	0.10																
	0.15																
	0.22																
	0.33																
	0.47 0.68					М											
	1.0					0							N				
	1.5					<u> </u>											
	2.2			Q	Q								X				
	3.3																
	4.7 6.8		Q	Q	Q							-					
	6.8	Q	Q	Q			_			Z				+			Z
	22	Q		Q .		7	7	Z	Z						Z		
	47						2						Z		_		
	100						_	7									
	WVDC	6.3	10	16	25	35	6.	.3	10	16	2	5	35	6.3		10	25
SIZ	E			1206						121	0					1812	
Letter	Α	С	E	G	J		K	M		N	Р		Q	Х	Υ	Z	
Max.	0.33	0.56	0.71			4	1.02	1.27		1.40	1.52		1.78	2.29	2.54	2.79	
Thickness	(0.013)	(0.022)					(0.040)	(0.05		.055)	(0.060		0.070)	(0.090)	(0.100)	(0.110)	
			PAPE	R							EM	3055					

Y5V Dielectric

General Specifications

Y5V formulations are for general-purpose use in a limited temperature range. They have a wide temperature characteristic of +22% -82% capacitance change over the operating temperature range of -30°C to +85°C.

These characteristics make Y5V ideal for decoupling applications within limited temperature range.

PART NUMBER (see page 2 for complete part number explanation)

25V = 3

50V = 5

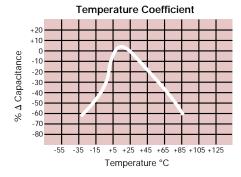
Dielectric Ca Y5V = G Co 2 S

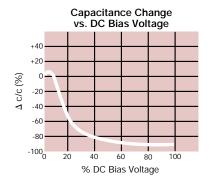
104

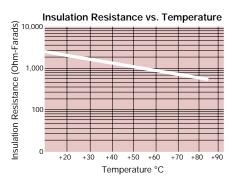
Capacitance Code (In pF)
2 Sig. Digits + Number of Zeros

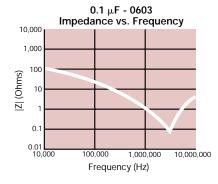
Capacitance Tolerance Z = +80 -20%

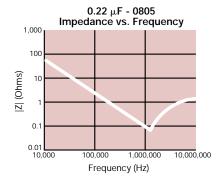
Failure Rate A = Not Applicable

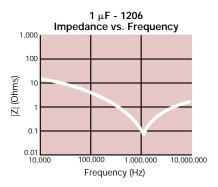



and Sn


Packaging 2 = 7" Reel 4 = 13" Reel


2



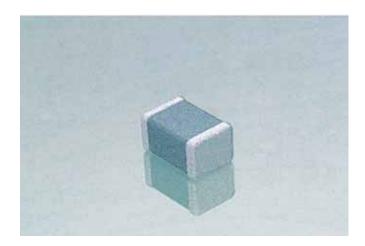


Y5V Dielectric

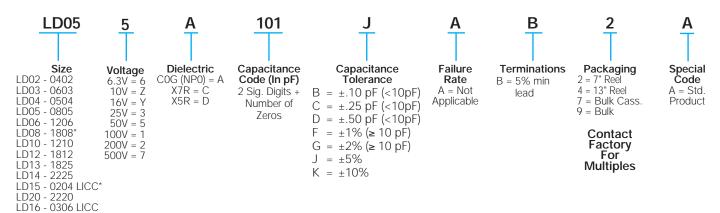
Specifications and Test Methods

Parame	ter/Test	Y5V Specification Limits	Measuring	
		-30°C to +85°C	Temperature C	Cycle Chamber
Capac	itance	Within specified tolerance		
		≤ 5.0% for ≥ 50V DC rating	Freq.: 1.0 k	
Dissipation	on Factor	≤ 7.0% for 25V DC rating	Voltage: 1.0	
•		≤ 9.0% for 16V DC rating	For Cap > 10 μF, (0.5Vrms @ 120Hz
		≤ 12.5% for ≤ 10V DC rating	Ole annua al anti a annuita	l
Insulation I	Resistance	100,000MΩ or 500MΩ - μF,	Charge device with	
		whichever is less	120 ± 5 secs @ ro Charge device with 300	
Dielectric	Strength	No breakdown or visual defects	1-5 seconds, w/charge limited to 50	and discharge current 0 mA (max)
	Appearance	No defects	Deflection	
		≤ ±30%	Test Time: 3	30 seconds
Resistance to		3 ±00/0	7	7 1mm/sec
Flexure		Meets Initial Values (As Above)	v	
Stresses		Wicets Itiliai Values (AS Above)		
	icitance tion Factor Resistance ic Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Dissipation Factor	 ≥ Initial Value x 0.1	901	
	Resistance			
Solder	ability	≥ 95% of each terminal should be covered	Dip device in eutection	
		with fresh solder No defects, <25% leaching of either end terminal	for 5.0 ± 0.	5 Seconds
	icitance tion Factor Resistance Appearance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Insulation Resistance	Ŭ .		
		≤ ±20%		
	mperature Range acitance tion Factor Resistance Appearance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Factor Insulation		Dip device in eutectic	
Resistance to	icitance tion Factor Resistance Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Dielectric	Meets Initial Values (As Above)	seconds. Store at room	
Solder Heat	mperature Range acitance Ition Factor In Resistance In Resistance In Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Dielectric Dielectric		hours before measurin	g electrical properties.
	Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Pactor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Dielectric	Meets Initial Values (As Above)		
	mperature Range acitance tion Factor Resistance Appearance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Dielectric	Mosts Initial Values (As Above)		
		Meets Initial Values (As Above)		
		No visual defects	Step 1: -30°C ± 2°	30 ± 3 minutes
		≤ ±20%	Step 2: Room Temp	≤ 3 minutes
Thermal		Meets Initial Values (As Above)	Step 3: +85°C ± 2°	30 ± 3 minutes
Shock				
		Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
			Repeat for 5 cycles ar	nd measure after
		Meets Initial Values (As Above)	24 ±2 hours at room t	
		No visual defects		
	Capacitance	≤ ±30%	Charge device with to	
		3 ±0070	test chamber se	
		≤ Initial Value x 1.5 (See Above)	for 1000 hou	urs (+48, -0)
Load Life		s initial value x 1.5 (See Above)	D	
		≥ Initial Value x 0.1 (See Above)	Remove from test ch	
			at room temperatu before me	
		Meets Initial Values (As Above)	belore mi	easumy.
		No visual defects		
			Store in a test chamb	
		≤ ±30%	85% ± 5% relative hu	
Load			(+48, -0) with rate	d voltage applied.
Humidity		≤ Initial Value x 1.5 (See above)	Domovo from oboro	shor and stabilize at
	Insulation	- Initial Value v C 1 (Cas Abaya)	Remove from cham room temperature	
		≥ Initial Value x 0.1 (See Above)	24 ± 2 hours be	
		Meets Initial Values (As Above)	27 I Z 110413 DE	iore measuring.
	Strength	IVICETS ITITIAL VALUES (AS ADOVE)		

Y5V Dielectric



								ш					1				1					
SIZI	E	02	201		0402			06	03			080)5			12	06			1:	210	
Solder	ing	Reflo	w Only		Reflow On	ly		Reflov	v Only			Reflow/	Wave			Reflow	//Wave			Reflo	w Only	
Packag	ging	All F	aper		All Paper			All P	aper		Р	aper/Em	bossed		Р	aper/Er	nbossec	1		Paper/E	Embosse	ed
(L) Length	MM (in.)		± 0.03 ± 0.001)		1.00 ± 0.1 (0.040 ± 0.0			1.60 :				2.01 ± (0.079 ±				3.20 ± (0.126 ±	± 0.20 ± 0.008)				± 0.20 ± 0.008)
(W) Width	MM (in.)		± 0.03 ± 0.001)		0.50 ± 0.1 (0.020 ± 0.0	04)		(0.032 =				1.25 ± (0.049 ±	0.008)				£ 0.008)			(0.098	± 0.20 ± 0.008)
(t) Terminal	MM (in.)		± 0.05 ± 0.002)		0.25 ± 0.1 (0.010 ± 0.0			0.35 : (0.014 :				0.50 ± (0.020 ±				0.50 ± (0.020 ±	± 0.25 ± 0.010)				± 0.25 ± 0.010)
	WVDC	6.3	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50
Cap (pF)	820 1000 2200		A A																ا رحا		 ∑ W-	• • • • • • • • • • • • • • • • • • •
Cap (µF)	4700 0.010 0.022	A A	A A	С	C	C				G G											\sum_{i}	ŢT
	0.047 0.10 0.22	А		C	C C C			G	G G	G			J K	K N				ı		T T	I	I
	0.47 1.0 2.2						G	G G			N	K N N	N N			М	М	М				N
	4.7 10.0 22.0 47.0										N				0 0	M Q			Х	Q	N Q	
	WVDC	6.3	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50
SIZI	E	02	201		16 25 50 0402			06	03	•		08	805			12	206			12	10	
Letter	Α		c	F	E G J				М	N		Р		2	Х		Υ	1 :	Z			
Max.	0.33		56	0.71				1	1.27	1.4	0	1.52		78	2.29		2.54		- 79			
Thickness	(0.013))22)	(0.028)	(0.034)	(0.037)	1.02 (0.040		.050)	(0.05		(0.060)	- 1	070)	(0.090		(0.100)		110)			
				PAPER	-7 (7 (7)							EMB	OSSE	D				-				



General Specifications

AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

PART NUMBER (see page 2 for complete part number explanation)

LD17 - 0508 LICC LD18 - 0612 LICC

ELECTRICAL GRAPHS

NPO	Refer to page 4 for Electrical Graphs
X7R	Refer to page 12 for Electrical Graphs
X7S	Refer to page 16 for Electrical Graphs
X5R	Refer to page 19 for Electrical Graphs
Y5V	Refer to page 23 for Electrical Graphs

^{*}Contact factory

Capacitance Range (NPO Dielectric)

						ı	13											
SIZE	E		LD02			LD	03				LD05					LD06		
Solder	ing		Reflow Only			Reflov	v Only			Re	eflow/Wa	ve				low/Wa		
Packag			All Paper			All P					er/Embo					r/Embo		
(L) Length	MM (in.)		1.00 ± 0.10 (0.040 ± 0.00			1.60 ± (0.063 ±				(0.	2.01 ± 0.20 079 ± 0.00	08)			(0.1	20 ± 0.20 26 ± 0.00	08)	
(W) Width	MM (in.)		0.50 ± 0.10 (0.020 ± 0.00			0.81 ± (0.032 ±					1.25 ± 0.20 049 ± 0.00					60 ± 0.20		
(t) Terminal	MM		0.25 ± 0.15			0.35 ±	0.15			(0.50 ± 0.2	5			0.	50 ± 0.2	5	
(t) Terminal	(in.) WVDC	16	(0.010 ± 0.00	50	6.3	(0.014 ±	50	100	16	25	020 ± 0.0	10)	200	16	25	20 ± 0.0°	10)	200
Сар	0.5	С	С	С	G	G	G	G	Е	Е	Е	E	J	J	J	J	J	J
(pF)	1.0 1.2	C C	C	C	G G	G G	G G	G G	E E	E E	E	E E	J	J	J	J	J	J
	1.5	С	С	С	G	G	G	G	Е	Е	E	E	J	J	J	J	J	J
	1.8 2.2	C	C	C	G G	G G	G G	G G	E E	E E	E E	E E	J	J	J	J	J	J
	2.7	C	C	C	G	G	G	G	E	E	E	E	J	J	J	J	J	J
	3.3 3.9	C C	C	C	G G	G G	G G	G G	E E	E E	E E	E E	J	J	J	J	J	J
	4.7	C	C	C	G	G	G	G	E	E	E	E	J	J	J	J	J	J
	5.6 6.8	C C	C C	C C	G G	G G	G G	G G	E E	E E	E E	E E	J	J	J	J	J	J
	8.2	С	С	С	G	G	G	G	E	E	E	E	J	J	J	J	J	J
	10	С	С	С	G	G	G	G	E	E	E	E	J	J	J	J	J	J
	12 15	C C	C C	C C	G G	G G	G G	G G	E E	E E	E E	E E	J	J	J	J	J	J
	18	C C	C C	С	G G	G G	G G	G G	E	E E	E	E	J	J	J J	J	J	J
	22 27	C	C	C	G	G	G	G	E E	E	E E	E E	J	J	J	J	J	J
	33	С	C C	С	G	G	G	G	E	E	E	E	J	J	J	J	J	J
	39 47	C C	C	C	G G	G G	G G	G G	E E	E E	E	E E	J	J	J	J	J	J
	56	C C	C C	C C	G G	G G	G G	G G	E	E E	E E	E	J	J	J	J	J	J
	68 82	C	C	C	G	G	G	G	E E	E	E	E E	J	J	J	J	J	J
	100	C C	C C	С	G	G	G	G	E	E	E	E	J	J	J	J	J	J
	120 150	C	C	C	G G	G G	G G	G G	E E	E E	E	E E	J	J	J	J	J	J
	180	С	C	С	G	G	G	G	E	E	E	E	J	J	J	J	J	J
	220 270	C C		С	G G	G G	G G	G G	E E	E E	E	E J	J M	J	J	J	J	J
	330	С			G	G	G	G	E	E	E	J	M	J	J	J	J	J
	390 470				G G	G G	G G		J	J	J	J	M M	J	J	J	J	J
	560				G	G	G		J	J	J	J		J	J	J	J	J
	680 820				G G	G G	G G		J	J	J	J		J	J	J	J	J M
	1000				G	G	G		J	J	J	J		J	J	J	J	Q Q
	1200 1500								J	J	J			J	J	J	J M	Q
	1800								J	J	J			J	J	M	M P	
	2200 2700								J	J	M M			J	J	M M	P	
	3300 3900								N N	N N	M M			J	J	M M	P P	
	4700								N	N	IVI			J	J	М	P	
	5600 6800								N N	N				J M	J M	М		
	8200								N					M	M			
Cap (µF)	0.010 0.012								N					M M	M M			
(pr /	0.015	_	1	į.	·									M	M			
	0.018 0.022	'ار		₩ →														
	0.027	_ ح	\leq) <u>T</u>														
	0.033 0.039	_	\bigcirc	<u></u>														
	0.047	_	41															
	0.068 0.082		1															
	0.10																	
	WVDC	16	25	50	6.3	25	50	100	16	25	50 000E	100	200	16	25	50	100	200
	SIZE		0402				603				0805			V		1206		
Letter Max.	A 0.33	0.56	E 0.71	G 0.86	J	K 1.02	M 1.27	N 1.40	1.5		Q 1.78	X 2.29	2	Y	Z 2.79	-		
Thickness	(0.013)	(0.022)	(0.028)	(0.034)	(0.037)	(0.040)	(0.050)	(0.055)	(0.0)		0.070)	(0.090		.100)	(0.110)			
			PAPER						EI	MBOSS	SED							

Capacitance Range (NPO Dielectric)

IKLI					LOI	,,,,,,,,	- -	П										
SIZ	_)10			LD	12			LD13			LD20			LD14	
Solder				//Wave			Reflow				Reflow On	ly	R	eflow Only	v	F	Reflow Onl	ν
Packa	ging			mbossed			All Emb	ossed			II Emboss	ed	All	Embosse		А	II Embosse	
(L) Length	MM (in.)			± 0.20 ± 0.008)			4.50 ± (0.177 ±			((4.50 ± 0.30 0.177 ± 0.01			5.70 ± 0.40 225 ± 0.016	5) l		5.72 ± 0.25 225 ± 0.010))
(W) Width	MM (in.)		2.50	± 0.20 ± 0.008)			3.20 ± (0.126 ±	0.20			6.40 ± 0.40 0.252 ± 0.01)	, [5.00 ± 0.40 197 ± 0.016			5.35 ± 0.25 250 ± 0.010	
(t) Terminal	MM (in.)		0.50	± 0.25 ± 0.010)			0.61 ± (0.024 ±	0.36			0.61 ± 0.36 0.024 ± 0.01)	(0.64 ± 0.39 025 ± 0.015			0.64 ± 0.39 025 ± 0.015	
	WVDC	25	50	100	200	25	50	100	200	50	100	200	50	100	200	50	100	200
Cap (pF)	0.5 1.0																	
4 7	1.2 1.5																	
	1.8																	
	2.2 2.7														_	>	\sim	/
-	3.3) <u>T</u>
	3.9 4.7														_	J.		
	5.6 6.8															t		
-	8.2 10															'		
	12																	
	15 18																	
	22 27																	
-	33 39																	
	47																	
	56 68																	
-	82 100																	
	120																	
	150 180																	
	220 270																	
-	330 390																	-
	470																	
	560 680	J	J	J	J													
	820 1000	J	J	J	J	K	K	K	K	M	M	M	Х	X	Х	Р	Р	Р
	1200	Ĵ	Ĵ	J	М	K	K	K	K	M	M	М	Х	Χ	Х	Р	Р	Р
	1500 1800	J	J	J	M	K K	K K	K K	K K	M M	M M	M M	X	X	X	P P	P P	P P
	2200 2700	J	J	M M	Q Q	K K	K K	K K	K P	M M	M M	M M				P P	P P	P P
	3300 3900	J J	J	M M		K K	K K	K K	P P	M M	M M	M M				P P	P P	P P
	4700	J	J	M		K	K	K	Р	M	M	М				Р	Р	Р
	5600 6800	J	J	M		K K	M M	M M	P X	M M	M M	M M				P P	P P	P P
Сар	8200 0.010	J N	J N			K K	P P	X	X	M M	M M					P P	P P	P P
(μF)	0.012	N	N			K M	P P		.,	M P	M					P P	P P	P Y
	0.015 0.018					M	Р			Р	M M					Р	Р	Υ
	0.022 0.027					M M	Р			Р						P P	Y Y	Y Y
	0.033					М										P P	Y	Z Z
	0.047															Р	-	
	0.068 0.082															Р		
	0.10 WVDC	25	50	100	200	25	50	100	200	50	100	200	50	100	200	50	100	200
SIZE		20		100	200	23	181		200	30	1825	200	50	2220	200	50	2225	200
Letter	Α	С		E	G	J	K	M		N	Р	Q	Х	Y		7		
Max. Thickness	0.33 (0.013)	0.56			0.86	0.94 (0.037)	1.02 (0.040)	(0.05		.40 055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.5 ² (0.10				
	()	,2		PER		()	()	(2.30	, (3.	,	EMBOS		(0)	(20	, (

Capacitance Range (X7R Dielectric)

			в						—																
SIZ	E			LD02					ı	LD03	3					LD	05					LD	06		
Solder	ring			eflow Only	у					low C							/Wave						/Wave		
Packag	ging MM			All Paper 1.00 ± 0.10						I Pap 50 ± 0.					Pa	per/En 2.01 ±	nbosse	ed			Pa	oer/En 3.20 ±	nbosse	ed	
(L) Length	(in.)		(0.	040 ± 0.004 0.50 ± 0.10	4)				(0.06	$53 \pm 0.$	006)				(0.079 ±	0.008)				((0.126 ±	0.008)		
(W) Width	MM (in.)		(0.	020 ± 0.004	4)				(0.03	31 ± 0. 32 ± 0.	006)				(1.25 ± 0.049 ±	0.008)			1.60 ± 0.20 (0.063 ± 0.008)					
(t) Terminal	MM (in.)			0.25 ± 0.15 010 ± 0.000						35 ± 0. 14 ± 0.					(0.50 ± 0.020 ±					((0.50 ± 0.020 ±			
	WVDC	6.3	10	16	25	50	6.3	10	16	25	50	100	200	10	16	25	50	100	200	10	16	25	50	100	200
Cap (pF)	100 120	000	C	C	C	C																			
	150 180	С	C	C	C	C	G	G	G	G	G	G	G												
	220 270 330	C C	C C	C C	C C	C C	G G	G G	G	G G	G G	G G	G G	E	E E	E	E	E	E						
	330 390	C	C	C	C	C	G G	G G	G G	G	G	G	G	E E	E	E E	E E	E	E E						
	470 560	C	C	C	C	C	G	G	G	G G	G	G	G G	E E	E E	E E	E	E	E						<u> </u>
	680	С	С	С	С	С	G	G	G	G	G	G	G	E	Ε	Ε	Е	E	E						
	820 1000	C	C	C	C	C	G	G	G	G	G	G	G	E E	E	E	E	E	E	J	J	J	J	J	J
	1200	С	С	С	С	С	G	G	G	G	G	G	U	Е	Е	Ε	Ε	Ε	J	J	J	J	J	J	J
	1500 1800	C	C	C	C	C	G	G	G	G	G	G		E E	E E	E	E	E	J	J	J	J	J	J	J
	2200	С	С	С	С	С	G	G	G	G	G	G		Е	Е	Ε	Е	Е	Ĵ	Ĵ	J	Ĵ	J	Ĵ	J
	2700 3300	C	C	C	C	C	G	G	G	G	G	G		E E	E	E	E	E	J	J	J	J	J	J	J
	3900	С	С	С	С	С	G	G	G	G	G	G		Е	Ε	Ε	Ε	Ε	J	J	J	J	J	J	J
-	4700 5600	C	C	C	C	C	G	G	G	G	G	G		E E	E	E	E	J	J	J	J	J	J	J	J
	6800	С	С	С	С		G	G	G	G	G	G		Е	Е	Ε	Ε	J	j	J	j	J	J	J	J
Cap	8200 0.010	C	C	C	С		G	G	G	G	G	G		E E	E	E	E	J	J	J	J	J	J	J	J
(μF)	0.012 0.015	C C	C	C			G G	G G	G G	G G	G G	G		J	J	J	J	J	J	J J	J	J	J	J	M
	0.015	C	C	C			G	G	G	G	G			J	J	J	J	J	M	J	J	J	J	J	M
	0.022 0.027	C	C	С			G G	G G	G G	G G	G G			J	J	J	J	J	М	J	J J	J	J	J	M M
	0.033	С	С				G	G	G	G	G			J	J	J	J	М		J	J	J	J	J	М
	0.039 0.047	С	С				G G	G G	G G	G G	G			J J	J	J	J	M M		J	J	J	J	J	M
	0.056						G	G	G					J	J	J	J			J	J	J	J	J	Р
	0.068 0.082						G G	G G	G G					J	J	J	J			J	J	J	J	J M	Р
	0.10 0.12						G G	G G	G					J J	J	J	J M			J	J	J	J	M	
	0.15						G	G						J	J	J	IVI			J	J	J	J		
	0.18 0.22						G G	G G						J J	J	M M				J	J	J	J		
	0.27						U	U						М	М	IVI				J	J	J	М		
	0.33 0.47													M N	M M					J M	J M	M	M		
	0.56													N						М	М	Q			<u> </u>
	0.68 0.82													N N						M M	M M				
	1.0 1.2													N						М	М				_
	1.5		. >	·	√W.															Р					
	2.2	- L				$\in \dashv$														Q					
	3.3 4.7																								
	10 22	4.																							
	47 100																								
	WVDC				6.3 10 16 25 50 100 200								200	10	16	25	50	100	200						
	SIZE	0402				0603			0805				1206												
Letter	A 0.33	C E G J 0.56 0.71 0.86 0.94							N					Y 2.54		Z 2.79									
Max. Thickness	(0.013)			0.71 (0.028)	(0.034)	(0.037)		1.02 (0.040		1.27 (0.050		(0.05		1.52 (0.060)					(0.10		(0.110)				
	, , , , , ,	, ,	0.022) (0.028) (0.034) (0.037) PAPER								-	,	,	(0.060) (0.070) (0.090) (0.10) EMBOSSED					,						

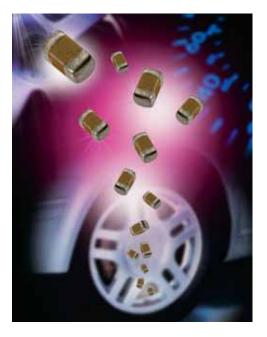
Capacitance Range (X7R Dielectric)

	SIZE LD10 LD12 LD13 LD14													
SIZ	Œ			LD10)		LD	12	LE	013	LD	14		
Solde				eflow/W			Reflov			w Only	Reflov			
Packa	ging MM		Pap	er/Emb 3.20 ± 0			4.50 :		All Em 4.50 :	bossed	All Emb	oossed		
(L) Length	(in.) MM		(0	0.126 ± 0 2.50 ± 0	.008)			£ 0.012)		± 0.012)	(0.225 ±	0.010)		
(W) Width	(in.)		((0.098 ± 0	.008)		(0.126 :	E 0.008)	(0.252 :	£ 0.016)	(0.250 ±	0.010)		
(t) Terminal	MM (in.)		(0	0.50 ± 0 0.020 ± 0			0.61 :	± 0.36 ± 0.014)	0.61 :		0.64 ± (0.025 ±			
Cap	WVDC 100	10	16	25	50	100	50	100	50	100	50	100		
(pF)	120 150						'				' '			
	180							•	مراً ا		W-W-	*		
	220 270							(\sim	لل	Ţ		
	330 390									<u> </u>				
	470									t				
	560 680													
	820 1000	J	J	J	J	J								
	1200	J	J	J	J	J								
	1500 1800	J	J	J	J	J								
	2200 2700	J	J J	J	J	J								
	3300	J	J	J	J	J								
	3900 4700	J	J	J	J	J								
	5600 6800	J	J	J	J	J								
	8200	J	J	J	J	J								
Cap (μF)	0.010 0.012	J	J	J	J	J	K K	K K	M M	M M	M M	M M		
	0.015 0.018	J	J	J	J	J	K K	K K	M M	M M	M	M		
	0.022	J	J	J	J	J	K	K	М	М	M	М		
	0.027 0.033	J	J	J	J	J	K	K	M	M	M	M		
	0.039 0.047	J	J J	J	J	J	K K	K K	M M	M M	M M	M M		
	0.056	J	J	J	J	J	K	K	М	М	M	M		
	0.068 0.082	J	J	J	J	J	K K	K K	M M	M M	M M	M M		
	0.10 0.12	J	J	J	J	J M	K K	K K	M	M M	M M	M M		
	0.15	J	J	J	J	М	K	K	М	М	М	М		
	0.18 0.22	J	J	J	J	P P	K K	K K	M M	M M	M M	M M		
	0.27 0.33	J	J	J	J		K K	M	M M	M	M	M		
	0.47	М	М	М	M		K	Р	М	M	M	M		
	0.56 0.68	M	M	M P			M	Q	M		M	M		
	0.82 1.0	M N	M N	Р			M M		M M		M M	M M		
	1.2		N						М			Р		
	1.5 1.8	N	IN						IVI		M	Р		
	2.2 3.3										M			
	4.7 10													
	22													
	47 100													
-	WVDC	10	16	25	50	100	50	100	50	100	50	100		
SIZI	•			1210			18	12		25	222			
Letter A C E G Max. 0.33 0.56 0.71 0.86					J		K 1.02	M 1.2		N				
Thickness	(0.013)			(0.028).034)	(0.03		(0.040)	(0.05		0.055)		
	Thickness (0.013) (0.022) (0.028) (0.034) PAPER													

Capacitance Range (X5R Dielectric)

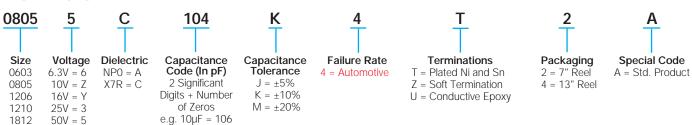
]	
SIZE		LD	002	LD	03	LD)5		LD06		LD1	0	
Solderi	ng	Reflo	w Only	Reflov	v Only	Reflow	Wave	Ref	low/Wa	ive	Reflow/\	Vave	
Packag			Paper	All P		Paper/Em			r/Embo		Paper/Emb		
(L) Length	MM (in.)		± 0.10 ± 0.004)	1.60 ± (0.063 ±		2.01 ± (0.079 ±			20 ± 0.20 26 ± 0.00		3.20 ± 0 (0.126 ± 0		
(W) Width	MM	0.50 :	± 0.10	0.81 ±	± 0.15	1.25 ± (0.049 ±	0.20	1.	60 ± 0.2	0	2.50 ± 0	.20	
(t) Terminal	(in.) MM		± 0.004) ± 0.15	(0.032 ±		0.50 ±			63 ± 0.0 50 ± 0.2		(0.098 ± 0 0.50 ± 0		
(i) Terrillial	(in.) WVDC	(0.010 :	± 0.006) 10	(0.014 ±	25	(0.020 ±			20 ± 0.0		(0.020 ± 0	.010)	
Cap	100	6.3	10	6.3	25	10	16	10	16	25	16		
(pF)	150 220										V	V	
	330									<u>-</u>	~)) T	
	470 680								Ĺ)			
	1000										الم		
	1200 1500									. [* t •		
	1800												
	2200 2700												
	3300												•
	3900 4700												
	5600												
	6800 8200												
Cap	0.010												
(μF	0.012 0.015												
	0.018 0.022												
	0.027												
	0.033 0.039												
	0.047		С										
	0.056 0.068		С		G								
	0.082												_
	0.10 0.12	С	С		G								
	0.15												-
	0.18 0.22												
	0.27			G G			N						-
	0.47			G			N						
	0.56 0.68			G			N			M			-
	0.82				L								
	1.0			G		N	N			Q			-
	1.5					N			Q				
	1.8 2.2					N			Q				-
	3.3							Q			0		
	4.7 6.8							Q			Q		
	10 22				T								
	47												
	100 WVDC	6.3	10	6.3	25	10	16						
SIZE		040		060		08			1206		121	0	
Letter	А	С	Е	G J		K	M	N		Р	Q	Х	
Max.	0.33	0.56	0.71	0.86	0.94	1.02	1.27	1.4	0	1.52	1.78	2.29	
Thickness	(0.013)	(0.022) (0.028)		(0.034)	(0.037)	(0.040)	(0.050)	(0.0	55)	(0.060)	(0.070)	(0.090)	
l			PAPER							FINIB	OSSED		

Automotive MLCC


GENERAL DESCRIPTION

AVX Corporation has supported the Automotive Industry requirements for Multilayer Ceramic Capacitors consistently for more than 10 years. Products have been developed and tested specifically for automotive applications and all manufacturing facilities are QS9000 and VDA 6.4 approved.

As part of our sustained investment in capacity and state of the art technology, we are now transitioning from the established Pd/Ag electrode system to a Base Metal Electrode system (BME).


AVX is using AECQ200 as the qualification vehicle for this transition. A detailed qualification package is available on request and contains results on a range of part numbers including:

- X7R dielectric components containing BME electrode and copper terminations with a Ni/Sn plated overcoat.
- X7R dielectric components BME electrode and soft terminations with a Ni/Sn plated overcoat.
- NPO dielectric components containing Pd/Ag electrode and silver termination with a Ni/Sn plated overcoat.

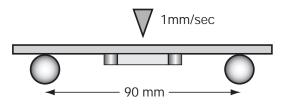
HOW TO ORDER

100V = 1200V = 2

COMMERCIAL VS AUTOMOTIVE MLCC PROCESS COMPARISON

	Commercial	Automotive
Administrative	Standard Part Numbers. No restriction on who purchases these parts.	Specific Automotive Part Number. Used to control supply of product to Automotive customers.
Design	Minimum ceramic thickness of 0.020"	Minimum Ceramic thickness of 0.029" (0.74mm) on all X7R product.
Dicing	Side & End Margins = 0.003" min	Side & End Margins = 0.004" min Cover Layers = 0.005" min
Lot Qualification (Destructive Physical Analysis - DPA)	As per EIA RS469	Increased sample plan – stricter criteria.
Visual/Cosmetic Quality	Standard process and inspection	100% inspection
Application Robustness	Standard sampling for accelerated wave solder on X7R dielectrics	Increased sampling for accelerated wave solder on X7R and NP0 followed by lot by lot reliability testing.

All Tests have Accept/Reject Criteria 0/1


Automotive MLCC

NP0/X7R Dielectric

SOFT TERMINATION FEATURES

a) Bend Test
 The capacitor is soldered to the PC Board as shown:

Typical bend test results are shown below:

Style	Conventional Term	Soft Term
0603	>2mm	>5
0805	>2mm	>5
1206	>2mm	>5

b) Temperature Cycle testing "Soft Termination" has the ability to withstand at least 1000 cycles between -55°C and +125°C

ELECTRODE AND TERMINATION OPTIONS

NPO DIELECTRIC

NP0 Ag/Pd Electrode Nickel Barrier Termination PCB Application

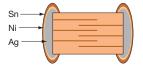


Figure 1 Termination Code T

X7R DIELECTRIC

X7R Dielectric PCB Application

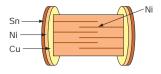


Figure 2 Termination Code T

X7R Nickel Electrode Soft Termination PCB Application

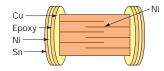


Figure 3 Termination Code Z

Conductive Epoxy Termination Hybrid Application

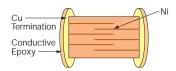


Figure 4 Termination Code U

NP0 Automotive

Capacitance Range (Ni Barrier Termination)

	0603 25V 50V 100V			0805			1206			1210				1812		
	25V	50V	100V	25V	50V	100V	25V	50V	100V	25V	50V	100V	200V	50V	100V	
R47 R51	G G	G G	G	J	J	J	J	J	J							
R56	G	G	G	J	J	J	J	J	J							
R62	G	G	G	J	J	J	J	J	J							
R68	G	G	G	J	J	J	J	J	J							
R75	G	G	G	J	J	J	J	J	J							
R82	G	G	G	J	J	J	J	J	J			-				
R91 1R0	G G	G G	G	J	J	J	J	J	J	-						
1R2	G	G	G	J	J	J	J	J	J							
1R5	G	G	G	J	J	J	J	J	J							
1R8	G	G	G	J	J	J	J	J	J							
2R0	G	G	G	J	J	J	J	J	J							
2R2	G	G	G	J	J	J	J	J	J	-						
2R4 2R7	G G	G G	G G	J	J	J	J	J	J							
3R0	G	G	G	J	J	J	J	J	J							
3R3	G	G	G	J	J	J	J	J	J							
3R6	G	G	G	J	J	J	J	J	J							
3R9	G	G	G	J	J	J	J	J	J							
4R3	G	G	G	J	J	J	J	J	J							
4R7 5R1	G G	G G	G	J	J	J	J	J	J	-		-		-		
5R6	G	G	G	J	J	J	J	J	J	 	+	 		-		
6R2	G	G	G	J	J	J	J	J	J							
6R8	G	G	G	J	J	J	J	J	J							
7R5	G	G	G	J	J	J	J	J	J							
8R2	G	G	G	J	J	J	J	J	J							
9R1 100	G G	G	G	J	J	J	J	J	J	-	+	-		-		
120	G	G	G	J	J	J	J	J	J							
150	G	G	G	J	J	J	J	J	J							
180	G	G	G	J	J	J	J	J	J							
220	G	G	G	J	J	J	J	J	J							
270	G	G	G	J	J	J	J	J	J		1	-				
330 390	G G	G G	G	J	J	J	J	J	J	-	-	-		-		
470	G	G	G	J	J	J	J	J	J							
510	G	G	G	J	J	J	J	J	J							
560	G	G	G	J	J	J	J	J	J							
680	G	G	G	J	J	J	J	J	J							
820 101	G	G	G	J	J	J	J	J	J		-	-		—		
101	G	G G	G	J	J	J	J	J	J	_		 		 		
151	G	G	G	J	J	J	J	J	J							
181	G	G	G	J	Ĵ	J	J	J	J							
221	G	G	G	J	J	J	J	J	J							
271	G	G	G	J	J	J	J	J	J							
331 391	G	G G	G	J	J	J	J	J	J	_	1	-		-		
471	G	G		J	J	J	J	J	J	 		<u> </u>		-		
561	G			J	J	J	J	J	J							
681				J	J	J	J	J	J							
821				J	J	J	J	J	J							
102				J	J	J	J	J	J	J	J	J	J			
122 152	-	-	-	J			J	J M	J M	J	J	M M	M	-		
182	-			J			J	M	M	J	J	M	M	-		
222				M			J	M	M	J	J	M	M			
272				M			J	M	Q	J	J	М				
332							J	М	Q	J	J	М		K	K	
392							J	М		J	J	Р		K	K	
472		-		<u> </u>			J	M		J	M	Р		K	K	
562 682							M M			M		-				
822							M			M		 				
103							M			M						
	25V	50V	100V	25V	50V	100V	25V	50V	100V	25V	50V	100V	200V	50V	100V	
		0603			0805			1206			12	10		18	12	
Lette	r	Α	С	E		G	J	K		M	N	Р	(Q	Χ	
Max.		0.33	0.56	0.71	0	.86	0.94	1.02		.27	1.40	1.52		78	2.29	
hickne	ess (0	.013)	(0.022)	(0.028		034)	(0.037)	(0.04	0) (0.	050)	(0.055)	(0.060			(0.090)	
				PAPF	D							E N /	BOSSE	D		

Letter	Α	С	E	G	J	K	M	N	Р	Q	Χ	Υ	Z
Max.	0.33	0.56	0.71	0.86	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.034)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			

BME X7R Automotive

Capacitance Range (Ni Barrier Termination)

			0603					0805					1206					1210			1812					
	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	
101																										
121																										
151																										
181																										
221																										
271	G	G	G	G		J	J	J																		
331	G	G	G	G		J	J	J	J	J																
391	G	G	G	G		J	J	J	J	J																
471	G	G	G	G		J	J	J	J	J																
561	G	G	G	G		J	J	J	J	J				-							┞					
681	G	G	G	G		J	J	J	J	J																
821	G	G	G	G		J	J	J	J	J																
102	G	G	G	G		J	J	J	J	J	J	J	J	J	J	<u> </u>					├	-	-		₩	
122	G	G	G	G		J	J	J	J	J	J	J		J	J						_				-	
152 182	G	G	G	G		J	J	J	J	J	J	J	J	J	J	-	-	-	-	-	-	-	-	-	 	
222	G	G	G	G		J	J	J	_	J	J	J	J	_	J	_					-				-	
272	G	G	G	G		J	J	J	J	J	J	J	J	J	J	\vdash	 	 	 	 	\vdash	1	1	 	\vdash	
332	G	G	G	G		J	J	J	J		J	J	J	J	J						\vdash					
392	G	G	G	G		J	J	J	J		J	J	J	J	J						 		 		\vdash	
472	G	G	G	G		J	J	J	J		J	J	J	J	J	 					_					
562	G	G	G	G		J	J	J	J		J	J	J	J	-	 					_					
682	G	G	G	G		J	J	J	J		J	J	J	J											\vdash	
822	G	G	G	G		J	J	J	J		J	Ĵ	Ĵ	J												
103	G	G	G	G		J	J	J	J		J	J	J	J												
123	G	G	G			J	J	J	M		J	J	J	J							-				$\overline{}$	
153	G	G	G			J	J	J	M		J	J	J	J												
183	G	G	G			J	J	J	M		J	J	J	J												
223	G	G	G			J	J	J	M		J	J	J	J					K							
273	G	G	G			J	J	J	M		J	J	J	J					K							
333	G	G	G			J	J	J	M		J	J	J	J					K							
393	G	G				J	J	J	M		J	J	J	M					K							
473	G	G				J	J	J	M		J	J	J	М					K							
563	G					J	J	J			J	J	J	M		K	K	K	M		K	K	K			
683	G					J	J	J			J	J	J	M		K	K	K	M		K	K	K			
823	G					J	J	J			J	J	J	M		K	K	K	M		K	K	K			
104	G					J	J	J			J	J	J	М		K	K	K	М		K	K	K			
124						J	J				J	J	M	М		K	K	K	Р		K	K	K			
154					_	М	N				J	J	M			K	K	K			K	K	K			
184					_	M	N				J	M	M		-	M	M	M			K	K	K		-	
224						M	N				J	M	M	-		M P	M	M			M	M	M			
274	<u> </u>			-		N					J	M			-	P	P P	P P			M	M	M		-	
334 394	<u> </u>			-		N					J M	M		-	-	P	P	P			X	X	X		_	
474	 					N N					M	M				P	P	P			X	X			-	
564	\vdash			-		IV			_		M	M			_	P	P	P			X	X	X	_	\vdash	
684	\vdash	_				\vdash				_	M	_			_	P	_	 			Х	X	X	_	\vdash	
824	\vdash			<u> </u>		\vdash		-	_		M	_			 	P		 	 	 	Х	X	X		\vdash	
105	\vdash										M	_				P					X	X	X		\vdash	
155	\vdash					\vdash			_		IVI				<u> </u>	Р			_	_		^	^		\vdash	
100	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	
	100	201	0603		2001	101	2JV	0805	1001	2001	101	2JV	1206		1 2001	101	231	1210	1001	_ 200 v	100	_ Z J V	1812	1001	1 2001	
			0003			L		სგიე					1206					1210					1012			
1 6446-		۸		•			^			1/		N/I	N.		D		<u> </u>	V		V		7				
Letter		Α		,	Е		G	J		K		M	N		Р	(2	Х		Υ	4	Z				

Letter	Α	С	E	G	J	K	M	N	Р	Q	Χ	Υ	Z
Max.	0.33	0.56	0.71	0.86	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.034)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
•	PAPER								EMBC	SSED			

General Specifications

GENERAL DESCRIPTION

With increased requirements from the automotive industry for additional component robustness, AVX recognized the need to produce a MLCC with enhanced mechanical strength. It was noted that many components may be subject to severe flexing and vibration when used in various under the bonnet automotive applications.

To satisfy the requirement for enhanced mechanical strength, AVX had to find a way of ensuring electrical integrity is maintained whilst external forces are being applied to the component. It was found that the structure of the termination needed to be flexible and after much research and development, a "soft termination" was found. This soft termination is designed to enhance the mechanical flexure and temperature cycling performance of a standard ceramic capacitor with an X7R dielectric. The industry standard for flexure is 2 mm minimum with Soft Termination. AVX guarantees a minimum flexure of 5 mm, without any internal cracks. Beyond 5mm generally the component will open. The industry standard for temperature cycling is 1000 cycles, AVX guarantees 3000 cycles.

As well as for automotive applications the Soft Termination will provide Design Engineers with a satisfactory solution when designing PCB's which may be subject to high levels of board flexure.

PRODUCT ADVANTAGES

- High mechanical performance able to withstand, 5mm bend test quaranteed.
- Open failure mode is apparent when products are overstressed by 5mm.
- Increased temperature cycling performance, 3000 cycles and beyond.
- Flexible termination system.
- · Reduction in circuit board flex failures.
- · Base metal electrode system.

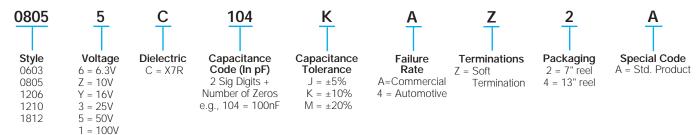
2 = 200V

• Automotive or commercial grade products available.

APPLICATIONS

High Flexure Stress Circuit Boards

• e.g. Depanelization: Components near edges of board.


Variable Temperature Applications

- Soft termination offers improved reliability performance in applications where there is temperature variation.
- e.g. All kind of engine sensors: Direct connection to battery rail.

Automotive Applications

- Improved reliability.
- Excellent mechanical performance and thermo mechanical performance.

HOW TO ORDER

Specifications and Test Methods

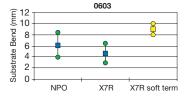
PERFORMANCE TESTING

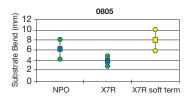
AEC-Q200 Qualification:

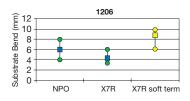
- Created by the Automotive Electronics Council
- Specification defining stress test qualification for passive components

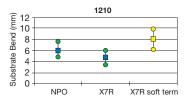
Testing:

Key tests used to compare soft termination to


AEC-Q200 qualification:


- Bend Test
- Temperature Cycle Test

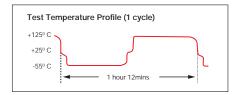

S


BOARD BEND TEST RESULTS

AEC-Q200 Vrs AVX Soft Termination Bend Test

TABLE SUMMARY

Typical bend test results are shown below:


Style Conventional Termination Soft Termination
0603 >2mm >5mm
0805 >2mm >5mm
1206 >2mm >5mm

TEMPERATURE CYCLE TEST PROCEDURE

Test Procedure as per AEC-Q200:

The test is conducted to determine the resistance of the component when it is exposed to extremes of alternating high and low temperatures.

- Sample lot size quantity 77 pieces
- TC chamber cycle from -55°C to +125°C for 1000 cycles
- Interim electrical measurements at 250, 500, 1000 cycles
- Measure parameter capacitance dissipation factor, insulation resistance

BOARD BEND TEST PROCEDURE

According to AEC-Q200

Test Procedure as per AEC-Q200:
Sample size: 20 components
Span: 90mm Minimum deflection spec: 2 mm

- · Components soldered onto FR4 PCB (Figure 1)
- Board connected electrically to the test equipment (Figure 2)

Fig 2 - Board Bend test equipment

d∏b

MOUNTING ASSEMBLY

CONTROL PANEL

BEND TESTPLATE

CONNECTOR

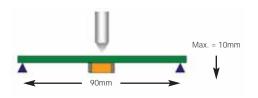
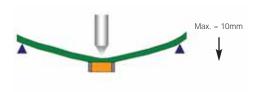

CONTROL PANEL

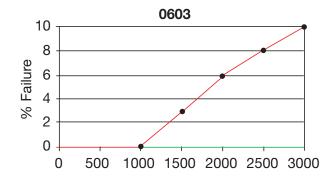
Fig 1 - PCB layout with electrical connections

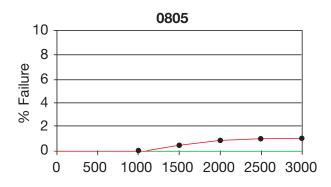

AVX ENHANCED SOFT TERMINATION BEND TEST PROCEDURE

Bend Test

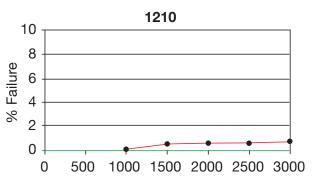
The capacitor is soldered to the printed circuit board as shown and is bent up to 10mm at 1mm per second:

- The board is placed on 2 supports 90mm apart (capacitor side down)
- The row of capacitors is aligned with the load stressing knife

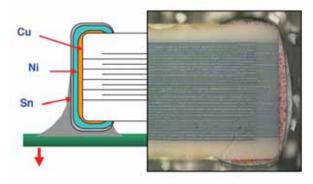

- The load is applied and the deflection where the part starts to crack is recorded (Note: Equipment detects the start of the crack using a highly sensitive current detection circuit)
- The maximum deflection capability is 10mm





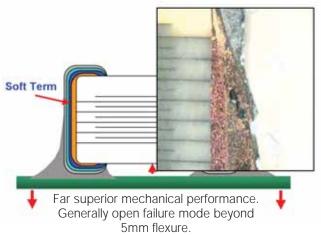

Specifications and Test Methods

BEYOND 1000 CYCLES: TEMPERATURE CYCLE TEST RESULTS


Soft Term - No Defects up to 3000 cycles

AEC-Q200 specification states 1000 cycles compared to AVX 3000 temperature cycles.

SOFT TERMINATION TEST SUMMARY


- Qualified product by using the AEC-Q200 test/specification with the exception of using AVX 3000 temperature cycles (up to +150°C bend test guaranteed greater than 5mm).
- Soft Termination provides improved performance compared to standard termination systems.
- Board bend test improvement by a factor of 2 to 4 times.
- Temperature Cycling:
 - 0% Failure up to 3000 cycles
 - No ESR change up to 3000 cycles

WITHOUT SOFT TERMINATION

Major fear is of latent board flex failures.

WITH SOFT TERMINATION

X7R Dielectric Capacitance Range

T		0.	503			0	805			11	206			11	210			10	12	
	1(1)			1001/	141/			1001/	141/			1001/	141/			1001/	1/1/			1001/
101	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V
121																				
151																				
181																				
221 271																1		-		-
331	J	J	J	J	J	J	J	J												
391	J	J	J	J	J	J	J	J												
471	J	J	J	J	J	J	J	J												
561 401	J	J	J	J	J	J	J	J								-		_		-
681 821	J	J	J	J	J	J	J	J												_
102	J	J	J	J	J	J	J	J	J	J	J	J								
122	J	J	J	J	J	J	J	J	J	J	J	J								
152	J	J	J	J	J	J	J	J	J	J	J	J								
182 222	J	J	J	J	J	J	J	J	J	J	J	J				+		-		
272	J	J	J	J	J	J	J	J	J	J	J	J	\vdash		-	+		-		+
332	J	J	J	J	J	J	J	J	J	J	J	J				+		 		1
392	J	J	J	J	J	J	J	J	J	J	J	J								
472	J	J	J	J	J	J	J	J	J	J	J	J								
562	J	J	J	J	J	J	J	J	J	J	J	J								
682 822	J	J	J	J	J	J	J	J	J	J	J	J				+		-		
103	J	J	J	J	J	J	J	J	J	J	J	J								1
123	J	J	J	J	J	J	J	M	J	J	J	J								_
153	J	J	J		J	J	J	M	J	J	J	J								
183	J	J	J		J	J	J	M	J	J	J	J								
223	J	J	J		J	J	J	M	J	J	J	J				K				
273 333	J	J	J		J	J	J	M	J	J	J	J				K K				
393	J	J	,		J	J	J	M	J	J	J	M				K				
473	J	J			J	J	J	M	J	J	J	М				K				
563	J				J	J	J		J	J	J	М	K	K	K	М	K	K	K	K
683	J				J	J	J		J	J	J	M P	K K	K	K	M	K K	K	K	K
823 104	J				J	J	J		J	J	J	Q	K	K	K	P	K	K	K	K
124	J				J	J	J		J	J	M	Q	K	K	K		K	K	K	K
154					M	N			J	J	М		K	K	K		K	K	K	M
184					М	N			J	М	M		M	М	М		K	K	K	М
224			-		M	N			J	M	М	1/4//	М	M	М		M	M	M	X
274 334			-	\vdash	N N				J	M M		/////	P P	P P	P P		M	M	M	X
394					N				M	M		1/7//	P	P	P		X	X	X	Х
474					N				M	M			P	P	P	/////	X	X	X	X
564									M				Р				Х	Х	Х	
684									M				Р			_	Х	Х	Х	
824 105									M M		-		P P			/////	X	X	X	
155			 	\vdash			 		IVI		 		P		 		٨	۸	Λ	
185																 				
225																				/////
	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V
		06	503			08	805			12	206			12	210			18	312	
Letter		A	С	Е		i	J	K	I		N	Р	Q		Х	Υ	Z			
Max.	0.		0.56	0.71	0.		0.94	1.02	1.2		1.40	1.52	1.78	1 2	2.29	2.54	2.79	7		
Thicknes			(0.022)	(0.028)			(0.037)	(0.040)			0.055)	(0.060)	(0.070		.090)	(0.100)	(0.11			
				PAPER				,	, ,		,		OSSED		,	. ,				

= Range extension parts

Capacitor Array (IPC)

BENEFITS OF USING CAPACITOR ARRAYS

AVX capacitor arrays offer designers the opportunity to lower placement costs, increase assembly line output through lower component count per board and to reduce real estate requirements.

Reduced Costs

Placement costs are greatly reduced by effectively placing one device instead of four or two. This results in increased throughput and translates into savings on machine time. Inventory levels are lowered and further savings are made on solder materials, etc.

Space Saving

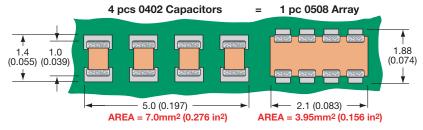
Space savings can be quite dramatic when compared to the use of discrete chip capacitors. As an example, the 0508 4-element array offers a space reduction of >40% vs. 4 x 0402 discrete capacitors and of >70% vs. 4 x 0603 discrete capacitors. (This calculation is dependent on the spacing of the discrete components.)

Increased Throughput

Assuming that there are 220 passive components placed in a mobile phone:

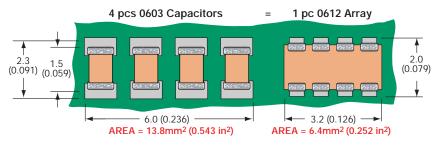
A reduction in the passive count to 200 (by replacing discrete components with arrays) results in an increase in throughput of approximately 9%.

A reduction of 40 placements increases throughput by 18%.


For high volume users of cap arrays using the very latest placement equipment capable of placing 10 components per second, the increase in throughput can be very significant and can have the overall effect of reducing the number of placement machines required to mount components:

If 120 million 2-element arrays or 40 million 4-element arrays were placed in a year, the requirement for placement equipment would be reduced by one machine.

During a 20Hr operational day a machine places 720K components. Over a working year of 167 days the machine can place approximately 120 million. If 2-element arrays are mounted instead of discrete components, then the number of placements is reduced by a factor of two and in the scenario where 120 million 2-element arrays are placed there is a saving of one pick and place machine.


Smaller volume users can also benefit from replacing discrete components with arrays. The total number of placements is reduced thus creating spare capacity on placement machines. This in turn generates the opportunity to increase overall production output without further investment in new equipment.

W2A (0508) Capacitor Arrays

The 0508 4-element capacitor array gives a PCB space saving of over 40% vs four 0402 discretes and over 70% vs four 0603 discrete capacitors.

W3A (0612) Capacitor Arrays

The 0612 4-element capacitor array gives a PCB space saving of over 50% vs four 0603 discretes and over 70% vs four 0805 discrete capacitors.

				N	IP()/C	000	3												X	7 F	?/)	(5 F	2						
SIZE	()405	5			80				80			061		SIZE		0405	5			80			_	508			_	512	
# Elements	Doff	2	Van le s	-		2				4 ./\//au		D.	4		# Elements		2	m ls r	<u> </u>		2		Η.		4				4	
Soldering Packaging		low O I Pape		- 1	Reflov	nyvav Paper	e		Reflow per/Ei			_		/Wave nbossed	Soldering Packaging	_	flow O II Pape			Reflow All P		/e	_		v/Wav mbos				v/Wav mboss	-
1/1//		0 ± 0			1.30		5		1.30 :					0.150	1111		$00 \pm 0.$		\vdash	1.30 ±		5			± 0.15		1 0		± 0.20	
Lerigin (in.)	(0.03		_		.051			_	.051 :			(0.0	063 ±	± 0.006)	Length (in.)	-	39 ± 0.		<u> </u>	.051 ±			<u> </u>		± 0.00		((± 0.00	_
Width MM (in.)	1.3 (0.05	7 ± 0			2.10				2.10 ± .083 ±					± 0.20 ± 0.008)	Width MM (in.)		37 ± 0. 54 ± 0.			2.10 ± .083 ±					± 0.15 ± 0.00		,,		± 0.20	
Max. MM	_	0.66	.000)	()		94	JO)	()	0.5		0)	(0.	1.20		Max. MM	(0.0	0.66	000)	(0	0.0		JO)	(0		94	JO)	,,		.35	70)
Thickness (in.)		0.026)		(0.0	037)			(0.0	37)		L.	(0.0)53)	Thickness (in.)		(0.026			(0.0)	37)			(0.0	037)			(0.	053)	
WVDC	16	25	50	16	25	50	100	16	25	50	100	16	25	50 100	WVDC	10	16 25	50	10	16 25	5 50	100	16	25	50	100	16	25	50	100
Cap 1.0 (pF) 1.2 1.5															Cap 100 (pF) 120 150															
1.8															180															
2.2 2.7															220 270															
3.3												П			330	П			Н		\top									
3.9															390															
5.6	\vdash		-									\vdash	\dashv	_	470 560	Н			H	+	+	+								
6.8															680															
8.2															820	Ш			Ш	_	+	╄								
10 12															1000 1200															
15															1500															
18															1800															
22 27															2200 2700															
33															3300	П			П		\top									
39 47															3900 4700															
56															5600	Н			Н	+	+	+								
68															6800															
100															8200	Н		-	\vdash	_	+									
120															Cap 0.010 μF 0.012															
150															0.015	Ш			Ш		┸									
180 220															0.018 0.022															
270															0.022															
330															0.033															
390 470															0.039 0.047															
560															0.056				Н		+									
680															0.068															
1000	\vdash		\vdash		-			\vdash		-		H		+	0.082			-	H		+	+								\vdash
1200															0.10															
1500	\vdash		$\vdash \vdash$									\square		+	0.15	\sqcup	+	+	\sqcup	+	+	1	\vdash				_			
1800 2200 2700															0.18 0.22 0.27															
3300													\sqcap		0.33						T									
3900 4700															0.47 0.56															
5600			М									П		\dashv	0.68	\sqcap	\top	T		\top	\top		T							
6800 8200															0.82 1.0															
Cap 0.010	\vdash		\vdash					\vdash				H		+	1.0	H				+	+	+	\vdash				\vdash			
(μF)															1.5															
	\vdash		\vdash					\vdash				\vdash	_	+	1.8	\vdash			\vdash	_	+		-				_			
															2.2 3.3															
			Ш									Ш		\perp	4.7	Ш		_		\perp	\perp									
															10 22															
															47															
															100															
= NP0/	C0G														= X7R		=	X5F	2											

Multi-Value Capacitor Array (IPC)

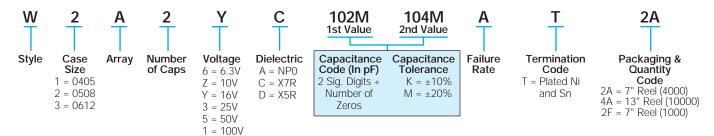
GENERAL DESCRIPTION

A recent addition to the array product range is the Multi-Value Capacitor Array. These devices combine two different capacitance values in standard 'Cap Array' packages and are available with a maximum ratio between the two capacitance values of 100:1. The multi-value array is currently available in the 0405 and 0508 2-element styles and also in the 0612 4-element style.

Whereas to date AVX capacitor arrays have been suited to applications where multiple capacitors of the same value are used, the multi-value array introduces a new flexibility to the range. The multi-value array can replace discrete capacitors of different values and can be used for broadband decoupling applications. The 0508 x 2 element multi-value array would be particularly recommended in this application. Another application is filtering the 900/1800 or 1900MHz noise in mobile phones. The 0405 2-element, low capacitance value NPO, (COG) device would be suited to this application, in view of the space saving requirements of mobile phone manufacturers.

ADVANTAGES OF THE MULTI-VALUE CAPACITOR ARRAYS

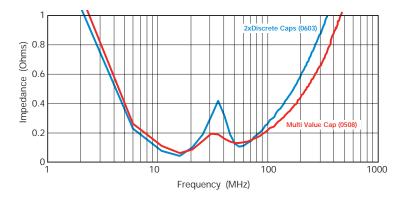
Enhanced Performance Due to Reduced Parasitic Inductance


When connected in parallel, not only do discrete capacitors of different values give the desired self-resonance, but an additional unwanted parallel resonance also results. This parallel resonance is induced between each capacitor's self-resonant frequencies and produces a peak in impedance response. For decoupling and bypassing applications this peak will result in a frequency band of reduced decoupling and in filtering applications reduced attenuation.

The multi-value capacitor array, combining capacitors in one unit, virtually eliminates the problematic parallel resonance, by minimizing parasitic inductance between the capacitors, thus enhancing the broadband decoupling/filtering performance of the part.

Reduced ESR

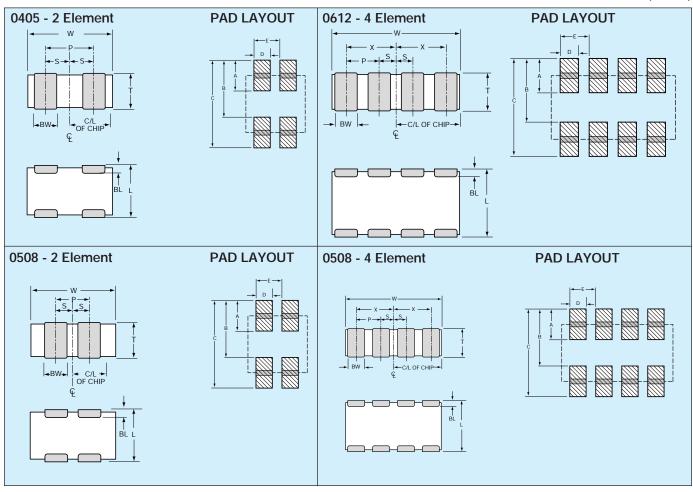
An advantage of connecting two capacitors in parallel is a significant reduction in ESR. However, as stated above, using discrete components brings with it the unwanted side effect of parallel resonance. The multi-value cap array is an excellent alternative as not only does it perform the same function as parallel capacitors but also it reduces the uncertainty of the frequency response.


HOW TO ORDER

	Cap (Min/Max)		
	NPO	X5R/X7R	
0612 4-element	100/471	221/104	
0508 2-element	100/471	221/104	
0405 2-element	100/101	101/103	

- Max. ratio between the two cap values is 1:100.
- The voltage of the higher capacitance value dictates the voltage of the multi-value part.
- Only combinations of values within a specific dielectric range are possible.

IMPEDANCE VS FREQUENCY



PART & PAD LAYOUT DIMENSIONS

millimeters (inches)

PART DIMENSIONS

0405 - 2 Element

L	W	T	BW	BL	Р	S
1.00 ± 0.15 (0.039 ± 0.006)	=	0.66 MAX (0.026 MAX)	0.36 ± 0.10 (0.014 ± 0.004)	0.20 ± 0.10 (0.008 ± 0.004)	0.64 REF (0.025 REF)	0.32 ± 0.10 (0.013 ± 0.004)

0508 - 2 Element

L	W	T	BW	BL	Р	S
	2.10 ± 0.15 (0.083 ± 0.006)			0.33 ± 0.08 (0.013 ± 0.003)		0.50 ± 0.10 (0.020 ± 0.004)

0508 - 4 Element

L	VV	ı	BW	BL	Р	X	S
	2.10 ± 0.15			0.20 ± 0.08 (0.008 ± 0.003)			
(0.001 ± 0.000)	(0.000 ± 0.000)	(0.037 101700)	(0.010 ± 0.003)	(0.000 ± 0.005)	(0.020 IXLI)	(0.030 ± 0.004)	(0.010 ± 0.004)

0612 - 4 Element

L	W	T	BW	BL	Р	Х	S
1.60 ± 0.20 (0.063 ± 0.008)	3.20 ± 0.20 (0.126 ± 0.008)	1.35 MAX (0.053 MAX)	0.41 ± 0.10 (0.016 ± 0.004)	0.18 +0.25 0.08 +0.08 (0.007+0.010) -0.003	0.76 REF (0.030 REF)	1.14 ± 0.10 (0.045 ± 0.004)	0.38 ± 0.10 (0.015 ± 0.004)

PAD LAYOUT DIMENSIONS

0405 - 2 Element

Α	В	С	D	E
0.46 (0.018)	0.74	1.20	0.30	0.64 (0.025)
(0.016)	(0.029)	(0.047)	(0.012)	(0.023)

0508 - 2 Element

/ \	D	٥	U	E
0.68	1.32	2.00	0.46	1.00
(0.027)	(0.052)	(0.079)	(0.018)	(0.039)

0508 - 4 Element

Α	В	С	D	E
0.56	1.32	1.88	0.30	0.50
(0.022)	(0.052)	(0.074)	(0.012)	(0.020)

0612 - 4 Element

Α	В	С	D	Е
0.89	1.65	2.54	0.46	0.79
(0.035)	(0.065)	(0.100)	(0.018)	(0.031)

Introduction

As switching speeds increase and pulse rise times decrease the need to reduce inductance becomes a serious limitation for improved system performance. Even the decoupling capacitors, that act as a local energy source, can generate unacceptable voltage spikes: V = L (di/dt). Thus, in high speed circuits, where di/dt can be quite large, the size of the voltage spike can only be reduced by reducing L.

Figure 1 displays the evolution of ceramic capacitor toward lower inductance designs over the last few years. AVX has been at the forefront in the design and manufacture of these newer more effective capacitors.

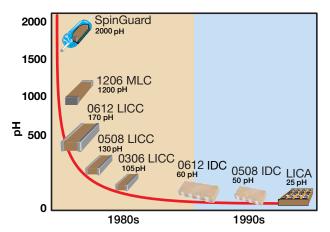


Figure 1. The evolution of Low Inductance Capacitors at AVX (values given for a 100 nF capacitor of each style)

LOW INDUCTANCE CHIP CAPACITORS

The total inductance of a chip capacitor is determined both by its length to width ratio and by the mutual inductance coupling between its electrodes. Thus a 1210 chip size has lower inductance than a 1206 chip. This design improvement is the basis of AVX's low inductance chip capacitors, LI Caps, where the electrodes are terminated on the long side of the chip instead of the short side. The 1206 becomes an 0612 as demonstrated in Figure 2. In the same manner, an 0805 becomes an 0508 and 0603 becomes an 0306. This results in a reduction in inductance from around 1200 pH for conventional MLC chips to below 200 pH for Low Inductance Chip Capacitors. Standard designs and performance of these LI Caps are given on pages 46 and 47.

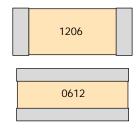
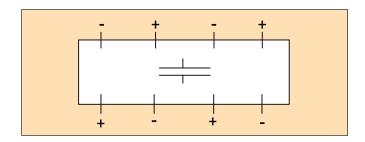
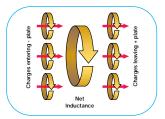



Figure 2. Change in aspect ratio: 1206 vs. 0612

INTERDIGITATED CAPACITORS


Multiple terminations of a capacitor will also help in reducing the parasitic inductance of the device. The IDC is such a device. By terminating one capacitor with 8 connections the ESL can be reduced even further. The measured inductance of the 0612 IDC is 60 pH, while the 0508 comes in around 50 pH. These FR4 mountable devices allow for even higher clock speeds in a digital decoupling scheme. Design and product offerings are shown on pages 48 and 49.

LOW INDUCTANCE CHIP ARRAYS (LICA®)

Further reduction in inductance can be achieved by designing alternative current paths to minimize the mutual inductance factor of the electrodes (Figure 3). This is achieved by AVX's LICA® product which was the result of a joint development between AVX and IBM. As shown in Figure 4, the charging current flowing out of the positive plate returns in the opposite direction along adjacent negative plates. This minimizes the mutual inductance.

The very low inductance of the LICA capacitor stems from the short aspect ratio of the electrodes, the arrangement of the tabs so as to cancel inductance, and the vertical aspect of the electrodes to the mounting surface.

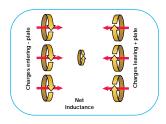


Figure 3. Net Inductance from design. In the standard Multilayer capacitor, the charge currents entering and leaving the capacitor create complementary flux fields, so the net inductance is greater. On the right, however, if the design permits the currents to be opposed, there is a net cancellation, and the inductance is much lower.

Introduction

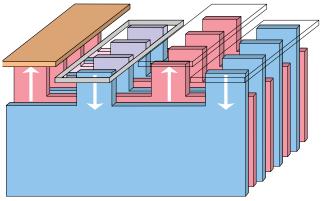


Figure 4. LICA's Electrode/Termination Construction.
The current path is minimized – this reduces self-inductance.
Current flowing out of the positive plate, returns in the opposite direction along the adjacent negative plate – this reduces the mutual inductance.

Also the effective current path length is minimized because the current does not have to travel the entire length of both electrodes to complete the circuit. This reduces the self inductance of the electrodes. The self inductance is also minimized by the fact that the charging current is supplied by both sets of terminals reducing the path length even further!

The inductance of this arrangement is less than 30 pH, causing the self-resonance to be above 100 MHz for the same popular 100 nF capacitance. Parts available in the LICA design are shown on pages 50 and 51.

Figure 5 compares the self resonant frequencies of various capacitor designs versus capacitance values. The approximate inductance of each style is also shown.

Active development continues on low inductance capacitors. C4 termination with low temperature solder is now available for plastic packages. Consult AVX for details.

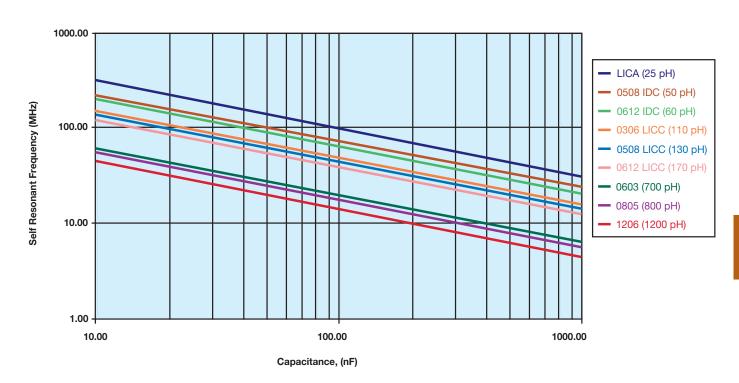
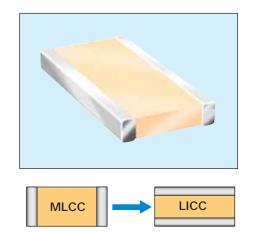
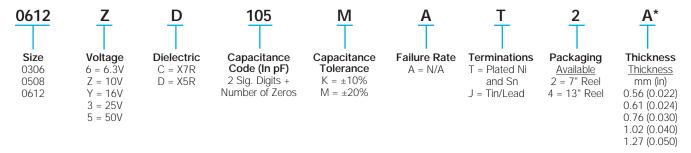


Figure 5. Self Resonant Frequency vs. Capacitance and Capacitor Design



0612/0508/0306 LICC (Low Inductance Chip Capacitors)

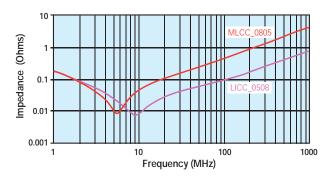

GENERAL DESCRIPTION

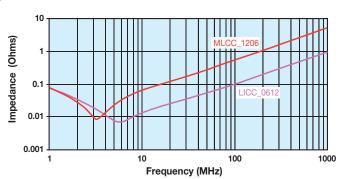
The total inductance of a chip capacitor is determined both by its length to width ratio and by the mutual inductance coupling between its electrodes.

Thus a 1210 chip size has a lower inductance than a 1206 chip. This design improvement is the basis of AVX's Low Inductance Chip Capacitors (LICC), where the electrodes are terminated on the long side of the chip instead of the short side. The 1206 becomes an 0612, in the same manner, an 0805 becomes an 0508, an 0603 becomes an 0306. This results in a reduction in inductance from the 1nH range found in normal chip capacitors to less than 0.2nH for LICCs. Their low profile is also ideal for surface mounting (both on the PCB and on IC package) or inside cavity mounting on the IC itself.

HOW TO ORDER

PERFORMANCE CHARACTERISTICS


Capacitance Tolerances	$K = \pm 10\%$; $M = \pm 20\%$
Operation	$X7R = -55^{\circ}C \text{ to } +125^{\circ}C;$
Temperature Range	X5R = -55°C to $+85$ °C
Temperature Coefficient	±15% (0VDC)
Voltage Ratings	6.3, 10, 16, 25 VDC
Dissipation Factor	6.3V = 6.5% max; 10V = 5.0% max; 16V = 3.5% max; 25V = 3.0% max
Insulation Resistance (@+25°C, RVDC)	100,000M Ω min, or 1,000M Ω per μ F min.,whichever is less


TYPICAL INDUCTANCE

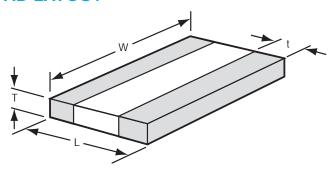
Package Style	Measured Inductance (pH)
1206 MLCC	1200
0612 LICC	170
0508 LICC	130
0306 LICC	105

*Note: See Range Chart for Codes

TYPICAL IMPEDANCE CHARACTERISTICS

0612/0508/0306 LICC (Low Inductance Chip Capacitors)

SIZE	(030	6			(050	8			(061	2		
Packaging			nbos					nbos			Embossed				
Length MM (in.)		0.81 ± 0.15 (0.032 ± 0.006)					1.27 ± 0.25 (0.050 ± 0.010)			1.60 ± 0.25 (0.063 ± 0.010)					
Width MM (in.)			50 ± 0)			00 ± 0)			20 ± 0 26 ± 0		
WVDC	6.3	10	16	25	50	6.3	(0.080 ± 0.010) 6.3 10 16 25 50								50
CAP 0.001															
(uF) 0.0022															
0.0047															
0.010															
0.015															
0.022															
0.047															
0.068															
0.10															
0.15															
0.22															
0.47															
0.68															
1.0															
1.5															
2.2															
3.3															
4.7															
10															
Solid = X7	'R				=	X 5	R								


mm (in.)
0306
Code Thickness

A 0.61 (0.024)

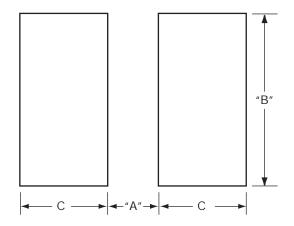
mm (in.)							
0508							
Code	Thickness						
S	0.56 (0.022)						
V	0.76 (0.030)						
Α	1.02 (0.040)						

	mm (in.)							
0612								
Code	Thickness							
S	0.56 (0.022)							
V	0.76 (0.030)							
W	1.02 (0.040)							
Α	1.27 (0.050)							

PHYSICAL DIMENSIONS AND PAD LAYOUT

PHYSICAL CHIP DIMENSIONS

mm (in)

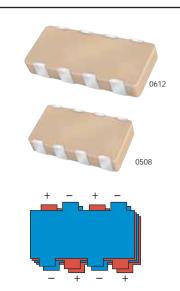

	L	W	t		
0612	12 $\begin{pmatrix} 1.60 \pm 0.25 \\ (0.063 \pm 0.010) \end{pmatrix}$ $\begin{pmatrix} 3.20 \pm 0 \\ (0.126 \pm 0.010) \end{pmatrix}$		0.13 min. (0.005 min.)		
0508	1.27 ± 0.25 (0.050 ± 0.010)				
0306	0.81 ± 0.15 (0.032 ± 0.006)	0.13 min. (0.005 min.)			

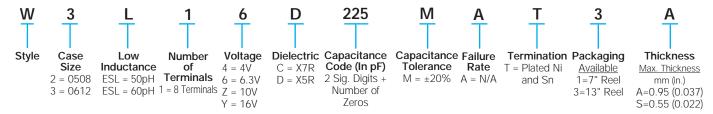
T - See Range Chart for Thickness and Codes

PAD LAYOUT DIMENSIONS

mm (in)

	Α	С	
0612	0.76 (0.030)	3.05 (0.120)	.635 (0.025)
0508	0.51 (0.020)	2.03 (0.080)	0.51 (0.020)
0306	0.31 (0.012)	1.52 (0.060)	0.51 (0.020)

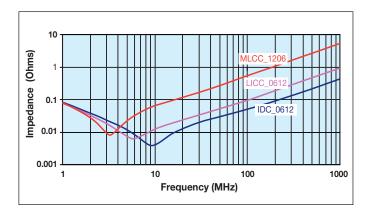



0612/0508 IDC (InterDigitated Capacitors)

GENERAL DESCRIPTION

- Very low equivalent series inductance (ESL), surface mountable, high speed decoupling capacitor in 0612 and 0508 case size.
- Measured inductances of 60 pH (for 0612) and 50 pH (for 0508) are the lowest in the FR4 mountable device family. Now use 10T devices with inductances of 45 pH (for 0612) and 35 pH (for 0508).
- Opposing current flow creates opposing magnetic fields. This
 causes the fields to cancel, effectively reducing the equivalent
 series inductance.
- Perfect solution for decoupling high speed microprocessors by allowing the engineers to lower the power delivery inductance of the entire system through the use of eight vias.
- Overall reduction in decoupling components due to very low series inductance and high capacitance.

HOW TO ORDER

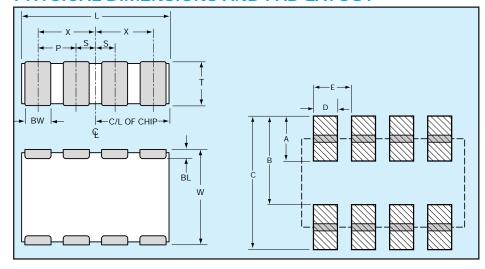

PERFORMANCE CHARACTERISTICS

Capacitance Tolerance	±20% Preferred
Operation	$X7R = -55^{\circ}C \text{ to } +125^{\circ}C;$
Temperature Range	$X5R = -55^{\circ}C \text{ to } +85^{\circ}C$
Temperature Coefficient	±15% (0VDC)
Voltage Ratings	4, 6.3, 10, 16 VDC
Dissipation Factor	4V, 6.3V = 6.5% max;
	10V = 5.0% max;
	16V = 3.5% max
Insulation Resistance	100,000M Ω min, or 1,000M Ω per
(@+25°C, RVDC)	μF min.,whichever is less

Dielectric Strength	No problems observed after 2.5 x RVDC for 5 seconds at 50mA max current
CTE (ppm/C)	12.0
Thermal Conductivity	4-5W/M K
Terminations Available	Plated Nickel and Solder
Max. Thickness	0.037" (0.95mm)

TYPICAL ESL AND IMPEDANCE

Package Style	Measured Inductance (pH)
1206 MLCC	1200
0612 LICC	170
0612 IDC	60
0508 IDC	50


0612/0508 IDC (InterDigitated Capacitors)

SIZE		Thin	0508			0	508			Thin	0612			06	12	
Length MM	2.03 ± 0.20			nath		ength MM 2.03 ± 0.20 2.03 ± 0.20			3.20 ± 0.20			3.20 ± 0.20				
(in.)	(0.080.0	± 0.008)	(0.080 ± 0.008)			(0.126 ±	0.008)	(0.126 ± 0.008)				
Width MM			± 0.20				± 0.20			1.60 ±					± 0.20	
(in.)			± 0.008)			± 0.00	8)	(0.063 ±)			± 0.00	8)
Terminal MM Pitch (in.)			8 REF 0 REF				8 REF			0.76					6 REF 30 REF	
NANA			MAX.				MAX.		_	0.55					5 MAX.	
Thickness (in.)) MAX.				7) MAX			(0.022)					7) MAX	
Inductance (pH)		9	95				95			12	20				120	
WVDC	4	6.3	10	16	4	6.3	10	16	4	6.3	10	16	4	6.3	10	16
CAP (uF) and Thickness																
0.047																
0.068																
0.10																
0.22																
0.33																
0.47																
0.68																
1.0																
1.5																
2.2																
3.3																

Consult factory for additional requirements

PHYSICAL DIMENSIONS AND PAD LAYOUT

PHYSICAL CHIP DIMENSIONS millimeters (inches)

0612

L	W	BW	BL	Р	Х	S
3.20 ± 0.20 (0.126 ± 0.008)	1.60 ± 0.20 (0.063 ± 0.008)	0.41 ± 0.10 (0.016 ± 0.004)	0.18 ^{+0.25} _{-0.08} (0.007 ^{+0.010} _{-0.003})		1.14 ± 0.10 (0.045 ± 0.004)	0.38 ± 0.10 (0.015 ± 0.004)

0508

L	W	BW	BL	Р	Х	S
2.03±0.20 (0.080±0.008)	1.27±0.20 (0.050±0.008)	0.254±0.10 (0.010±0.004)	0.18 +0.25 -0.08 (0.007 +0.010)	0.508 REF (0.020 REF)	0.76±0.10 (0.030±0.004)	0.254±0.10 (0.010±.0.004)

PAD LAYOUT DIMENSIONS

0612

1	A	В	С	D	E
	.89 035)	1.65 (0.065)	2.54 (0.100)	0.46 (0.018)	0.76 (0.030)

0508

Α	В	С	D	Ε
0.64	1.27	1.91	0.28	0.51
(0.025)	(0.050)	(0.075)	(0.011)	(0.020)

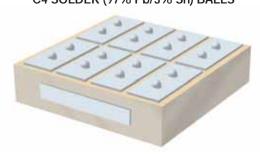
LICA® (Low Inductance Decoupling Capacitor Arrays)

LICA® arrays utilize up to four separate capacitor sections in one ceramic body (see Configurations and Capacitance Options). These designs exhibit a number of technical advancements:

Low Inductance features-

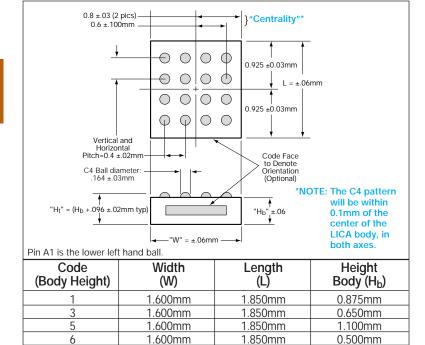
Low resistance platinum electrodes in a low aspect ratio pattern Double electrode pickup and perpendicular current paths C4 "flip-chip" technology for minimal interconnect inductance

HOW TO ORDER


LICA	3	Τ	102	M	3	F	С	4	Α	Α
	\top	T	\top	T	T	T	T	T	T	T
Style	Voltage	Dielectric	Cap/Section	Capacitance	Height	Termination	Reel Packaging	# of	Inspection	Code
&	5V = 9	D = X5R	(EIA Code)	Tolerance	Code	F = C4 Solder	M = 7" Reel	Caps/Part	Code	Face
Size	10V = Z	T = T55T	102 = 1000 pF	$M = \pm 20\%$	6 = 0.500mm	Balls- 97Pb/3Sn	R = 13" Reel	1 = one	A = Standard	A = Bar
	25V = 3	S = High K	103 = 10 nF	P = GMV	3 = 0.650mm	H = C4 Solder Balls	6 = 2"x2" Waffle Pack	2 = two	B = Established	B = No Bar
		T55T	104 = 100 nF		1 = 0.875mm	Low ESR	8 = 2"x2" Black Waffle	4 = four	Reliability	C = Dot, S55S
					5 = 1.100mm	P = Cr-Cu-Au	Pack		Testing	Dielectrics
					7 = 1.600mm	N = Cr-Ni-Au	7 = 2"x2" Waffle Pack		_	
TABLE	- 4					X = None	w/ termination			
TABLE							facing up			

Typical Parameters	T55T	Units
Capacitance, 25°C	Co	Nanofarads
Capacitance, 55°C	1.4 x Co	Nanofarads
Capacitance, 85°C	Co	Nanofarads
Dissipation Factor 25°	12	Percent
DC Resistance	0.2	Ohms
IR (Minimum @25°)	2.0	Megaohms
Dielectric Breakdown, Min	500	Volts
Thermal Coefficient of Expansion	8.5	ppm/°C 25-100°
Inductance: (Design Dependent)	15 to 120	Pico-Henries
Frequency of Operation	DC to 5 Gigahertz	
Ambient Temp Range	-55° to 125°C	

TERMINATION OPTIONS


A = 2"x2" Black Waffle Pack w/ termination facing up C = 4"x4" Waffle Pack w/ clear lid

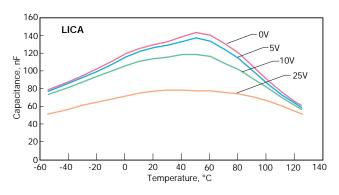
C4 SOLDER (97% Pb/3% Sn) BALLS

TERMINATION OPTION P OR N

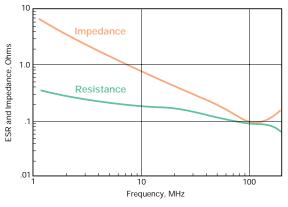
C4 AND PAD DIMENSIONS

1.850mm

1.600mm


1.600mm

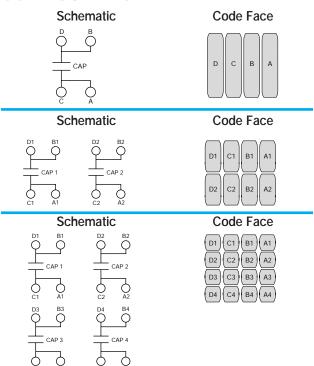
7



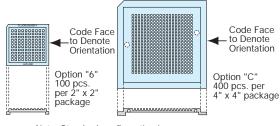
LICA® (Low Inductance Decoupling Capacitor Arrays)

LICA® TYPICAL PERFORMANCE CURVES

Effect of Bias Voltage and Temperature on a 130 nF LICA® (T55T)

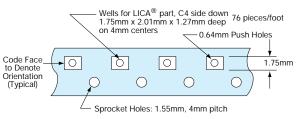


Impedance vs. Frequency


LICA VALID PART NUMBER LIST

Part Number	Voltage	Thickness (mm)	Capacitors per Package
LICA3T193M3FC4AA	25	0.650	4
LICA3T153P3FC4AA	25	0.650	4
LICA3T134M1FC1AA	25	0.875	1
LICA3T104P1FC1AA	25	0.875	1
LICA3T333M1FC4AA	25	0.875	4
LICA3T263P3FC4AA	25	0.650	4
LICA3T244M5FC1AA	25	1.100	1
LICA3T194P5FC1AA	25	1.100	1
LICA3T394M7FC1AB	25	1.600	1
LICA3T314P7FC1AB	25	1.600	1
Extended Range			
LICAZT623M3FC4AB	10	0.650	4
LICA3T104M3FC1A	25	0.650	1
LICA3T803P3FC1A	25	0.650	1
LICA3T503M3FC2A	25	0.650	2
LICA3T403P3FC2A	25	0.650	2
LICA3S253M3FC4A	25	0.650	4

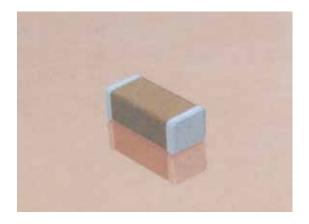
CONFIGURATION


WAFFLE PACK OPTIONS FOR LICA®

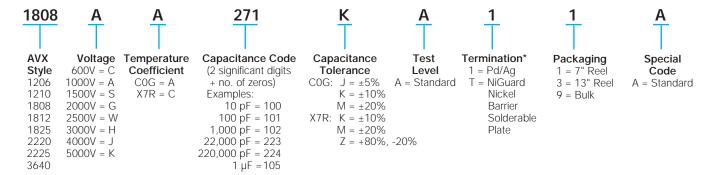
Note: Standard configuration is Termination side down

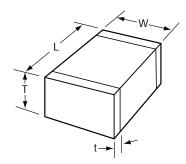
LICA® PACKAGING SCHEME "M" AND "R"

8mm conductive plastic tape on reel: "M"=7" reel max. qty. 3,000, "R"=13" reel max. qty. 8,000



High Voltage MLC Chips


High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. AVX special high voltage MLC chips capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/DC blocking. These high voltage chip designs exhibit low ESRs at high frequencies.


Larger physical sizes than normally encountered chips are used to make high voltage chips. These larger sizes require that special precautions be taken in applying these chips in surface mount assemblies. This is due to differences in the coefficient of thermal expansion (CTE) between the substrate materials and chip capacitors. Apply heat at less than 4°C per second during the preheat. The preheat temperature must be within 50°C of the peak temperature reached by the ceramic bodies through the soldering process. Chips 1808 and larger to use reflow soldering only.

Capacitors with X7R Dielectrics are not intended for AC line filtering applications. Contact plant for recommendations.

Capacitors may require protective surface coating to prevent external arcing.

HOW TO ORDER

DIMENSIONS

millimeters (inches)

SIZE		1206	1210	1808*	1812*	1825*	2220*	2225*	3640*
(L) Length		3.20 ± 0.2 (0.126 ± 0.008)	3.20 ± 0.2 (0.126 ± 0.008)	4.57 ± 0.25 (0.180 ± 0.010)	4.50 ± 0.3 (0.177 ± 0.012)	4.50 ± 0.3 (0.177 ± 0.012)	5.7 ± 0.4 (0.224 ± 0.016)	5.72 ± 0.25 (0.225 ± 0.010)	9.14 ± 0.25 (0.360 ± 0.010)
(W) Width		1.60 ± 0.2 (0.063 ± 0.008)	2.50 ± 0.2 (0.098 ± 0.008)	2.03 ± 0.25 (0.080 ± 0.010)	3.20 ± 0.2 (0.126 ± 0.008)	6.40 ± 0.3 (0.252 ± 0.012)	5.0 ± 0.4 (0.197 ± 0.016)	6.35 ± 0.25 (0.250 ± 0.010)	10.2 ± 0.25 (0.400 ± 0.010)
(T) Thickness Max.		1.52 (0.060)	1.70 (0.067)	2.03 (0.080)	2.54 (0.100)	2.54 (0.100)	3.3 (0.130)	2.54 (0.100)	2.54 (0.100)
(t) terminal	min. max.	0.25 (0.010) 0.75 (0.030)	0.25 (0.010) 0.75 (0.030)	0.25 (0.010) 1.02 (0.040)	0.25 (0.010) 1.02 (0.040)	0.25 (0.010) 1.02 (0.040)	0.25 (0.010) 1.02 (0.040)	0.25 (0.010) 1.02 (0.040)	0.76 (0.030) 1.52 (0.060)

^{*}Reflow Soldering Only

High Voltage MLC Chips

For 600V to 5000V Applications

COG Dielectric

Performance Characteristics

Capacitance Range	10 pF to 0.047 μF (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz)
Capacitance Tolerances	±5%, ±10%, ±20%
Dissipation Factor	0.1% max. (+25°C, 1.0 \pm 0.2 Vrms, 1kHz, for \leq 1000 pF use 1 MHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	0 ±30 ppm/°C (0 VDC)
Voltage Ratings	600, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K M Ω min. or 1000 M Ω - μ F min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K M Ω min. or 100 M Ω - μ F min., whichever is less
Dielectric Strength	120% rated voltage for 5 seconds at 50 mA max. current

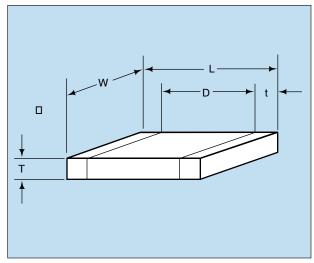
HIGH VOLTAGE COG CAPACITANCE VALUES

VOLT	AGE	1206	1210	1808	1812	1825	2220	2225	3640
600	min.	10 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF	1000 pF
000	max.	680 pF	1500 pF	2700 pF	5600 pF	0.012 µF	0.012 µF	0.015 µF	0.047 µF
1000	min.	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF
1000	max.	470 pF	820 pF	1500 pF	2700 pF	6800 pF	0.010 µF	0.010 µF	0.018 μF
1500	min.	10 pF	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF	100 pF
1500	max.	150 pF	330 pF	470 pF	1000 pF	2700 pF	2700 pF	3300 pF	8200 pF
2000	min.	10 pF	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF	100 pF
2000	max.	68 pF	150 pF	270 pF	680 pF	1800 pF	2200 pF	2200 pF	5600 pF
2500	min.	_	_	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF
2300	max.	_	_	150 pF	390 pF	1000 pF	1000 pF	1200 pF	3900 pF
3000	min.	_	_	10 pF	10 pF	10 pF	10 pF	10 pF	100 pF
3000	max.	_	_	100 pF	330 pF	680 pF	680 pF	820 pF	2200 pF
4000	min.	_	_	10 pF	10 pF	10 pF	10 pF	10 pF	100 pF
4000	max.	_	_	39 pF	100 pF	220 pF	220 pF	330 pF	1000 pF
5000	min.	_	_	_	_	_	_	_	10 pF
3000	max.	_	_	_	_	_	_	_	680 pF

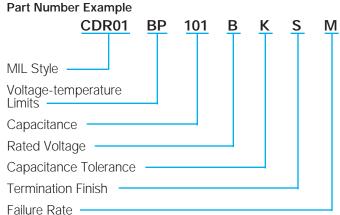
X7R Dielectric

Performance Characteristics

Capacitance Range	10 pF to 0.56 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances	±10%; ±20%; +80%, -20%
Dissipation Factor	2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	±15% (0 VDC)
Voltage Ratings	600, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K M Ω min. or 1000 M Ω - μ F min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K M Ω min. or 100 M Ω - μ F min., whichever is less
Dielectric Strength	120% rated voltage for 5 seconds at 50 mA max. current


HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES

VOLT	AGE	1206	1210	1808	1812	1825	2220	2225	3640
600	min.	1000 pF	1000 pF	1000 pF	1000 pF	0.01 µF	0.01 µF	0.01 µF	0.01 μF
	max.	0.015 μF	0.033 µF	0.056 µF	0.10 μF	0.18 µF	0.22 µF	0.22 µF	0.56 µF
1000	min.	100 pF	1000 pF	1000 pF	1000 pF	1000 pF	1000 pF	1000 pF	0.01 µF
1000	max.	5600 pF	0.015 µF	0.018 µF	0.027 µF	0.10 µF	0.10 µF	0.10 µF	0.22 µF
1500	min.	100 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF	1000 pF
1300	max.	1800 pF	3900 pF	6800 pF	0.012 µF	0.033 µF	0.039 µF	0.047 µF	0.068 µF
2000	min.	10 pF	100 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF
2000	max.	1000pF	2200 pF	2700 pF	4700 pF	0.01 µF	0.01 µF	0.015 µF	0.027 µF
2500	min.		_	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF
2500	max.	_	_	1800 pF	3300 pF	6800 pF	8200 pF	0.01 µF	0.022 µF
3000	min.	_	_	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF
3000	max.	_	_	1500 pF	2200 pF	4700 pF	4700 pF	6800 pF	0.018 µF
4000	min.		_		_	_	_		100 pF
4000	max.	_	_	_	_	_	_	_	6800 pF
5000	min.	_	_	_	_	_	_	_	100 pF
3000	max.				_	_	_		3300 pF



MIL-PRF-55681/Chips Part Number Example CDR01 thru CDR06

MILITARY DESIGNATION PER MIL-PRF-55681

MIL Style: CDR01, CDR02, CDR03, CDR04, CDR05, CDR06

Voltage Temperature Limits:

BP = 0 ± 30 ppm/°C without voltage; 0 ± 30 ppm/°C with rated voltage from -55°C to +125°C

BX = $\pm 15\%$ without voltage; +15 - 25% with rated voltage from -55°C to +125°C

Capacitance: Two digit figures followed by multiplier (number of zeros to be added) e.g., 101 = 100 pF

Rated Voltage: A = 50V, B = 100V

Capacitance Tolerance: J ± 5%, K ± 10%, M ± 20%

Termination Finish:

M = Palladium Silver N = Silver Nickel Gold

S = Solder-coated

U = Base Metallization/Barrier Metal/Solder Coated*

W = Base Metallization/Barrier Metal/Tinned (Tin or Tin/ Lead Alloy)

*Solder shall have a melting point of 200°C or less.

Failure Rate Level: M = 1.0%, P = .1%, R = .01%, S = .001%

Packaging: Bulk is standard packaging. Tape and reel per RS481 is available upon request.

CROSS REFERENCE: AVX/MIL-PRF-55681/CDR01 THRU CDR06*

Per	AVX	Length (L)	ngth (L) Width (W)		Thickness (T)		D		Termination Band (t)	
MIL-PRF-55681	Style	Lengin (L)	vviatn (vv)	Max.	Min.	Max.	Min.	Max.	Min.	
CDR01	0805	.080 ± .015	.050 ± .015	.055	.020	_	.030	_	.010	
CDR02	1805	.180 ± .015	.050 ± .015	.055	.020	_	_	.030	.010	
CDR03	1808	.180 ± .015	.080 ± .018	.080	.020		_	.030	.010	
CDR04	1812	.180 ± .015	.125 ± .015	.080	.020		_	.030	.010	
CDR05	1825	.180 ^{+.020} 015	.250 +.020 015	.080	.020	_	_	.030	.010	
CDR06	2225	.225 ± .020	.250 ± .020	.080	.020	_	_	.030	.010	

^{*}For CDR11, 12, 13, and 14 see AVX Microwave Chip Capacitor Catalog

MIL-PRF-55681/Chips Military Part Number Identification CDR01 thru CDR06

CDR01 thru CDR06 to MIL-PRF-55681

Military Type Designation	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage-temperature limits	WVDC
AVX Style 0	805/CDR01			
CDR01BP100B CDR01BP120B CDR01BP150B CDR01BP180B CDR01BP220B	10 12 15 18 22	J,K J J,K J	BP BP BP BP BP	100 100 100 100 100
CDR01BP270B CDR01BP330B CDR01BP390B CDR01BP470B CDR01BP560B	27 33 39 47 56	1 1'K 1 1	BP BP BP BP BP	100 100 100 100 100
CDR01BP680B CDR01BP820B CDR01BP101B CDR01B121B CDR01B151B	68 82 100 120 150	1'K 1'K 1 1'K	BP BP BP BP,BX BP,BX	100 100 100 100 100
CDR01B181B CDR01BX221B CDR01BX271B CDR01BX331B CDR01BX391B	180 220 270 330 390	J,K K,M K K,M K	BP,BX BX BX BX BX	100 100 100 100 100
CDR01BX471B CDR01BX561B CDR01BX681B CDR01BX821B CDR01BX102B	470 560 680 820 1000	K,M K K,M K K,M	BX BX BX BX BX	100 100 100 100 100
CDR01BX122B CDR01BX152B CDR01BX182B CDR01BX222B CDR01BX272B	1200 1500 1800 2200 2700	K K,M K K,M K	BX BX BX BX BX	100 100 100 100 100
CDR01BX332B CDR01BX392A CDR01BX472A	3300 3900 4700	K,M K K,M	BX BX BX	100 50 50
AVX Style 1	805/CDR02			
CDR02BP221B CDR02BP271B CDR02BX392B CDR02BX472B CDR02BX562B CDR02BX682B	220 270 3900 4700 5600	J,K J K K,M K	BP BP BX BX BX	100 100 100 100 100
CDR02BX822B CDR02BX103B CDR02BX123A CDR02BX153A CDR02BX183A	8200 10,000 12,000 15,000	K K,M K K,M	BX BX BX BX	100 100 50 50 50
CDR02BX103B CDR02BX123A CDR02BX153A	10,000 12,000 15,000	K,M K K,M K K,M	BX BX BX	1) 5

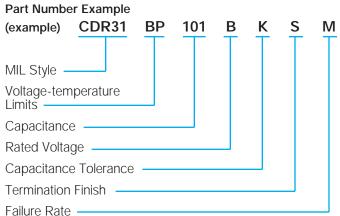
Add appropriate failure rate
 Add appropriate termination finish
Canacitance Tolerance

Type Capacitance Capacitance and voltage-				WVDC				
Designation	in pF	in pF tolerance temperature limits						
AVX Style 1808/CDR03								
CDR03BP331B CDR03BP391B	330 390	J,K J	BP BP	100 100				
CDR03BP471B	470	J,K	BP	100				
CDR03BP561B CDR03BP681B	560 680	J J,K	BP BP	100				
CDR03BP821B	820	J	BP	100				
CDR03BP102B CDR03BX123B	1000 12.000	J,K K	BP BX	100				
CDR03BX153B	15,000	K,M	ВХ	100				
CDR03BX183B CDR03BX223B	18,000 22,000	K K,M	BX BX	100				
CDR03BX273B	27,000	K	ВХ	100				
CDR03BX333B CDR03BX393A	33,000 39,000	K,M K	BX BX	100 50				
CDR03BX473A	47,000	K,M	BX	50				
CDR03BX563A CDR03BX683A	56,000 68,000	K K,M	BX BX	50 50				
AVX Style 18	812/CDR04		<u>'</u>					
CDR04BP122B	1200	J	BP	100				
CDR04BP152B CDR04BP182B	1500 1800	J,K J	BP BP	100				
CDR04BP222B	2200	J,K	BP	100				
CDR04BP272B CDR04BP332B	2700 3300	J J,K	BP BP	100				
CDR04BX393B	39,000	K	ВХ	100				
CDR04BX473B CDR04BX563B	47,000 56,000	K,M K	BX BX	100				
CDR04BX823A	82,000	K	BX	50				
CDR04BX104A CDR04BX124A	100,000 120,000	K,M K	BX BX	50 50				
CDR04BX154A	150,000	K,M	ВХ	50				
CDR04BX184A	180,000	K	BX	50				
AVX Style 18	825/CDR05	I		I				
CDR05BP392B CDR05BP472B	3900 4700	J,K J,K	BP BP	100 100				
CDR05BP562B	5600	J,K	BP	100				
CDR05BX683B CDR05BX823B	68,000 82,000	K,M K	BX BX	100				
CDR05BX104B	100,000	K,M	BX	100				
CDR05BX124B CDR05BX154B	120,000 150,000	K K,M	BX BX	100 100				
CDR05BX224A	220,000	K,M	ВХ	50				
CDR05BX274A	270,000	K	BX	50				
CDR05BX334A	330,000	K,M	BX	50				
AVX Style 22								
CDR06BP682B CDR06BP822B	6800 8200	J,K J,K	BP BP	100				
CDR06BP103B	10,000	J,K	BP	100				
CDR06BX394A CDR06BX474A	390,000 470,000	K K,M	BX BX	50 50				

Add appropriate failure rate

Add appropriate termination finish

Capacitance Tolerance



Part Number Example CDR31 thru CDR35

MILITARY DESIGNATION PER MIL-PRF-55681

MIL Style: CDR31, CDR32, CDR33, CDR34, CDR35

Voltage Temperature Limits:

BP = 0 ± 30 ppm/°C without voltage; 0 ± 30 ppm/°C with rated voltage from -55°C to +125°C

BX = $\pm 15\%$ without voltage; +15 - 25% with rated voltage from -55°C to +125°C

Capacitance: Two digit figures followed by multiplier (number of zeros to be added) e.g., 101 = 100 pF

Rated Voltage: A = 50V, B = 100V

Capacitance Tolerance: C ± .25 pF, D ± .5 pF, F ± 1%

 $J \pm 5\%$, $K \pm 10\%$, $M \pm 20\%$

Termination Finish:

M = Palladium Silver N = Silver Nickel Gold S = Solder-coated

U = Base Metallization/Barrier Metal/Solder Coated* W = Base Metallization/Barrier

Metal/Tinned (Tin or Tin/ Lead Alloy)

*Solder shall have a melting point of 200°C or less.

Failure Rate Level: M = 1.0%, P = .1%, R = .01%, S = .001%

Packaging: Bulk is standard packaging. Tape and reel per RS481 is available upon request.

CROSS REFERENCE: AVX/MIL-PRF-55681/CDR31 THRU CDR35

Per MIL-PRF-55681	AVX	Length (L)	Width (W) (mm)	Thickness (T)	D	Terminatio	n Band (t)
(Metric Sizes)	Style	(mm)		Max. (mm)	Min. (mm)	Max. (mm)	Min. (mm)
CDR31	0805	2.00	1.25	1.3	.50	.70	.30
CDR32	1206	3.20	1.60	1.3	_	.70	.30
CDR33	1210	3.20	2.50	1.5	_	.70	.30
CDR34	1812	4.50	3.20	1.5	_	.70	.30
CDR35	1825	4.50	6.40	1.5	_	.70	.30

Military Part Number Identification CDR31

CDR31 to MIL-PRF-55681/7

Military Type Designation <u>1</u> /	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC
AVX Style 0805/CDR31		(BP)		•
CDR31BP1R0B	1.0	B,C	BP	100
CDR31BP1R1B	1.1	B,C	BP	100
CDR31BP1R2B	1.2	B,C	BP	100
CDR31BP1R3B	1.3	B,C	BP	100
CDR31BP1R5B	1.5	B,C	BP	100
CDR31BP1R6B	1.6	B,C	BP	100
CDR31BP1R8B	1.8	B,C	BP	100
CDR31BP2R0B	2.0	B,C	BP	100
CDR31BP2R2B	2.2	B,C	BP	100
CDR31BP2R4B	2.4	B,C	BP	100
CDR31BP2R7B	2.7	B,C,D	BP	100
CDR31BP3R0B	3.0	B,C,D	BP	100
CDR31BP3R3B	3.3	B,C,D	BP	100
CDR31BP3R6B	3.6	B,C,D	BP	100
CDR31BP3R9B	3.9	B,C,D	BP	100
CDR31BP4R3B	4.3	B,C,D	BP	100
CDR31BP4R7B	4.7	B,C,D	BP	100
CDR31BP5R1B	5.1	B,C,D	BP	100
CDR31BP5R6B	5.6	B,C,D	BP	100
CDR31BP6R2B	6.2	B,C,D	BP	100
CDR31BP6R8B	6.8	B,C,D	BP	100
CDR31BP7R5B	7.5	B,C,D	BP	100
CDR31BP8R2B	8.2	B,C,D	BP	100
CDR31BP9R1B	9.1	B,C,D	BP	100
CDR31BP100B	10	F,J,K	BP	100
CDR31BP110B	11	F,J,K	BP	100
CDR31BP120B	12	F,J,K	BP	100
CDR31BP130B	13	F,J,K	BP	100
CDR31BP150B	15	F,J,K	BP	100
CDR31BP160B	16	F,J,K	BP	100
CDR31BP180B	18	F,J,K	BP	100
CDR31BP200B	20	F,J,K	BP	100
CDR31BP220B	22	F,J,K	BP	100
CDR31BP240B	24	F,J,K	BP	100
CDR31BP270B	27	F,J,K	BP	100
CDR31BP300B	30	F,J,K	BP	100
CDR31BP330B	33	F,J,K	BP	100
CDR31BP360B	36	F,J,K	BP	100
CDR31BP390B	39	F,J,K	BP	100
CDR31BP430B	43	F,J,K	BP	100
CDR31BP470B	47	F,J,K	BP	100
CDR31BP510B	51	F,J,K	BP	100
CDR31BP560B	56	F,J,K	BP	100
CDR31BP620B	62	F,J,K	BP	100
CDR31BP680B	68	F,J,K	BP	100
CDR31BP750B	75	F,J,K	BP	100
CDR31BP820B	82	F,J,K	BP	100
CDR31BP910B	91	F,J,K	BP	100

Add appropriate failure rate

 Add appropriate termination finish

 Capacitance Tolerance

Military Type Capacitance		Capacitance	Rated temperature and voltage-	WVDC
AVX Style 0	in pF 805/CDR31	(BP) cont	temperature limits	
CDR31BP101B CDR31BP111B CDR31BP121B CDR31BP131B CDR31BP151B CDR31BP161B CDR31BP161B	100 110 120 130 150 160 180	F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K	BP BP BP BP BP BP	100 100 100 100 100 100
CDR31BP201B CDR31BP221B CDR31BP241B CDR31BP271B CDR31BP301B	200	F,J,K	BP	100
	220	F,J,K	BP	100
	240	F,J,K	BP	100
	270	F,J,K	BP	100
	300	F,J,K	BP	100
CDR31BP331B	330	F,J,K	BP	100
CDR31BP361B	360	F,J,K	BP	100
CDR31BP391B	390	F,J,K	BP	100
CDR31BP431B	430	F,J,K	BP	100
CDR31BP471B	470	F,J,K	BP	100
CDR31BP511A	510	F,J,K	BP	50
CDR31BP561A	560	F,J,K	BP	50
CDR31BP621A	620	F,J,K	BP	50
CDR31BP681A	680	F,J,K	BP	50
AVX Style 0	805/CDR31	(BX)		
CDR31BX471B	470	K,M	BX	100
CDR31BX561B	560	K,M	BX	100
CDR31BX681B	680	K,M	BX	100
CDR31BX821B	820	K,M	BX	100
CDR31BX102B	1,000	K,M	BX	100
CDR31BX122B	1,200	K,M	BX	100
CDR31BX152B	1,500	K,M	BX	100
CDR31BX182B	1,800	K,M	BX	100
CDR31BX222B	2,200	K,M	BX	100
CDR31BX272B	2,700	K,M	BX	100
CDR31BX332B	3,300	K,M	BX	100
CDR31BX392B	3,900	K,M	BX	100
CDR31BX472B	4,700	K,M	BX	100
CDR31BX562A	5,600	K,M	BX	50
CDR31BX682A	6,800	K,M	BX	50
CDR31BX822A CDR31BX103A CDR31BX123A CDR31BX153A CDR31BX183A	8,200 10,000 12,000 15,000 18,000	K,M K,M K,M K,M	BX BX BX BX BX	50 50 50 50 50

Add appropriate failure rate

Add appropriate termination finish

- Capacitance Tolerance

 $^{{\}color{red} \underline{1}} / \text{ The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.}$

Military Part Number Identification CDR32

CDR32 to MIL-PRF-55681/8

Military Type Designation <u>1</u> /		Capacitance in pF	Capacitance tolerance	Rated temperature and voltage-temperature limits	WVDC
	AVX Style 1	206/CDR32	(BP)		
	CDR32BP1R0B CDR32BP1R1B CDR32BP1R2B CDR32BP1R3B CDR32BP1R5B	1.0 1.1 1.2 1.3 1.5	B,C B,C B,C B,C B,C	BP BP BP BP	100 100 100 100 100
	CDR32BP1R6B	1.6	B,C	BP	100
	CDR32BP1R8B	1.8	B,C	BP	100
	CDR32BP2R0B	2.0	B,C	BP	100
	CDR32BP2R2B	2.2	B,C	BP	100
	CDR32BP2R4B	2.4	B,C	BP	100
	CDR32BP2R7B CDR32BP3R0B CDR32BP3R3B CDR32BP3R6B CDR32BP3R9B	2.7 3.0 3.3 3.6 3.9	B,C,D B,C,D B,C,D B,C,D B,C,D	BP BP BP BP BP	100 100 100 100 100
	CDR32BP4R3B	4.3	B,C,D	BP	100
	CDR32BP4R7B	4.7	B,C,D	BP	100
	CDR32BP5R1B	5.1	B,C,D	BP	100
	CDR32BP5R6B	5.6	B,C,D	BP	100
	CDR32BP6R2B	6.2	B,C,D	BP	100
	CDR32BP6R8B	6.8	B,C,D	BP	100
	CDR32BP7R5B	7.5	B,C,D	BP	100
	CDR32BP8R2B	8.2	B,C,D	BP	100
	CDR32BP9R1B	9.1	B,C,D	BP	100
	CDR32BP100B	10	F,J,K	BP	100
	CDR32BP110B	11	F,J,K	BP	100
	CDR32BP120B	12	F,J,K	BP	100
	CDR32BP130B	13	F,J,K	BP	100
	CDR32BP150B	15	F,J,K	BP	100
	CDR32BP160B	16	F,J,K	BP	100
	CDR32BP180B	18	F,J,K	BP	100
	CDR32BP200B	20	F,J,K	BP	100
	CDR32BP220B	22	F,J,K	BP	100
	CDR32BP240B	24	F,J,K	BP	100
	CDR32BP270B	27	F,J,K	BP	100
	CDR32BP300B	30	F,J,K	BP	100
	CDR32BP330B	33	F,J,K	BP	100
	CDR32BP360B	36	F,J,K	BP	100
	CDR32BP390B	39	F,J,K	BP	100
	CDR32BP430B	43	F,J,K	BP	100
	CDR32BP470B	47	F,J,K	BP	100
	CDR32BP510B	51	F,J,K	BP	100
	CDR32BP560B	56	F,J,K	BP	100
	CDR32BP620B	62	F,J,K	BP	100
	CDR32BP680B	68	F,J,K	BP	100
	CDR32BP750B	75	F,J,K	BP	100
	CDR32BP820B	82	F,J,K	BP	100
	CDR32BP910B	91	F,J,K	BP	100

Add appropriate failure rate
Add appropriate termination finish
Capacitance Tolerance

Military Type Designation <u>1</u> /	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC					
AVX Style 1206/CDR32 (BP) cont'd									
CDR32BP101B	100	F,J,K	BP	100					
CDR32BP111B	110	F,J,K	BP	100					
CDR32BP121B	120	F,J,K	BP	100					
CDR32BP131B	130	F,J,K	BP	100					
CDR32BP151B	150	F,J,K	BP	100					
CDR32BP161B	160	F,J,K	BP	100					
CDR32BP181B	180	F,J,K	BP	100					
CDR32BP201B	200	F,J,K	BP	100					
CDR32BP221B	220	F,J,K	BP	100					
CDR32BP241B	240	F,J,K	BP	100					
CDR32BP271B	270	F,J,K	BP	100					
CDR32BP301B	300	F,J,K	BP	100					
CDR32BP331B	330	F,J,K	BP	100					
CDR32BP361B	360	F,J,K	BP	100					
CDR32BP391B	390	F,J,K	BP	100					
CDR32BP431B	430	F,J,K	BP	100					
CDR32BP471B	470	F,J,K	BP	100					
CDR32BP511B	510	F,J,K	BP	100					
CDR32BP561B	560	F,J,K	BP	100					
CDR32BP621B	620	F,J,K	BP	100					
CDR32BP681B	680	F,J,K	BP	100					
CDR32BP751B	750	F,J,K	BP	100					
CDR32BP821B	820	F,J,K	BP	100					
CDR32BP911B	910	F,J,K	BP	100					
CDR32BP102B	1,000	F,J,K	BP	100					
CDR32BP112A	1,100	F,J,K	BP	50					
CDR32BP122A	1,200	F,J,K	BP	50					
CDR32BP132A	1,300	F,J,K	BP	50					
CDR32BP152A	1,500	F,J,K	BP	50					
CDR32BP162A	1,600	F,J,K	BP	50					
CDR32BP182A	1,800	F,J,K	BP	50					
CDR32BP202A	2,000	F,J,K	BP	50					
CDR32BP222A	2,200	F,J,K	BP	50					
AVX Style 1	206/CDR32	(BX)							
CDR32BX472B CDR32BX562B CDR32BX682B CDR32BX822B CDR32BX103B CDR32BX123B	4,700 5,600 6,800 8,200 10,000 12,000	K,M K,M K,M K,M K,M	BX BX BX BX BX	100 100 100 100 100					
CDR32BX153B CDR32BX183A CDR32BX223A CDR32BX273A CDR32BX333A	15,000 15,000 18,000 22,000 27,000 33,000	K,M K,M K,M K,M	BX BX BX BX	100 50 50 50 50					
CDR32BX393A	39,000	K,M	BX	50					

- Add appropriate failure rate

Add appropriate termination finish

- Capacitance Tolerance

 $[\]underline{1}/$ The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

Military Part Number Identification CDR33/34/35

CDR33/34/35 to MIL-PRF-55681/9/10/11

Military Type Designation <u>1</u> /	Capacitance Capacitance and voltage-		WVDC			
AVX Style 1210/CDR33 (BP)						
CDR33BP102B CDR33BP112B CDR33BP132B CDR33BP152B CDR33BP162B CDR33BP182B CDR33BP202B CDR33BP222B CDR33BP242A	1,000 1,100 1,200 1,300 1,500 1,600 1,800 2,000 2,200 2,400	A,L,7 A,L,7 A,L,7 A,L,7 A,L,7 A,L,7 A,L,7 A,L,7 A,L,7 A,L,7	BP BP BP BP BP BP BP BP	100 100 100 100 100 100 100 100 50		
CDR33BP272A CDR33BP302A CDR33BP332A	2,700 3,000 3,300	F,J,K F,J,K F,J,K	BP BP BP	50 50 50		
AVX Style 1	210/CDR33	(BX)				
CDR33BX153B CDR33BX223B CDR33BX223B CDR33BX393A CDR33BX473A CDR33BX563A CDR33BX683A CDR33BX823A CDR33BX823A CDR33BX104A	15,000 18,000 22,000 27,000 39,000 47,000 56,000 68,000 82,000 100,000	K,M K,M K,M K,M K,M K,M K,M K,M	BX BX BX BX BX BX BX BX BX BX	100 100 100 100 50 50 50 50 50 50		
AVX Style 1	812/CDR34	(BP)				
CDR34BP222B CDR34BP242B CDR34BP272B CDR34BP302B CDR34BP332B CDR34BP392B CDR34BP432B CDR34BP432B CDR34BP472B	2,200 2,400 2,700 3,000 3,300 3,600 3,900 4,300 4,700	A,L,F A,L,F A,L,F A,L,F A,L,F A,L,F A,L,F A,L,F	BP BP BP BP BP BP BP	100 100 100 100 100 100 100 100		
CDR34BP512A CDR34BP562A CDR34BP622A CDR34BP682A CDR34BP752A CDR34BP822A CDR34BP912A CDR34BP912A CDR34BP103A	5,100 5,600 6,200 6,800 7,500 8,200 9,100 10,000	F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K	BP BP BP BP BP BP BP BP	50 50 50 50 50 50 50 50		
	Add appropriateAdd appropriateCapacitance Tole	termination finis	h			

Military Type Capacitance Designation 1/ in pF		Capacitance tolerance	Rated temperature and voltage-temperature limits	WVDC
AVX Style 1	812/CDR34	(BX)		
CDR34BX273B CDR34BX333B CDR34BX473B CDR34BX563B CDR34BX104A CDR34BX124A CDR34BX154A CDR34BX184A	R34BX333B 334BX393B 334BX473B 47,000 R34BX104A 100,000 R34BX104A 120,000 R34BX154A 150,000		BX BX BX BX BX BX BX BX BX	100 100 100 100 100 50 50 50
AVX Style 1	825/CDR35	(BP)		
CDR35BP472B CDR35BP562B CDR35BP62B CDR35BP682B CDR35BP752B CDR35BP822B CDR35BP912B CDR35BP13A CDR35BP13A CDR35BP13A CDR35BP13A CDR35BP13A CDR35BP13A CDR35BP13A CDR35BP13A CDR35BP13A CDR35BP13A CDR35BP13A CDR35BP13A CDR35BP13A CDR35BP13A CDR35BP13A CDR35BP13A CDR35BP183A CDR35BP183A	B 4,700 F,J,K BP B 5,100 F,J,K BP B 5,600 F,J,K BP B 6,200 F,J,K BP B 6,800 F,J,K BP B 7,500 F,J,K BP B 8,200 F,J,K BP B 9,100 F,J,K BP B 10,000 F,J,K BP A 11,000 F,J,K BP A 12,000 F,J,K BP A 15,000 F,J,K BP A 16,000 F,J,K BP A 18,000 F,J,K BP A 18,000 F,J,K BP		100 100 100 100 100 100 100 100 100 50 50 50 50 50 50	
AVX Style 1	825/CDR35	(BX)		
CDR35BX563B CDR35BX823B CDR35BX104B CDR35BX124B CDR35BX154B CDR35BX184A CDR35BX224A CDR35BX274A CDR35BX334A CDR35BX394A CDR35BX394A CDR35BX35BX474A	5663B 56,000 K,M BX 583B 68,000 K,M BX 823B 82,000 K,M BX 104B 100,000 K,M BX 124B 120,000 K,M BX 154B 150,000 K,M BX 184A 180,000 K,M BX 224A 220,000 K,M BX 874A 330,000 K,M BX 884A 370,000 K,M BX		100 100 100 100 100 100 50 50 50 50 50	

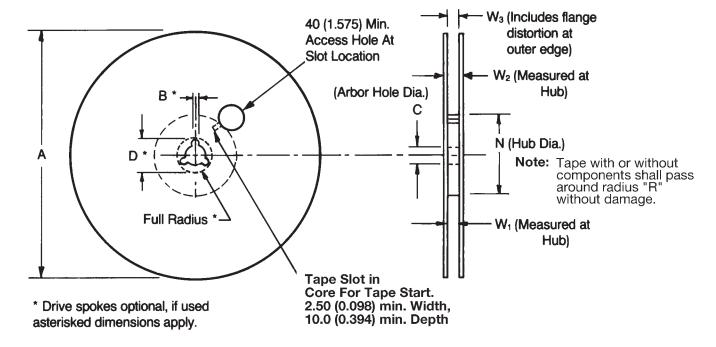
- Add appropriate failure rate

- Add appropriate termination finish

- Capacitance Tolerance

 $[\]underline{\bf 1}/$ The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

Packaging of Chip Components


Automatic Insertion Packaging

TAPE & REEL QUANTITIES

All tape and reel specifications are in compliance with RS481.

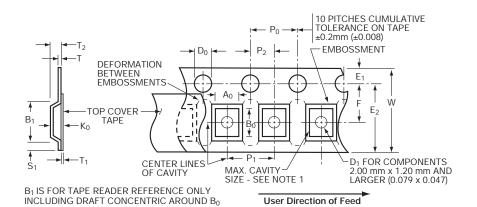
	8mm	12mm	
Paper or Embossed Carrier	0612, 0508, 0805, 1206, 1210		
Embossed Only		1808	1812, 1825 2220, 2225
Paper Only	0201, 0306, 0402, 0603		
Qty. per Reel/7" Reel	2,000, 3,000 or 4,000, 10,000, 15,000 Contact factory for exact quantity	3,000	500, 1,000 Contact factory for exact quantity
Qty. per Reel/13" Reel	5,000, 10,000, 50,000 Contact factory for exact quantity	10,000	4,000

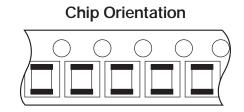
REEL DIMENSIONS

Tape Size ⁽¹⁾	A Max.	B* Min.	С	D* Min.	N Min.	W ₁	W ₂ Max.	W_3		
8mm	330 (12.992)	1.5	13.0 ^{+0.50}	20.2	20.2	20.2	20.2 50.0	8.40 ±1.5 (0.331 ±0.059)	14.4 (0.567)	7.90 Min. (0.311) 10.9 Max. (0.429)
12mm		(0.059)	(0.512 -0.008)	(0.795)	(1.969)	12.4 +2.0 (0.488 +0.079)	18.4 (0.724)	11.9 Min. (0.469) 15.4 Max. (0.607)		

Metric dimensions will govern.

English measurements rounded and for reference only.


⁽¹⁾ For tape sizes 16mm and 24mm (used with chip size 3640) consult EIA RS-481 latest revision.

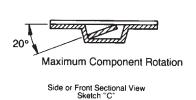


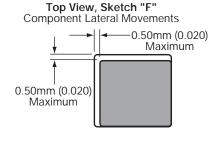
Embossed Carrier Configuration

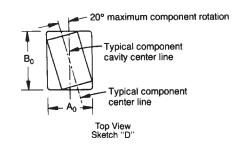
8 & 12mm Tape Only

8 & 12mm Embossed Tape Metric Dimensions Will Govern

CONSTANT DIMENSIONS

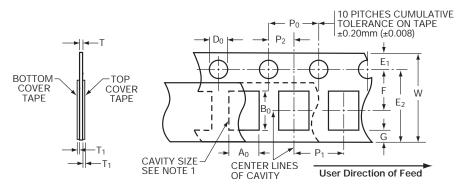

Tape Size	D ₀	Е	P ₀	P ₂	S ₁ Min.	T Max.	T ₁
8mm and 12mm	1.50 ^{+0.10} _{-0.0} (0.059 ^{+0.004})	1.75 ± 0.10 (0.069 ± 0.004)	4.0 ± 0.10 (0.157 ± 0.004)	2.0 ± 0.05 (0.079 ± 0.002)	0.60 (0.024)	0.60 (0.024)	0.10 (0.004) Max.


VARIABLE DIMENSIONS


Tape Size	B ₁ Max.	D ₁ Min.	E ₂ Min.	F	P ₁ See Note 5	R Min. See Note 2	T ₂	W Max.	A ₀ B ₀ K ₀
8mm	4.35 (0.171)	1.00 (0.039)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	4.00 ± 0.10 (0.157 ± 0.004)	25.0 (0.984)	2.50 Max. (0.098)	8.30 (0.327)	See Note 1
12mm	8.20 (0.323)	1.50 (0.059)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	4.00 ± 0.10 (0.157 ± 0.004)	30.0 (1.181)	6.50 Max. (0.256)	12.3 (0.484)	See Note 1
8mm 1/2 Pitch	4.35 (0.171)	1.00 (0.039)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	2.00 ± 0.10 (0.079 ± 0.004)	25.0 (0.984)	2.50 Max. (0.098)	8.30 (0.327)	See Note 1
12mm Double Pitch	8.20 (0.323)	1.50 (0.059)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	8.00 ± 0.10 (0.315 ± 0.004)	30.0 (1.181)	6.50 Max. (0.256)	12.3 (0.484)	See Note 1

NOTES

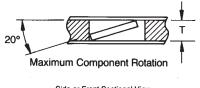
- 1. The cavity defined by A_0 , B_0 , and K_0 shall be configured to provide the following: Surround the component with sufficient clearance such that:
 - a) the component does not protrude beyond the sealing plane of the cover tape.
 - b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the cover tape has been removed.
 - c) rotation of the component is limited to 20° maximum (see Sketches D & E).
 - d) lateral movement of the component is restricted to 0.5mm maximum (see Sketch F).
- 2. Tape with or without components shall pass around radius "R" without damage.
- Bar code labeling (if required) shall be on the side of the reel opposite the round sprocket holes. Refer to EIA-556.
- 4. B_1 dimension is a reference dimension for tape feeder clearance only
- 5. If P_1 = 2.0mm, the tape may not properly index in all tape feeders



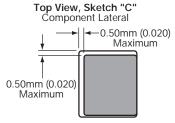
Paper Carrier Configuration

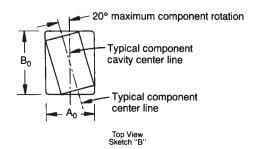
8 & 12mm Tape Only

8 & 12mm Paper Tape Metric Dimensions Will Govern


CONSTANT DIMENSIONS

Tape Size	D_0	Е	P ₀	P ₂	T ₁	G. Min.	R Min.
8mm and 12mm	1.50 ±0.00 (0.059 ±0.004)	1.75 ± 0.10 (0.069 ± 0.004)	4.00 ± 0.10 (0.157 ± 0.004)	2.00 ± 0.05 (0.079 ± 0.002)	0.10 (0.004) Max.	0.75 (0.030) Min.	25.0 (0.984) See Note 2 Min.

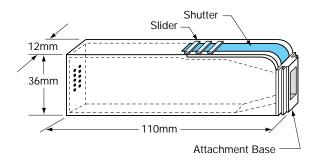

VARIABLE DIMENSIONS

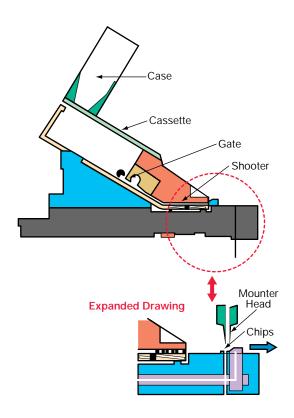

Tape Size	P ₁ See Note 4	E ₂ Min.	F	W	$A_0 B_0$	Т
8mm	4.00 ± 0.10 (0.157 ± 0.004)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	8.00 ^{+0.30} (0.315 ^{+0.012})	See Note 1	1.10mm
12mm	4.00 ± 0.010 (0.157 ± 0.004)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	12.0 ± 0.30 (0.472 ± 0.012)		(0.043) Max. for Paper Base Tape and
8mm 1/2 Pitch	2.00 ± 0.05 (0.079 ± 0.002)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	8.00 ^{+0.30} (0.315 ^{+0.012})		1.60mm (0.063) Max. for Non-Paper Base Compositions
12mm Double Pitch	8.00 ± 0.10 (0.315 ± 0.004)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	12.0 ± 0.30 (0.472 ± 0.012)		Base Compositions

- 1. The cavity defined by A₀, B₀, and T shall be configured to provide sufficient clearance surrounding the component so that:
 - a) the component does not protrude beyond either surface of the carrier tape; b) the component can be removed from the cavity in a vertical direction without mechanical restriction after the top cover tape has been removed;
 - c) rotation of the component is limited to 20° maximum (see Sketches A & B);
 - d) lateral movement of the component is restricted to 0.5mm maximum (see Sketch C).
- 2. Tape with or without components shall pass around radius "R" without damage.
- 3. Bar code labeling (if required) shall be on the side of the reel opposite the sprocket holes. Refer to EIA-556
- 4. If $P_1 = 2.0$ mm, the tape may not properly index in all tape feeders

Bar Code Labeling Standard

AVX bar code labeling is available and follows latest version of EIA-556


Bulk Case Packaging


BENEFITS

- Easier handling
- Smaller packaging volume (1/20 of T/R packaging)
- Easier inventory control
- Flexibility
- Recyclable

CASE DIMENSIONS

BULK FEEDER

CASE QUANTITIES

Part Size	0402	0603	0805	1206
Oty. (pcs / cassette)	80,000	15,000	10,000 (T=.023") 8,000 (T=.031") 6,000 (T=.043")	5,000 (T=.023") 4,000 (T=.032") 3,000 (T=.044")

Basic Capacitor Formulas

I. Capacitance (farads)

English:
$$C = \frac{.224 \text{ K A}}{T_D}$$

Metric: $C = \frac{.0884 \text{ K A}}{T_D}$

II. Energy stored in capacitors (Joules, watt - sec)

III. Linear charge of a capacitor (Amperes)

$$I = C \frac{dV}{dt}$$

IV. Total Impedance of a capacitor (ohms)

$$Z = \sqrt{R_S^2 + (X_C - X_L)^2}$$

V. Capacitive Reactance (ohms)

$$x_C = \frac{1}{2 \pi fC}$$

VI. Inductive Reactance (ohms)

$$x_L = 2 \pi fL$$

VII. Phase Angles:

Ideal Capacitors: Current leads voltage 90° Ideal Inductors: Current lags voltage 90° Ideal Resistors: Current in phase with voltage

VIII. Dissipation Factor (%)

D.F.=
$$\tan \delta$$
 (loss angle) = $\frac{E.S.R.}{X_C}$ = (2 π fC) (E.S.R.)

IX. Power Factor (%)

P.F. = Sine
$$\delta$$
 (loss angle) = Cos ϕ (phase angle)
P.F. = (when less than 10%) = DF

X. Quality Factor (dimensionless)

Q = Cotan
$$\delta$$
 (loss angle) = $\frac{1}{D.F}$

XI. Equivalent Series Resistance (ohms)

E.S.R. = (D.F.) (Xc) = (D.F.) / (2
$$\pi$$
 fC)

XII. Power Loss (watts)

Power Loss =
$$(2 \pi fCV^2)$$
 (D.F.)

XIII. KVA (Kilowatts)

$$KVA = 2 \pi fCV^2 \times 10^{-3}$$

XIV. Temperature Characteristic (ppm/°C)

$$T.C. = \frac{Ct - C_{25}}{C_{25} (T_t - 25)} \times 10^6$$

XV. Cap Drift (%)

C.D. =
$$\frac{C_1 - C_2}{C_1}$$
 x 100

XVI. Reliability of Ceramic Capacitors
$$\frac{L_o}{\bar{L}_t} = \left(\frac{V_t}{V_o}\right)^{X} \quad \left(\frac{T_t}{T_o}\right)^{Y}$$

XVII. Capacitors in Series (current the same)

Any Number:
$$\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} - - \frac{1}{C_N}$$

Two: $C_T = \frac{C_1 C_2}{C_1 + C_2}$

XVIII. Capacitors in Parallel (voltage the same)

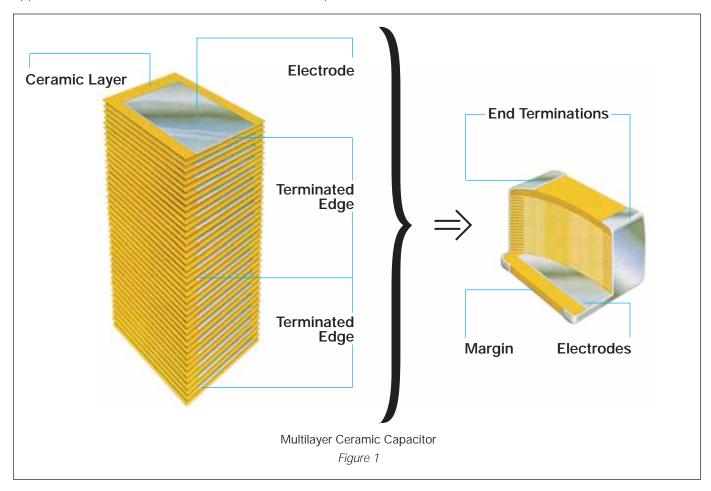
$$C_T = C_1 + C_2 - - + C_N$$

XIX. Aging Rate

A.R. =
$$\%\Delta$$
 C/decade of time

XX. Decibels

$$db = 20 \log \frac{V_1}{V_2}$$


METRIC PREFIXES SYMBOLS

Pico	X 10 ⁻¹²
Nano	X 10 ⁻⁹
Micro	X 10 ⁻⁶
Milli	X 10 ⁻³
Deci	X 10 ⁻¹
Deca	X 10 ⁺¹
Kilo	X 10 ⁺³
Mega	X 10 ⁺⁶
Giga	X 10 ⁺⁹
Tera	X 10 ⁺¹²

Basic Construction – A multilayer ceramic (MLC) capacitor is a monolithic block of ceramic containing two sets of offset, interleaved planar electrodes that extend to two opposite surfaces of the ceramic dielectric. This simple

structure requires a considerable amount of sophistication, both in material and manufacture, to produce it in the quality and quantities needed in today's electronic equipment.

Formulations – Multilayer ceramic capacitors are available in both Class 1 and Class 2 formulations. Temperature compensating formulation are Class 1 and temperature stable and general application formulations are classified as Class 2.

Class 1 – Class 1 capacitors or temperature compensating capacitors are usually made from mixtures of titanates where barium titanate is normally not a major part of the mix. They have predictable temperature coefficients and in general, do not have an aging characteristic. Thus they are the most stable capacitor available. The most popular Class 1 multilayer ceramic capacitors are COG (NPO) temperature compensating capacitors (negative-positive 0 ppm/°C).

Class 2 – EIA Class 2 capacitors typically are based on the chemistry of barium titanate and provide a wide range of capacitance values and temperature stability. The most commonly used Class 2 dielectrics are X7R and Y5V. The X7R provides intermediate capacitance values which vary only ±15% over the temperature range of -55°C to 125°C. It finds applications where stability over a wide temperature range is required.

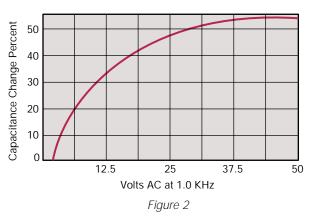
The Y5V provides the highest capacitance values and is used in applications where limited temperature changes are expected. The capacitance value for Y5V can vary from 22% to -82% over the -30°C to 85°C temperature range.

All Class 2 capacitors vary in capacitance value under the influence of temperature, operating voltage (both AC and DC), and frequency. For additional information on performance changes with operating conditions, consult AVX's software, SpiCap.

Table 1: EIA and MIL Temperature Stable and General Application Codes

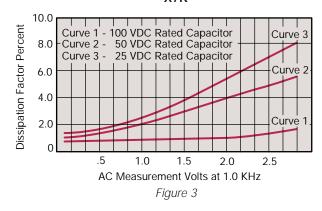
EIA CODE Percent Capacity Change Over Temperature Range							
RS198	Temperature Range						
X7 X6 X5 Y5 Z5	-55°C to +125°C -55°C to +105°C -55°C to +85°C -30°C to +85°C +10°C to +85°C						
Code	Percent Capacity Change						
D E F P R S T U V	±3.3% ±4.7% ±7.5% ±10% ±15% ±22% +22%, -33% +22%, -56% +22%, -82%						


EXAMPLE – A capacitor is desired with the capacitance value at 25° C to increase no more than 7.5% or decrease no more than 7.5% from -30°C to +85°C. EIA Code will be Y5F.

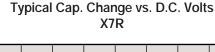

MIL CODE							
Symbol	Symbol Temperature Range						
A B C	-55°C to +85°C -55°C to +125°C -55°C to +150°C						
Symbol	Cap. Change Zero Volts	Cap. Change Rated Volts					
R S W X Y	+15%, -15% +22%, -22% +22%, -56% +15%, -15% +30%, -70% +20%, -20%	+15%, -40% +22%, -56% +22%, -66% +15%, -25% +30%, -80% +20%, -30%					

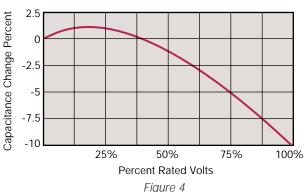
Temperature characteristic is specified by combining range and change symbols, for example BR or AW. Specification slash sheets indicate the characteristic applicable to a given style of capacitor.

In specifying capacitance change with temperature for Class 2 materials, EIA expresses the capacitance change over an operating temperature range by a 3 symbol code. The first symbol represents the cold temperature end of the temperature range, the second represents the upper limit of the operating temperature range and the third symbol represents the capacitance change allowed over the operating temperature range. Table 1 provides a detailed explanation of the EIA system.

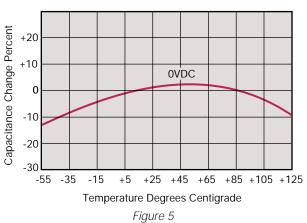

Effects of Voltage – Variations in voltage have little effect on Class 1 dielectric but does affect the capacitance and dissipation factor of Class 2 dielectrics. The application of DC voltage reduces both the capacitance and dissipation factor while the application of an AC voltage within a reasonable range tends to increase both capacitance and dissipation factor readings. If a high enough AC voltage is applied, eventually it will reduce capacitance just as a DC voltage will. Figure 2 shows the effects of AC voltage.

Capacitor specifications specify the AC voltage at which to measure (normally 0.5 or 1 VAC) and application of the wrong voltage can cause spurious readings. Figure 3 gives the voltage coefficient of dissipation factor for various AC voltages at 1 kilohertz. Applications of different frequencies will affect the percentage changes versus voltages.


D.F. vs. A.C. Measurement Volts X7R



Typical effect of the application of DC voltage is shown in Figure 4. The voltage coefficient is more pronounced for higher K dielectrics. These figures are shown for room temperature conditions. The combination characteristic known as voltage temperature limits which shows the effects of rated voltage over the operating temperature range is shown in Figure 5 for the military BX characteristic.



Typical Cap. Change vs. Temperature X7R

Effects of Time – Class 2 ceramic capacitors change capacitance and dissipation factor with time as well as temperature, voltage and frequency. This change with time is known as aging. Aging is caused by a gradual re-alignment of the crystalline structure of the ceramic and produces an exponential loss in capacitance and decrease in dissipation factor versus time. A typical curve of aging rate for semistable ceramics is shown in Figure 6.

If a Class 2 ceramic capacitor that has been sitting on the shelf for a period of time, is heated above its curie point, (125°C for 4 hours or 150°C for ½ hour will suffice) the part will de-age and return to its initial capacitance and dissipation factor readings. Because the capacitance changes rapidly, immediately after de-aging, the basic capacitance measurements are normally referred to a time period sometime after the de-aging process. Various manufacturers use different time bases but the most popular one is one day or twenty-four hours after "last heat." Change in the aging curve can be caused by the application of voltage and other stresses. The possible changes in capacitance due to de-aging by heating the unit explain why capacitance changes are allowed after test, such as temperature cycling, moisture resistance, etc., in MIL specs. The application of high voltages such as dielectric withstanding voltages also

tends to de-age capacitors and is why re-reading of capacitance after 12 or 24 hours is allowed in military specifications after dielectric strength tests have been performed.

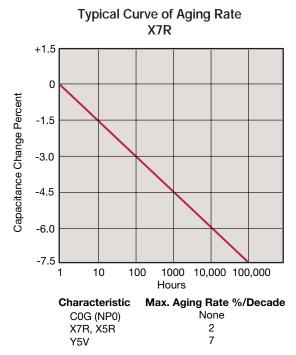


Figure 6

Effects of Frequency – Frequency affects capacitance and impedance characteristics of capacitors. This effect is much more pronounced in high dielectric constant ceramic formulation than in low K formulations. AVX's SpiCap software generates impedance, ESR, series inductance, series resonant frequency and capacitance all as functions of frequency, temperature and DC bias for standard chip sizes and styles. It is available free from AVX and can be downloaded for free from AVX website: www.avx.com.

Effects of Mechanical Stress - High "K" dielectric ceramic capacitors exhibit some low level piezoelectric reactions under mechanical stress. As a general statement, the piezoelectric output is higher, the higher the dielectric constant of the ceramic. It is desirable to investigate this effect before using high "K" dielectrics as coupling capacitors in extremely low level applications.

Reliability - Historically ceramic capacitors have been one of the most reliable types of capacitors in use today. The approximate formula for the reliability of a ceramic capacitor is:

$$\frac{L_o}{L_t} = \left(\frac{V_t}{V_o}\right)^X \left(\frac{T_t}{T_o}\right)^Y$$

where

 T_t = test temperature and T_o = operating temperature L_o = operating life L_t = test life

 V_t = test voltage X,Y = see text **V_o** = operating voltage

Historically for ceramic capacitors exponent X has been considered as 3. The exponent Y for temperature effects typically tends to run about 8.

A capacitor is a component which is capable of storing electrical energy. It consists of two conductive plates (electrodes) separated by insulating material which is called the dielectric. A typical formula for determining capacitance is:

$$C = \frac{.224 \text{ KA}}{t}$$

C = capacitance (picofarads)

K = dielectric constant (Vacuum = 1)

A = area in square inches

t = separation between the plates in inches (thickness of dielectric)

.224 = conversion constant

(.0884 for metric system in cm)

Capacitance - The standard unit of capacitance is the farad. A capacitor has a capacitance of 1 farad when 1 coulomb charges it to 1 volt. One farad is a very large unit and most capacitors have values in the micro (10-6), nano (10⁻⁹) or pico (10⁻¹²) farad level.

Dielectric Constant – In the formula for capacitance given above the dielectric constant of a vacuum is arbitrarily chosen as the number 1. Dielectric constants of other materials are then compared to the dielectric constant of a vacuum.

Dielectric Thickness - Capacitance is indirectly proportional to the separation between electrodes. Lower voltage requirements mean thinner dielectrics and greater capacitance per volume.

Area - Capacitance is directly proportional to the area of the electrodes. Since the other variables in the equation are usually set by the performance desired, area is the easiest parameter to modify to obtain a specific capacitance within a material group.

Energy Stored - The energy which can be stored in a capacitor is given by the formula:

$$E = \frac{1}{2}CV^2$$

E = energy in joules (watts-sec)

V = applied voltage

C = capacitance in farads

Potential Change - A capacitor is a reactive component which reacts against a change in potential across it. This is shown by the equation for the linear charge of a capacitor:

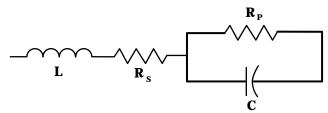
$$I_{ideal} = C \frac{dV}{dt}$$

where

I = Current

C = Capacitance

dV/dt = Slope of voltage transition across capacitor


Thus an infinite current would be required to instantly change the potential across a capacitor. The amount of current a capacitor can "sink" is determined by the above equation.

Equivalent Circuit - A capacitor, as a practical device, exhibits not only capacitance but also resistance and inductance. A simplified schematic for the equivalent circuit

C = Capacitance R_s = Series Resistance

L = Inductance

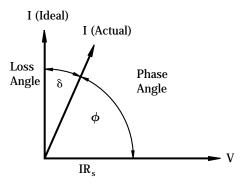
 $\mathbf{R}_{\mathbf{p}}$ = Parallel Resistance

Reactance – Since the insulation resistance (R_n) is normally very high, the total impedance of a capacitor is:

$$Z = \sqrt{R_S^2 + (X_C - X_L)^2}$$
 where

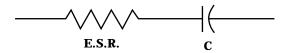
Z = Total Impedance

 \mathbf{Z} = Total impedance \mathbf{R}_s = Series Resistance \mathbf{X}_c = Capacitive Reactance = $\frac{1}{2\pi fC}$


 X_1 = Inductive Reactance = $2 \pi fL$

The variation of a capacitor's impedance with frequency determines its effectiveness in many applications.

Phase Angle - Power Factor and Dissipation Factor are often confused since they are both measures of the loss in a capacitor under AC application and are often almost identical in value. In a "perfect" capacitor the current in the capacitor will lead the voltage by 90°.



In practice the current leads the voltage by some other phase angle due to the series resistance $R_{\rm s}$. The complement of this angle is called the loss angle and:

Power Factor (P.F.) = Cos ϕ or Sine δ Dissipation Factor (D.F.) = $\tan \delta$

for small values of δ the tan and sine are essentially equal which has led to the common interchangeability of the two terms in the industry.

Equivalent Series Resistance – The term E.S.R. or Equivalent Series Resistance combines all losses both series and parallel in a capacitor at a given frequency so that the equivalent circuit is reduced to a simple R-C series connection.

Dissipation Factor – The DF/PF of a capacitor tells what percent of the apparent power input will turn to heat in the capacitor.

Dissipation Factor =
$$\frac{\text{E.S.R.}}{\text{X}_c}$$
 = (2 π fC) (E.S.R.)

The watts loss are:

Watts loss =
$$(2 \pi fCV^2)$$
 (D.F.)

Very low values of dissipation factor are expressed as their reciprocal for convenience. These are called the "Q" or Quality factor of capacitors.

Parasitic Inductance – The parasitic inductance of capacitors is becoming more and more important in the decoupling of today's high speed digital systems. The relationship between the inductance and the ripple voltage induced on the DC voltage line can be seen from the simple inductance equation:

$$V = L \frac{di}{dt}$$

The $\frac{dl}{dt}$ seen in current microprocessors can be as high as 0.3 A/ns, and up to 10A/ns. At 0.3 A/ns, 100pH of parasitic inductance can cause a voltage spike of 30mV. While this does not sound very drastic, with the Vcc for microprocessors decreasing at the current rate, this can be a fairly large percentage.

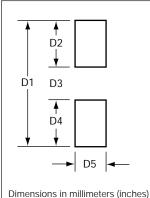
Another important, often overlooked, reason for knowing the parasitic inductance is the calculation of the resonant frequency. This can be important for high frequency, bypass capacitors, as the resonant point will give the most signal attenuation. The resonant frequency is calculated from the simple equation:

$$f_{res} = \frac{1}{2\pi\sqrt{LC}}$$

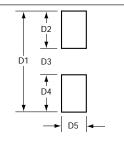
Insulation Resistance – Insulation Resistance is the resistance measured across the terminals of a capacitor and consists principally of the parallel resistance R_P shown in the equivalent circuit. As capacitance values and hence the area of dielectric increases, the I.R. decreases and hence the product (C x IR or RC) is often specified in ohm faradsor more commonly megohm-microfarads. Leakage current is determined by dividing the rated voltage by IR (Ohm's Law).

Dielectric Strength – Dielectric Strength is an expression of the ability of a material to withstand an electrical stress. Although dielectric strength is ordinarily expressed in volts, it is actually dependent on the thickness of the dielectric and thus is also more generically a function of volts/mil.

Dielectric Absorption – A capacitor does not discharge instantaneously upon application of a short circuit, but drains gradually after the capacitance proper has been discharged. It is common practice to measure the dielectric absorption by determining the "reappearing voltage" which appears across a capacitor at some point in time after it has been fully discharged under short circuit conditions.


Corona – Corona is the ionization of air or other vapors which causes them to conduct current. It is especially prevalent in high voltage units but can occur with low voltages as well where high voltage gradients occur. The energy discharged degrades the performance of the capacitor and can in time cause catastrophic failures.

REFLOW SOLDERING

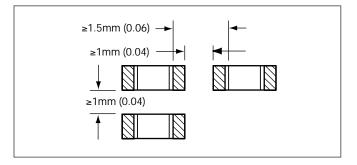

Case Size	D1	D2	D3	D4	D5
0402	1.70 (0.07)	0.60 (0.02)	0.50 (0.02)	0.60 (0.02)	0.50 (0.02)
0603	2.30 (0.09)	0.80 (0.03)	0.70 (0.03)	0.80 (0.03)	0.75 (0.03)
0805	3.00 (0.12)	1.00 (0.04)	1.00 (0.04)	1.00 (0.04)	1.25 (0.05)
1206	4.00 (0.16)	1.00 (0.04)	2.00 (0.09)	1.00 (0.04)	1.60 (0.06)
1210	4.00 (0.16)	1.00 (0.04)	2.00 (0.09)	1.00 (0.04)	2.50 (0.10)
1808	5.60 (0.22)	1.00 (0.04)	3.60 (0.14)	1.00 (0.04)	2.00 (0.08)
1812	5.60 (0.22)	1.00 (0.04))	3.60 (0.14)	1.00 (0.04)	3.00 (0.12)
1825	5.60 (0.22)	1.00 (0.04)	3.60 (0.14)	1.00 (0.04)	6.35 (0.25)
2220	6.60 (0.26)	1.00 (0.04)	4.60 (0.18)	1.00 (0.04)	5.00 (0.20)
2225	6.60 (0.26)	1.00 (0.04)	4.60 (0.18)	1.00 (0.04)	6.35 (0.25)

Component Pad Design

Component pads should be designed to achieve good solder filets and minimize component movement during reflow soldering. Pad designs are given below for the most common sizes of multilayer ceramic capacitors for both wave and reflow soldering. The basis of these designs is:

- Pad width equal to component width. It is permissible to decrease this to as low as 85% of component width but it is not advisable to go below this.
- Pad overlap 0.5mm beneath component.
- Pad extension 0.5mm beyond components for reflow and 1.0mm for wave soldering.

WAVE SOLDERING



Case Size D1		D2	D3	D4	D5	
0603	3.10 (0.12)	1.20 (0.05)	0.70 (0.03)	1.20 (0.05)	0.75 (0.03)	
0805	4.00 (0.15)	1.50 (0.06)	1.00 (0.04)	1.50 (0.06)	1.25 (0.05)	
1206	5.00 (0.19)	1.50 (0.06)	2.00 (0.09)	1.50 (0.06)	1.60 (0.06)	

Dimensions in millimeters (inches)

Component Spacing

For wave soldering components, must be spaced sufficiently far apart to avoid bridging or shadowing (inability of solder to penetrate properly into small spaces). This is less important for reflow soldering but sufficient space must be allowed to enable rework should it be required.

Preheat & Soldering

The rate of preheat should not exceed 4°C/second to prevent thermal shock. A better maximum figure is about 2°C/second.

For capacitors size 1206 and below, with a maximum thickness of 1.25mm, it is generally permissible to allow a temperature differential from preheat to soldering of 150°C. In all other cases this differential should not exceed 100°C.

For further specific application or process advice, please consult AVX.

Cleaning

Care should be taken to ensure that the capacitors are thoroughly cleaned of flux residues especially the space beneath the capacitor. Such residues may otherwise become conductive and effectively offer a low resistance bypass to the capacitor.

Ultrasonic cleaning is permissible, the recommended conditions being 8 Watts/litre at 20-45 kHz, with a process cycle of 2 minutes vapor rinse, 2 minutes immersion in the ultrasonic solvent bath and finally 2 minutes vapor rinse.

MLC Chip Capacitors

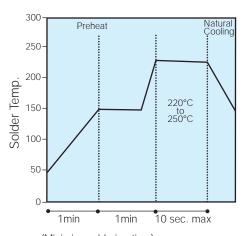
APPLICATION NOTES

Storage

Good solderability is maintained for at least twelve months, provided the components are stored in their "as received" packaging at less than 40°C and 70% RH.

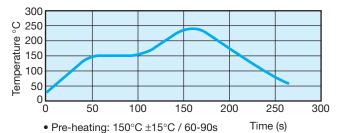
Solderability

Terminations to be well soldered after immersion in a 60/40 tin/lead solder bath at 235 ± 5 °C for 2 ± 1 seconds.

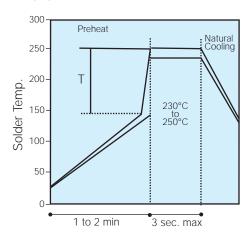

Leaching

Terminations will resist leaching for at least the immersion times and conditions shown below.

Termination Type	Solder	Solder	Immersion Time
	Tin/Lead/Silver	Temp. °C	Seconds
Nickel Barrier	60/40/0	260 ± 5	30 ± 1


Recommended Soldering Profiles

Reflow


(Minimize soldering time)

Lead-Free Reflow Profile

- Max. Peak Gradient 2.5°C/s
- Peak Temperature: 245°C ±5°C
- Time at >230°C: 40s Max.

Wave

(Preheat chips before soldering) T/maximum 150°C

Lead-Free Wave Soldering

The recommended peak temperature for lead-free wave soldering is 250°C-260°C for 3-5 seconds. The other parameters of the profile remains the same as above.

The following should be noted by customers changing from lead based systems to the new lead free pastes.

- a) The visual standards used for evaluation of solder joints will need to be modified as lead free joints are not as bright as with tin-lead pastes and the fillet may not be as large.
- b) Resin color may darken slightly due to the increase in temperature required for the new pastes.
- c) Lead-free solder pastes do not allow the same self alignment as lead containing systems. Standard mounting pads are acceptable, but machine set up may need to be modified.

General

Surface mounting chip multilayer ceramic capacitors are designed for soldering to printed circuit boards or other substrates. The construction of the components is such that they will withstand the time/temperature profiles used in both wave and reflow soldering methods.

Handling

Chip multilayer ceramic capacitors should be handled with care to avoid damage or contamination from perspiration and skin oils. The use of tweezers or vacuum pick ups is strongly recommended for individual components. Bulk handling should ensure that abrasion and mechanical shock are minimized. Taped and reeled components provides the ideal medium for direct presentation to the placement machine. Any mechanical shock should be minimized during handling chip multilayer ceramic capacitors.

Preheat

It is important to avoid the possibility of thermal shock during soldering and carefully controlled preheat is therefore required. The rate of preheat should not exceed 4°C/second

MLC Chip Capacitors

and a target figure 2°C/second is recommended. Although an 80°C to 120°C temperature differential is preferred, recent developments allow a temperature differential between the component surface and the soldering temperature of 150°C (Maximum) for capacitors of 1210 size and below with a maximum thickness of 1.25mm. The user is cautioned that the risk of thermal shock increases as chip size or temperature differential increases.

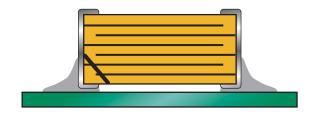
Soldering

Mildly activated rosin fluxes are preferred. The minimum amount of solder to give a good joint should be used. Excessive solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. AVX terminations are suitable for all wave and reflow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

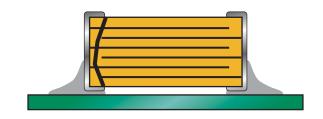
Cooling

Natural cooling in air is preferred, as this minimizes stresses within the soldered joint. When forced air cooling is used, cooling rate should not exceed 4°C/second. Quenching is not recommended but if used, maximum temperature differentials should be observed according to the preheat conditions above.

Cleaning


Flux residues may be hygroscopic or acidic and must be removed. AVX MLC capacitors are acceptable for use with all of the solvents described in the specifications MIL-STD-202 and EIA-RS-198. Alcohol based solvents are acceptable and properly controlled water cleaning systems are also acceptable. Many other solvents have been proven successful, and most solvents that are acceptable to other components on circuit assemblies are equally acceptable for use with ceramic capacitors.

POST SOLDER HANDLING


Once SMP components are soldered to the board, any bending or flexure of the PCB applies stresses to the soldered joints of the components. For leaded devices, the stresses are absorbed by the compliancy of the metal leads and generally don't result in problems unless the stress is large enough to fracture the soldered connection.

Ceramic capacitors are more susceptible to such stress because they don't have compliant leads and are brittle in nature. The most frequent failure mode is low DC resistance or short circuit. The second failure mode is significant loss of capacitance due to severing of contact between sets of the internal electrodes.

Cracks caused by mechanical flexure are very easily identified and generally take one of the following two general forms:

Type A:
Angled crack between bottom of device to top of solder joint.

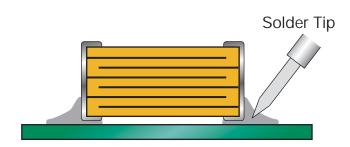
Type B: Fracture from top of device to bottom of device.

Mechanical cracks are often hidden underneath the termination and are difficult to see externally. However, if one end termination falls off during the removal process from PCB, this is one indication that the cause of failure was excessive mechanical stress due to board warping.

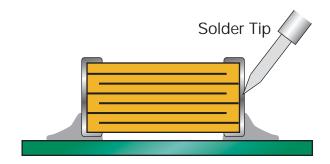
MLC Chip Capacitors

COMMON CAUSES OF MECHANICAL CRACKING

The most common source for mechanical stress is board depanelization equipment, such as manual breakapart, v-cutters and shear presses. Improperly aligned or dull cutters may cause torqueing of the PCB resulting in flex stresses being transmitted to components near the board edge. Another common source of flexural stress is contact during parametric testing when test points are probed. If the PCB is allowed to flex during the test cycle, nearby ceramic capacitors may be broken.

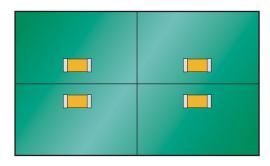

A third common source is board to board connections at vertical connectors where cables or other PCBs are connected to the PCB. If the board is not supported during the plug/unplug cycle, it may flex and cause damage to nearby components.

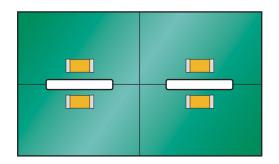
Special care should also be taken when handling large (>6" on a side) PCBs since they more easily flex or warp than smaller boards.


REWORKING OF MLCs

Thermal shock is common in MLCs that are manually attached or reworked with a soldering iron. AVX strongly recommends that any reworking of MLCs be done with hot air reflow rather than soldering irons. It is practically impossible to cause any thermal shock in ceramic capacitors when using hot air reflow.

However direct contact by the soldering iron tip often causes thermal cracks that may fail at a later date. If rework by soldering iron is absolutely necessary, it is recommended that the wattage of the iron be less than 30 watts and the tip temperature be <300°C. Rework should be performed by applying the solder iron tip to the pad and not directly contacting any part of the ceramic capacitor.


Preferred Method - No Direct Part Contact


Poor Method - Direct Contact with Part

PCB BOARD DESIGN

To avoid many of the handling problems, AVX recommends that MLCs be located at least .2" away from nearest edge of board. However when this is not possible, AVX recommends that the panel be routed along the cut line, adjacent to where the MLC is located.

No Stress Relief for MLCs

Routed Cut Line Relieves Stress on MLC

USA

AVX Myrtle Beach, SC Corporate Offices

Tel: 843-448-9411 FAX: 843-448-1943

AVX Northwest, WA

Tel: 360-699-8746 FAX: 360-699-8751 AVX North Central, IN Tel: 317-848-7153

FAX: 317-844-9314

AVX Mid/Pacific, CA

Tel: 510-661-4100 FAX: 510-661-4101

AVX Southwest, AZ

Tel: 602-678-0384 FAX: 602-678-0385

AVX South Central, TX

Tel: 972-669-1223 FAX: 972-669-2090 **AVX Southeast, GA**

Tel: 404-608-8151 FAX: 770-972-0766

AVX Canada

Tel: 905-238-3151 FAX: 905-238-0319

EUROPE

AVX Limited, England European Headquarters

Tel: ++44 (0) 1252-770000 FAX: ++44 (0) 1252-770001

AVX/ELCO, England

Tel: ++44 (0) 1638-675000 FAX: ++44 (0) 1638-675002 AVX S.A., France

Tel: ++33 (1) 69-18-46-00 FAX: ++33 (1) 69-28-73-87

AVX GmbH, Germany

Tel: ++49 (0) 8131-9004-0 FAX: ++49 (0) 8131-9004-44 AVX srl, Italy

Tel: ++390 (0)2 614-571 FAX: ++390 (0)2 614-2576

AVX Czech Republic

Tel: ++420 465-358-111 FAX: ++420 465-323-010

ASIA-PACIFIC

AVX/Kyocera, Singapore

Asia-Pacific Headquarters Tel: (65) 6286-7555

FAX: (65) 6488-9880

AVX/Kyocera, Hong Kong

Tel: (852) 2-363-3303 FAX: (852) 2-765-8185

AVX/Kyocera, Korea

Tel: (82) 2-785-6504 FAX: (82) 2-784-5411 AVX/Kyocera, Taiwan

Tel: (886) 2-2698-8778 FAX: (886) 2-2698-8777

AVX/Kyocera, Malaysia

Tel: (60) 4-228-1190 FAX: (60) 4-228-1196

Elco, Japan

Tel: 045-943-2906/7 FAX: 045-943-2910

Kyocera, Japan - AVX

Tel: (81) 75-604-3426 FAX: (81) 75-604-3425 Kyocera, Japan - KDP Tel: (81) 75-604-3424 FAX: (81) 75-604-3425

AVX/Kyocera, Shanghai, China

Tel: 86-21 6886 1000 FAX: 86-21 6886 1010

AVX/Kyocera, Tianjin, China

Tel: 86-22 2576 0098 FAX: 86-22 2576 0096

(Contact:										

