

FEATURES

- Member of the Texas Instruments Widebus™ Family
- UBT™ Transceiver Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, Clocked, or Clock-Enable Mode
- Operates From 1.65-V to 3.6-V V_{CC}
- Max t_{pd} of 4 ns at 3.3-V V_{CC}
- ± 24 -mA Output Drive at 3.3-V V_{CC}
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)

DESCRIPTION/ORDERING INFORMATION

This 18-bit universal bus transceiver is designed for 1.65-V to 3.6-V V_{CC} operation.

The SN74ALVCH16600 combines D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes.

Data flow in each direction is controlled by output-enable (\overline{OEAB} and \overline{OEBA}), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. The clock can be controlled by the clock-enable (CLKENAB and CLKENBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A data is stored in the latch/flip-flop on the high-to-low transition of CLKAB. When \overline{OEAB} is low, the outputs are active. When \overline{OEAB} is high, the outputs are in the high-impedance state. Data flow for B to A is similar to that of A to B, but uses \overline{OEBA} , LEBA, CLKBA, and CLKENBA.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

DGG OR DL PACKAGE (TOP VIEW)

\overline{OEAB}	1	56	CLKENAB
LEAB	2	55	CLKAB
A1	3	54	B1
GND	4	53	GND
A2	5	52	B2
A3	6	51	B3
V_{CC}	7	50	V_{CC}
A4	8	49	B4
A5	9	48	B5
A6	10	47	B6
GND	11	46	GND
A7	12	45	B7
A8	13	44	B8
A9	14	43	B9
A10	15	42	B10
A11	16	41	B11
A12	17	40	B12
GND	18	39	GND
A13	19	38	B13
A14	20	37	B14
A15	21	36	B15
V_{CC}	22	35	V_{CC}
A16	23	34	B16
A17	24	33	B17
GND	25	32	GND
A18	26	31	B18
\overline{OEBA}	27	30	CLKBA
LEBA	28	29	CLKENBA

ORDERING INFORMATION

T_A	PACKAGE ⁽¹⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40 to 85°C	SSOP - DL	Tube	SN74ALVCH16600DL	ALVCH16600
		Tape and reel	SN74ALVCH16600DLR	
	TSSOP - DGG	Tape and reel	SN74ALVCH16600DGG	ALVCH16600

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

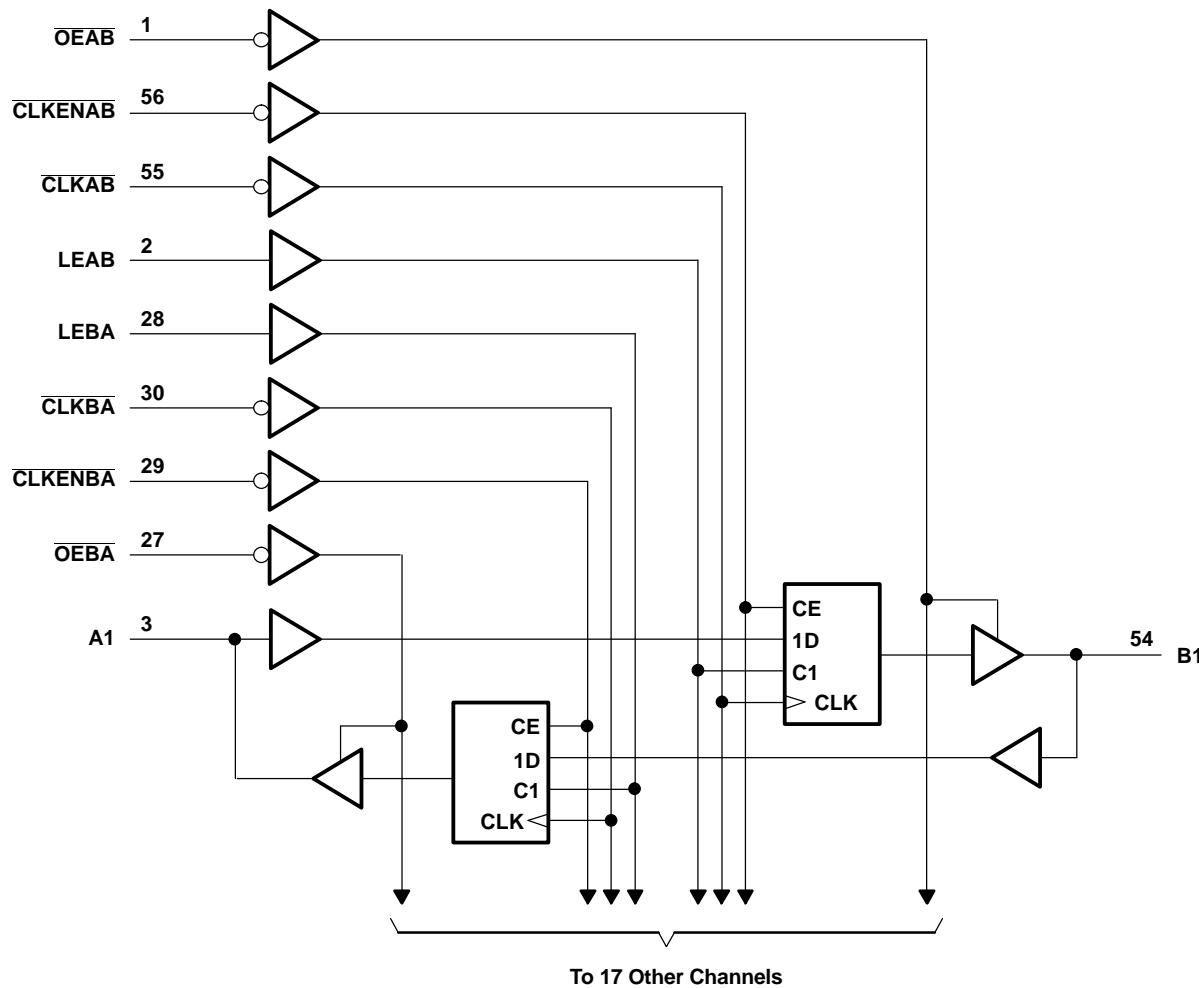
Widebus, UBT are trademarks of Texas Instruments.

SN74ALVCH16600
18-BIT UNIVERSAL BUS TRANSCEIVER
WITH 3-STATE OUTPUTS

SCES030G—JULY 1995—REVISED JULY 2004

 TEXAS
INSTRUMENTS
www.ti.com

FUNCTION TABLE⁽¹⁾


INPUTS					OUTPUT B
CLKENAB	OEAB	LEAB	CLKAB	A	
X	H	X	X	X	Z
X	L	H	X	L	L
X	L	H	X	H	H
H	L	L	X	X	$B_0^{(2)}$
H	L	L	X	X	$B_0^{(2)}$
L	L	L	↓	L	L
L	L	L	↓	H	H
L	L	L	H	X	$B_0^{(2)}$
L	L	L	L	X	$B_0^{(3)}$

(1) A-to-B data flow is shown; B-to-A flow is similar, but uses \overline{OEBA} , $LEBA$, and \overline{CLKBA} .

(2) Output level before the indicated steady-state input conditions were established, provided that $CLKAB$ was high before $LEAB$ went low

(3) Output level before the indicated steady-state input conditions were established

LOGIC DIAGRAM (POSITIVE LOGIC)

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V_{CC}	Supply voltage range	-0.5	4.6	V
V_I	Input voltage range	Except I/O ports ⁽²⁾	-0.5	4.6
		I/O ports ⁽²⁾⁽³⁾	-0.5	$V_{CC} + 0.5$
V_O	Output voltage range ⁽²⁾⁽³⁾	-0.5	$V_{CC} + 0.5$	V
I_{IK}	Input clamp current	$V_I < 0$	-50	mA
I_{OK}	Output clamp current	$V_O < 0$	-50	mA
I_O	Continuous output current		± 50	mA
	Continuous current through each V_{CC} or GND		± 100	mA
θ_{JA}	Package thermal impedance ⁽⁴⁾	DGG package	64	°C/W
		DL package	56	
T_{stg}	Storage temperature range	-65	150	°C

- (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
- (3) This value is limited to 4.6 V, maximum.
- (4) The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS⁽¹⁾

		MIN	MAX	UNIT
V_{CC}	Supply voltage	1.65	3.6	V
V_{IH}	High-level input voltage	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	$0.65 \times V_{CC}$	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2	
V_{IL}	Low-level input voltage	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	$0.35 \times V_{CC}$	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	0.7	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	0.8	
V_I	Input voltage	0	V_{CC}	V
V_O	Output voltage	0	V_{CC}	V
I_{OH}	High-level output current	$V_{CC} = 1.65 \text{ V}$	-4	mA
		$V_{CC} = 2.3 \text{ V}$	-12	
		$V_{CC} = 2.7 \text{ V}$	-12	
		$V_{CC} = 3 \text{ V}$	-24	
I_{OL}	Low-level output current	$V_{CC} = 1.65 \text{ V}$	4	mA
		$V_{CC} = 2.3 \text{ V}$	12	
		$V_{CC} = 2.7 \text{ V}$	12	
		$V_{CC} = 3 \text{ V}$	24	
$\Delta t/\Delta v$	Input transition rise or fall rate		10	ns/V
T_A	Operating free-air temperature	-40	85	°C

- (1) All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SN74ALVCH16600
18-BIT UNIVERSAL BUS TRANSCEIVER
WITH 3-STATE OUTPUTS

SCES030G—JULY 1995—REVISED JULY 2004

 TEXAS
INSTRUMENTS
www.ti.com

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{OH}	I _{OH} = -100 μ A	1.65 V to 3.6 V	V _{CC}	- 0.2		V
	I _{OH} = -4 mA	1.65 V		1.2		
	I _{OH} = -6 mA	2.3 V		2		
	I _{OH} = -12 mA	2.3 V		1.7		
		2.7 V		2.2		
		3 V		2.4		
V _{OL}	I _{OL} = -24 mA	3 V		2		V
	I _{OL} = 100 μ A	1.65 V to 3.6 V		0.2		
	I _{OL} = 4 mA	1.65 V		0.45		
	I _{OL} = 6 mA	2.3 V		0.4		
	I _{OL} = 12 mA	2.3 V		0.7		
		2.7 V		0.4		
I _I	V _I = V _{CC} or GND	3.6 V		\pm 5		μ A
I _{I(hold)}	V _I = 0.58 V	1.65 V		25		μ A
	V _I = 1.07 V	1.65 V		-25		
	V _I = 0.7 V	2.3 V		45		
	V _I = 1.7 V	2.3 V		-45		
	V _I = 0.8 V	3 V		75		
	V _I = 2 V	3 V		-75		
I _{OZ} ⁽³⁾	V _O = V _{CC} or GND	3.6 V		\pm 10		μ A
	V _I = V _{CC} or GND, I _O = 0	3.6 V		40		μ A
Δ I _{CC}	One input at V _{CC} - 0.6 V, Other inputs at V _{CC} or GND	3 V to 3.6 V		750		μ A
C _i	Control inputs	V _I = V _{CC} or GND		3.3 V		pF
C _{io}	A or B ports	V _O = V _{CC} or GND		3.3 V		pF

(1) All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

(2) This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

(3) For I/O ports, the parameter I_{OZ} includes the input leakage current.

TIMING REQUIREMENTS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

			$V_{CC} = 1.8 \text{ V}$		$V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$		$V_{CC} = 2.7 \text{ V}$		$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f_{clock}	Clock frequency			(1)		150		150		150	MHz
t_w	Pulse duration	LE high		(1)		3.3		3.3		3.3	ns
		CLK high or low		(1)		3.3		3.3		3.3	
t_{su}	Setup time	Data before CLK↑		(1)		1.3		1.3		1.2	ns
		Data before LE↓	CLK high	(1)		1.2		1.1		1.1	
			CLK low	(1)		1.8		1.5		1.5	
t_h	Hold time	CLKEN before CLK↑		(1)		0.7		0.7		0.8	ns
		Data after CLK↑		(1)		1.5		1.8		1.5	
		Data after LE↓	CLK high	(1)		1.6		1.9		1.6	
			CLK low	(1)		1.2		1.6		1.3	
		CLKEN after CLK↑		(1)		1.4		1.7		1.4	

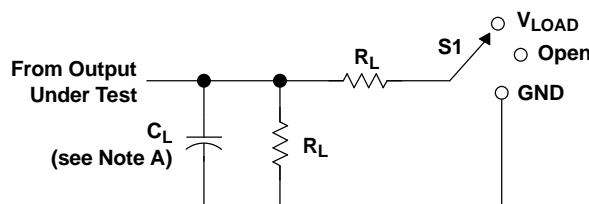
(1) This information was not available at the time of publication.

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 1.8 \text{ V}$		$V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$		$V_{CC} = 2.7 \text{ V}$		$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		
			MIN	TYP	MIN	MAX	MIN	MAX	MIN	MAX	
f_{max}			(1)		150		150		150		MHz
t_{pd}	A or B	B or A	(1)		1	5.1		4.7	1	4	ns
	LEAB or LEBA		(1)		1	5.9		5.5	1	4.8	
	CLKAB or CLKBA		(1)		1	7.3		6.8	1.3	5.7	
t_{en}	\overline{OEAB} or \overline{OEBA}	A or B	(1)		1	6.5		6.3	1.1	5.2	ns
t_{dis}	\overline{OEAB} or \overline{OEBA}	A or B	(1)		1	5.1		4.7	1.2	4.4	ns

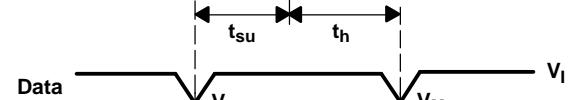
(1) This information was not available at the time of publication.

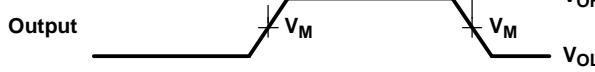
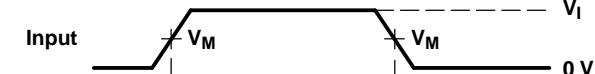

OPERATING CHARACTERISTICS

$T_A = 25^\circ\text{C}$

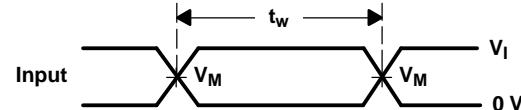
PARAMETER	TEST CONDITIONS	$V_{CC} = 1.8 \text{ V}$			$V_{CC} = 2.5 \text{ V}$			$V_{CC} = 3.3 \text{ V}$		
		TYP	TYP	TYP	TYP	TYP	TYP	TYP	TYP	
C_{pd}	Power dissipation capacitance	Outputs enabled	$C_L = 50 \text{ pF}$, $f = 10 \text{ MHz}$	(1)		43		56		pF
				(1)		6		6		

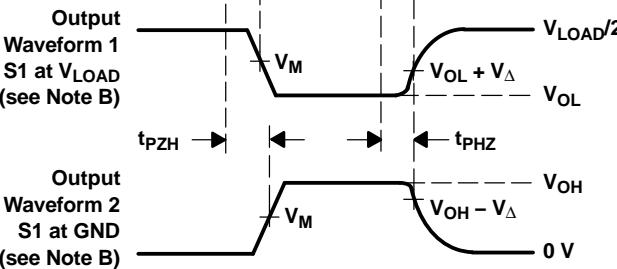
(1) This information was not available at the time of publication.


PARAMETER MEASUREMENT INFORMATION



TEST	S1
t_{pd}	Open
t_{PLZ}/t_{PZL}	V_{LOAD}
t_{PHZ}/t_{PZH}	GND

LOAD CIRCUIT


V_{CC}	INPUT		V_M	V_{LOAD}	C_L	R_L	V_Δ
	V_I	t_r/t_f					
$1.8 \text{ V} \pm 0.15 \text{ V}$	V_{CC}	$\leq 2 \text{ ns}$	$V_{CC}/2$	$2 \times V_{CC}$	30 pF	1 k Ω	0.15 V
$2.5 \text{ V} \pm 0.2 \text{ V}$	V_{CC}	$\leq 2 \text{ ns}$	$V_{CC}/2$	$2 \times V_{CC}$	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	$\leq 2.5 \text{ ns}$	1.5 V	6 V	50 pF	500 Ω	0.3 V
$3.3 \text{ V} \pm 0.3 \text{ V}$	2.7 V	$\leq 2.5 \text{ ns}$	1.5 V	6 V	50 pF	500 Ω	0.3 V


VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS
PULSE DURATION

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES

NOTES: A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \text{ MHz}$, $Z_O = 50 \Omega$.

D. The outputs are measured one at a time, with one transition per measurement.

E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .

F. t_{PZL} and t_{PZH} are the same as t_{en} .

G. t_{PLH} and t_{PHL} are the same as t_{pd} .

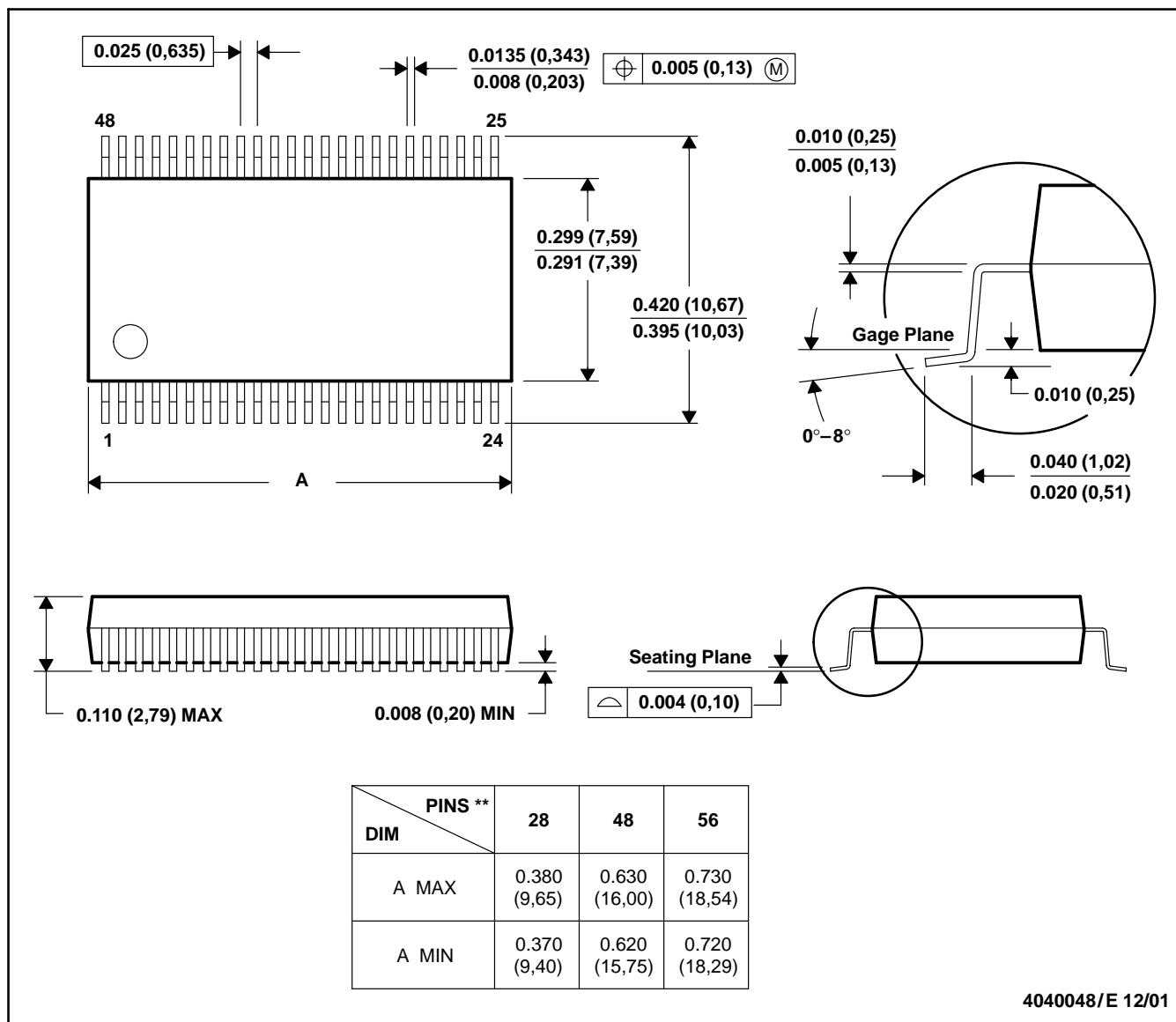
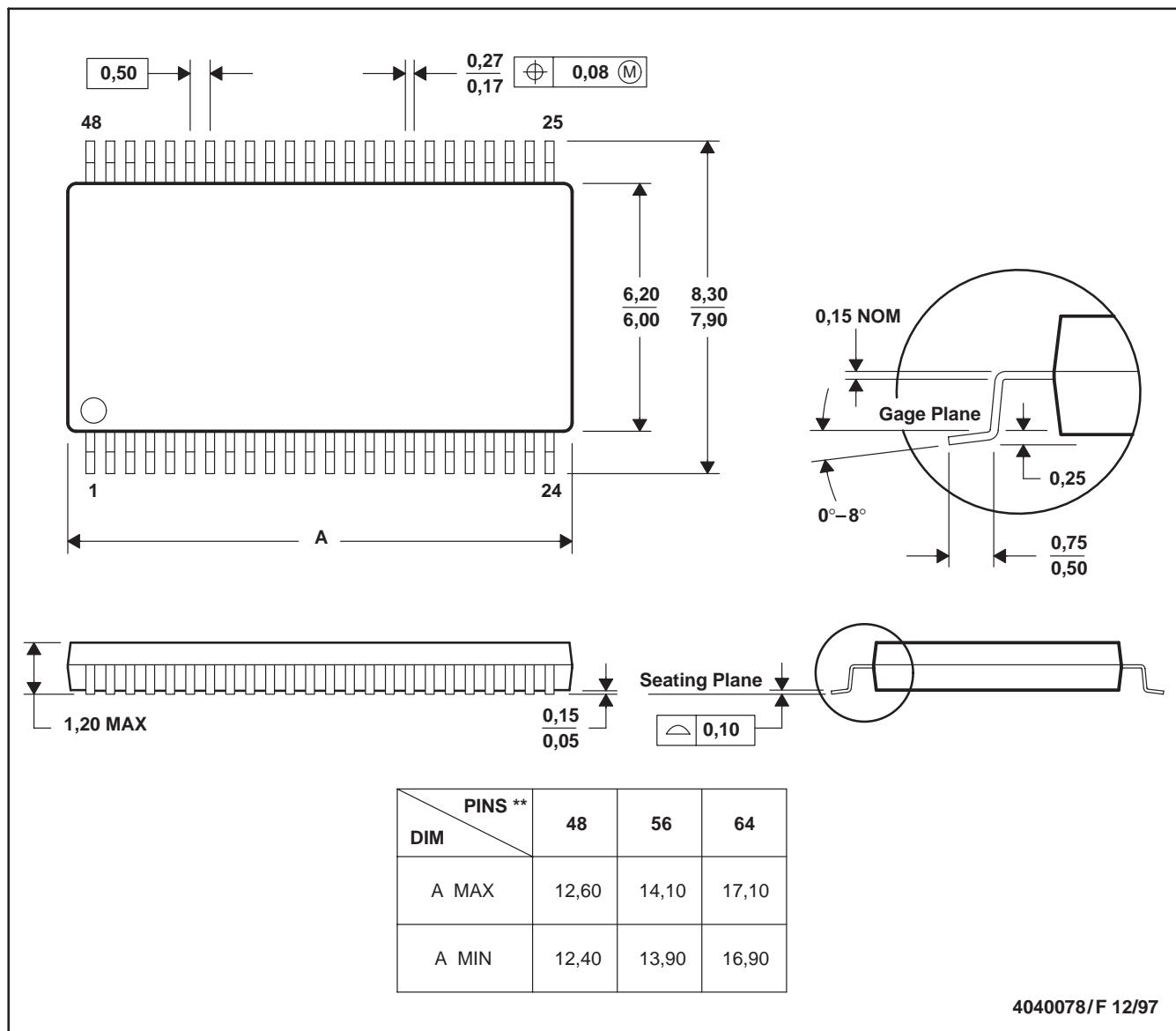

H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

DL (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN



NOTES: A. All linear dimensions are in inches (millimeters).
 B. This drawing is subject to change without notice.
 C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
 D. Falls within JEDEC MO-118

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.
 B. This drawing is subject to change without notice.
 C. Body dimensions do not include mold protrusion not to exceed 0,15.
 D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated