

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at
www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

FEATURES

- Avalanche Rugged Technology
- Rugged Gate Oxide Technology
- Lower Input Capacitance
- Improved Gate Charge
- Extended Safe Operating Area
- Lower Leakage Current : 10 μ A (Max.) @ $V_{DS} = -60V$
- Lower $R_{DS(ON)}$: 0.362 Ω (Typ.)

$BV_{DSS} = -60 V$
 $R_{DS(on)} = 0.5 \Omega$
 $I_D = -5.3 A$

D-PAK I-PAK

1. Gate 2. Drain 3. Source

Absolute Maximum Ratings

Symbol	Characteristic	Value	Units
V_{DSS}	Drain-to-Source Voltage	-60	V
I_D	Continuous Drain Current ($T_C=25^\circ C$)	-5.3	A
	Continuous Drain Current ($T_C=100^\circ C$)	-3.7	
I_{DM}	Drain Current-Pulsed	21	A
V_{GS}	Gate-to-Source Voltage	± 30	V
E_{AS}	Single Pulsed Avalanche Energy	120	mJ
I_{AR}	Avalanche Current	-5.3	A
E_{AR}	Repetitive Avalanche Energy	2.4	mJ
dv/dt	Peak Diode Recovery dv/dt	-5.5	V/ns
P_D	Total Power Dissipation ($T_A=25^\circ C$) *	2.5	W
	Total Power Dissipation ($T_C=25^\circ C$)	24	W
	Linear Derating Factor	0.19	$W^\circ C$
T_J, T_{STG}	Operating Junction and Storage Temperature Range	- 55 to +150	$^\circ C$
T_L	Maximum Lead Temp. for Soldering Purposes, 1/8" from case for 5-seconds	300	

Thermal Resistance

Symbol	Characteristic	Typ.	Max.	Units
$R_{\theta JC}$	Junction-to-Case	--	5.21	$^\circ C/W$
$R_{\theta JA}$	Junction-to-Ambient *	--	50	
$R_{\theta JA}$	Junction-to-Ambient	--	110	

* When mounted on the minimum pad size recommended (PCB Mount).

SFR/U9014

P-CHANNEL
POWER MOSFET

Electrical Characteristics ($T_C=25^\circ\text{C}$ unless otherwise specified)

Symbol	Characteristic	Min.	Typ.	Max.	Units	Test Condition
BV_{DSS}	Drain-Source Breakdown Voltage	-60	--	--	V	$\text{V}_{\text{GS}}=0\text{V}, \text{I}_D=-250\mu\text{A}$
$\Delta \text{BV}/\Delta T_J$	Breakdown Voltage Temp. Coeff.	--	-0.05	--	$\text{V}/^\circ\text{C}$	$\text{I}_D=-250\mu\text{A}$ See Fig 7
$\text{V}_{\text{GS(th)}}$	Gate Threshold Voltage	-2.0	--	-4.0	V	$\text{V}_{\text{DS}}=-5\text{V}, \text{I}_D=-250\mu\text{A}$
I_{GSS}	Gate-Source Leakage , Forward	--	--	-100	nA	$\text{V}_{\text{GS}}=-20\text{V}$
	Gate-Source Leakage , Reverse	--	--	100		$\text{V}_{\text{GS}}=20\text{V}$
I_{DSS}	Drain-to-Source Leakage Current	--	--	-10	μA	$\text{V}_{\text{DS}}=-60\text{V}$
		--	--	-100		$\text{V}_{\text{DS}}=-48\text{V}, \text{T}_C=125^\circ\text{C}$
$\text{R}_{\text{DS(on)}}$	Static Drain-Source On-State Resistance	--	--	0.5	Ω	$\text{V}_{\text{GS}}=-10\text{V}, \text{I}_D=-2.7\text{A}$ ④
g_{fs}	Forward Transconductance	--	2.2	--	S	$\text{V}_{\text{DS}}=-30\text{V}, \text{I}_D=-2.7\text{A}$ ④
C_{iss}	Input Capacitance	--	270	350	pF	$\text{V}_{\text{GS}}=0\text{V}, \text{V}_{\text{DS}}=-25\text{V}, \text{f}=1\text{MHz}$ See Fig 5
C_{oss}	Output Capacitance	--	90	135		
C_{rss}	Reverse Transfer Capacitance	--	25	35		
$\text{t}_{\text{d(on)}}$	Turn-On Delay Time	--	10	30	ns	$\text{V}_{\text{DD}}=-30\text{V}, \text{I}_D=-6.7\text{A}, \text{R}_G=24\Omega$ See Fig 13 ④⑤
t_r	Rise Time	--	19	50		
$\text{t}_{\text{d(off)}}$	Turn-Off Delay Time	--	21	50		
t_f	Fall Time	--	16	40		
Q_g	Total Gate Charge	--	9	11	nC	$\text{V}_{\text{DS}}=-48\text{V}, \text{V}_{\text{GS}}=-10\text{V}, \text{I}_D=-6.7\text{A}$ See Fig 6 & Fig 12 ④⑤
Q_{gs}	Gate-Source Charge	--	1.8	--		
Q_{gd}	Gate-Drain("Miller") Charge	--	4.2	--		

Source-Drain Diode Ratings and Characteristics

Symbol	Characteristic	Min.	Typ.	Max.	Units	Test Condition
I_s	Continuous Source Current	--	--	-5.3	A	Integral reverse pn-diode in the MOSFET
I_{SM}	Pulsed-Source Current ①	--	--	-21		
V_{SD}	Diode Forward Voltage ④	--	--	-3.8	V	$\text{T}_J=25^\circ\text{C}, \text{I}_s=-5.3\text{A}, \text{V}_{\text{GS}}=0\text{V}$
t_{rr}	Reverse Recovery Time	--	75	--	ns	$\text{T}_J=25^\circ\text{C}, \text{I}_F=-6.7\text{A}$
Q_{rr}	Reverse Recovery Charge	--	0.17	--	μC	$\text{di}/\text{dt}=100\text{A}/\mu\text{s}$ ④

Notes :

- ① Repetitive Rating : Pulse Width Limited by Maximum Junction Temperature
- ② $L=5.0\text{mH}, \text{I}_{\text{AS}}=-5.3\text{A}, \text{V}_{\text{DD}}=-25\text{V}, \text{R}_G=27\Omega^*$, Starting $\text{T}_J=25^\circ\text{C}$
- ③ $\text{I}_{\text{SD}} \leq -6.7\text{A}, \text{di}/\text{dt} \leq 200\text{A}/\mu\text{s}, \text{V}_{\text{DD}} \leq \text{BV}_{\text{DSS}}$, Starting $\text{T}_J=25^\circ\text{C}$
- ④ Pulse Test : Pulse Width = $250\mu\text{s}$, Duty Cycle $\leq 2\%$
- ⑤ Essentially Independent of Operating Temperature

Fig 1. Output Characteristics

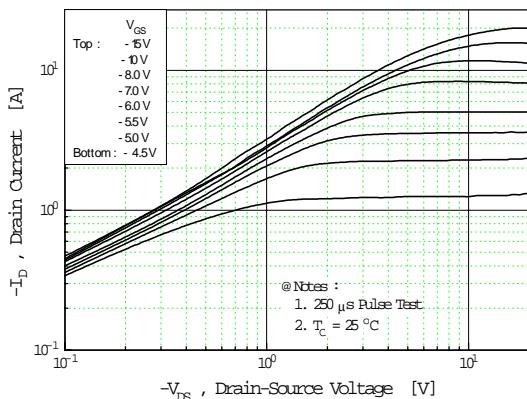


Fig 2. Transfer Characteristics

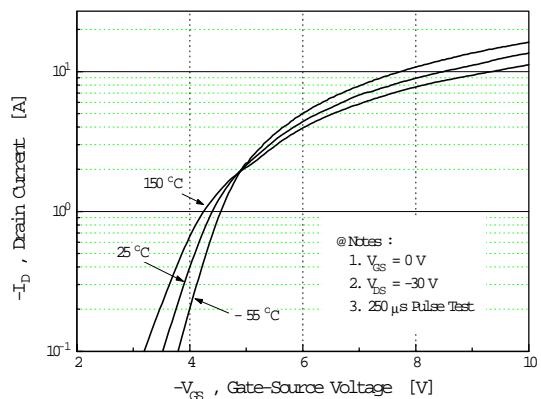


Fig 3. On-Resistance vs. Drain Current

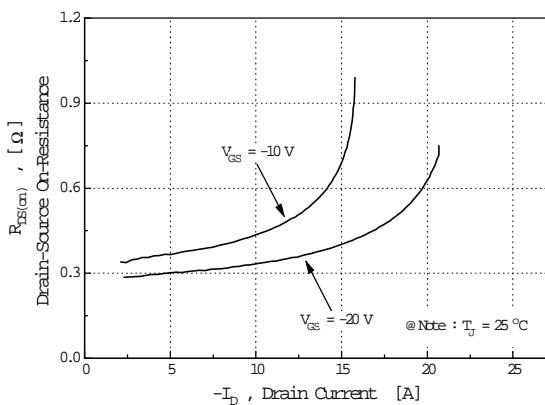


Fig 4. Source-Drain Diode Forward Voltage

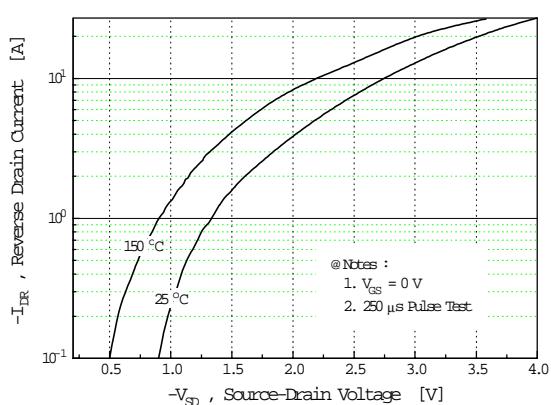


Fig 5. Capacitance vs. Drain-Source Voltage

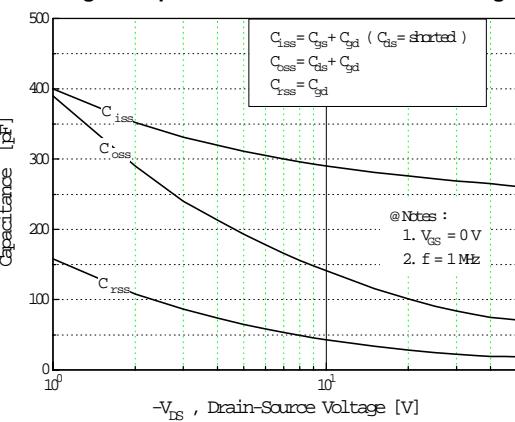
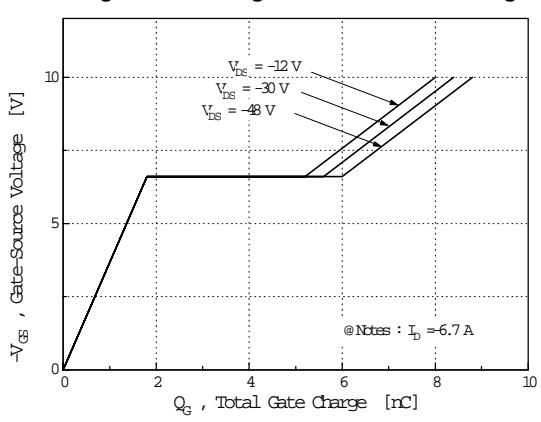



Fig 6. Gate Charge vs. Gate-Source Voltage

SFR/U9014

P-CHANNEL
POWER MOSFET

Fig 7. Breakdown Voltage vs. Temperature

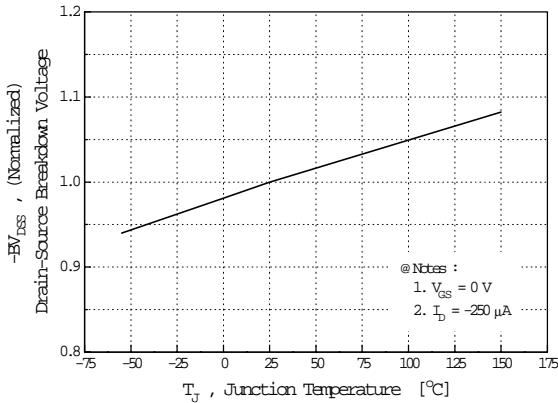


Fig 8. On-Resistance vs. Temperature

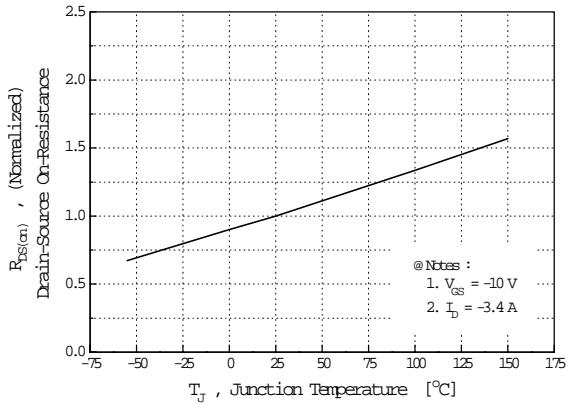


Fig 9. Max. Safe Operating Area

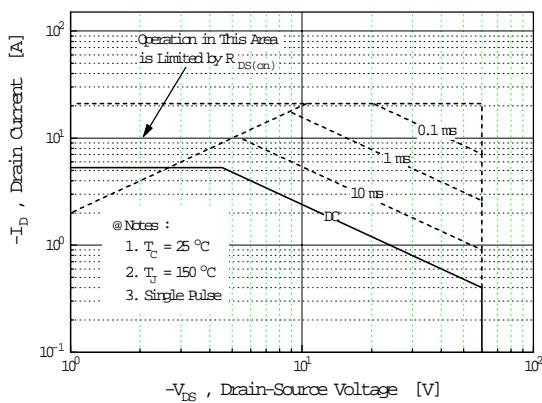


Fig 10. Max. Drain Current vs. Case Temperature

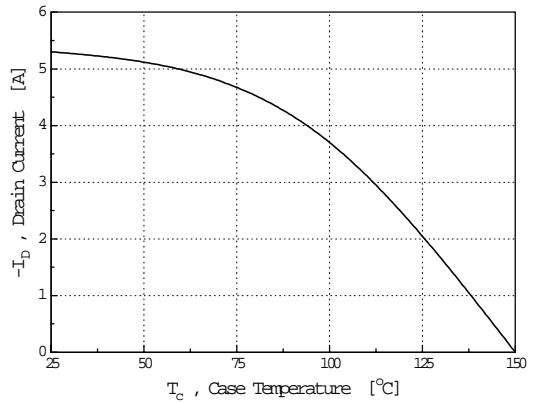


Fig 11. Thermal Response

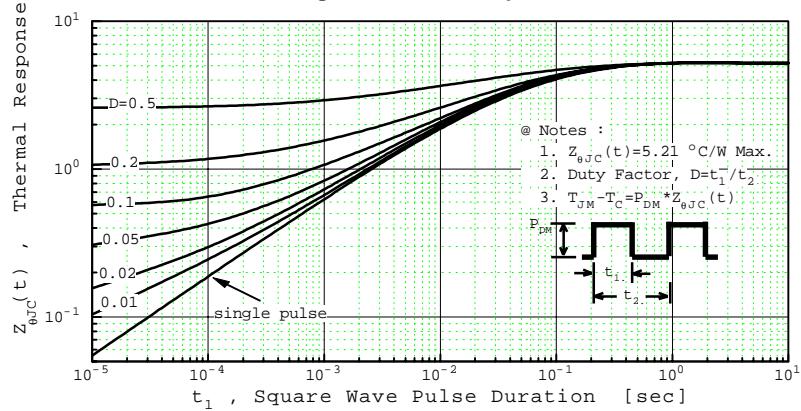


Fig 12. Gate Charge Test Circuit & Waveform

Fig 13. Resistive Switching Test Circuit & Waveforms

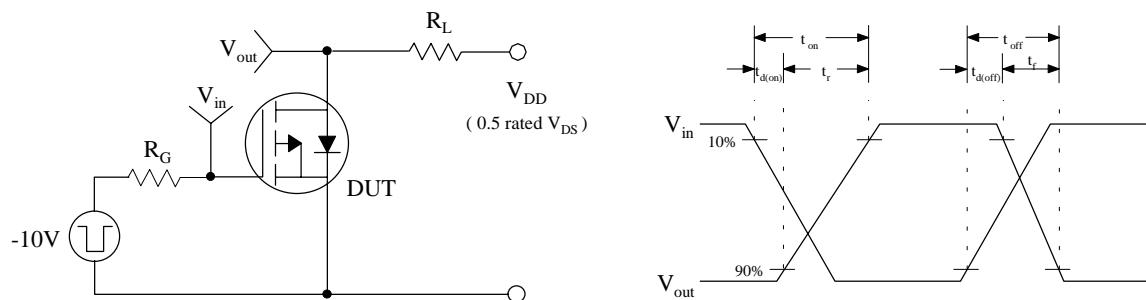


Fig 14. Unclamped Inductive Switching Test Circuit & Waveforms

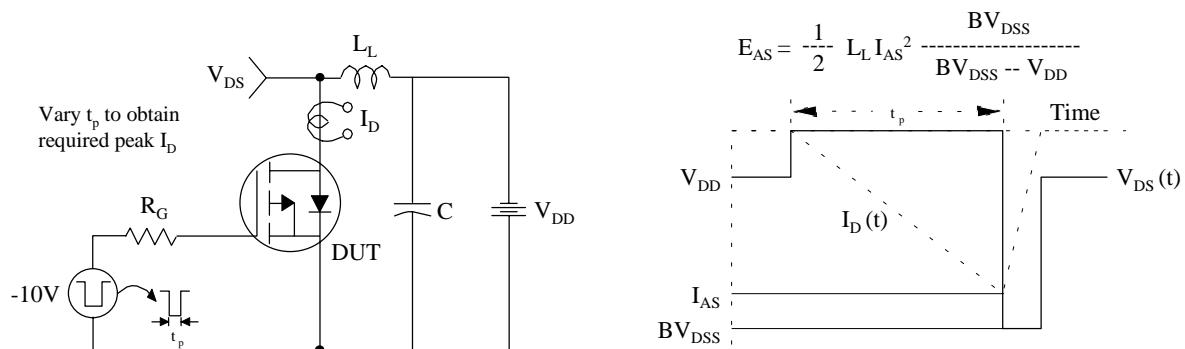
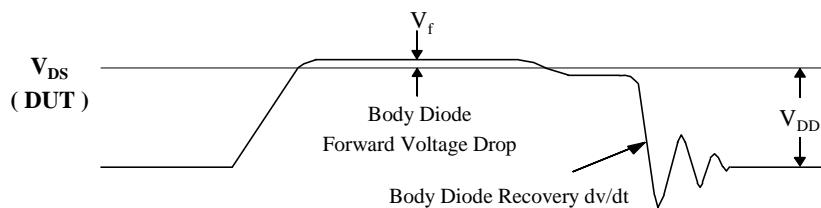
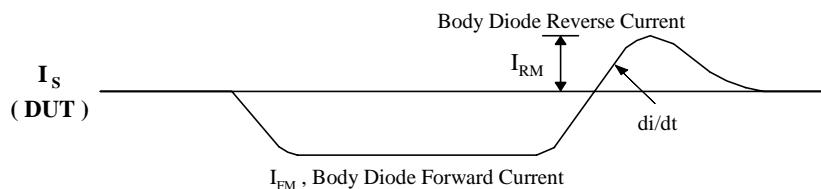
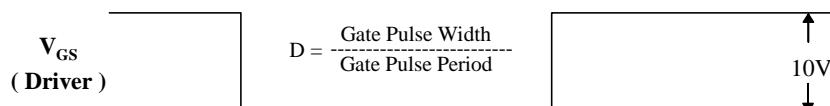
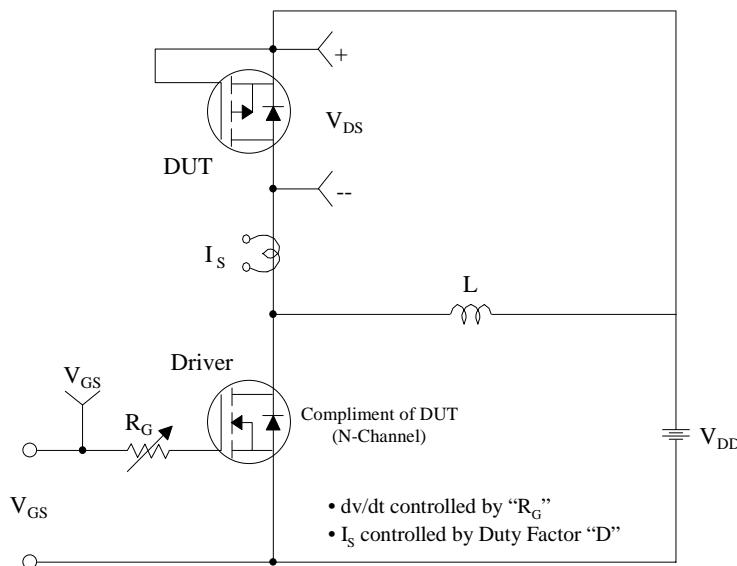






Fig 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACE TM	FACT TM	ImpliedDisconnect TM	PACMAN TM	SPM TM
ActiveArray TM	FACT Quiet Series TM	ISOPLANAR TM	POP TM	Stealth TM
Bottomless TM	FAST [®]	LittleFET TM	Power247 TM	SuperSOT ^{TM-3}
CoolFET TM	FASTr TM	MicroFET TM	PowerTrench [®]	SuperSOT ^{TM-6}
CROSSVOLT TM	FRFET TM	MicroPak TM	QFET TM	SuperSOT ^{TM-8}
DOME TM	GlobalOptoisolator TM	MICROWIRE TM	QS TM	SyncFET TM
EcoSPARK TM	GTO TM	MSX TM	QT Optoelectronics TM	TinyLogic TM
E ² CMOS TM	HiSeC TM	MSXPro TM	Quiet Series TM	TruTranslation TM
EnSigna TM	I ² C TM	OCX TM	RapidConfigure TM	UHC TM
Across the board. Around the world. TM		OCXPro TM	RapidConnect TM	UltraFET [®]
The Power Franchise TM		OPTOLOGIC [®]	SILENT SWITCHER [®]	VCX TM
Programmable Active Droop TM		OPTOPLANAR TM	SMART START TM	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free
USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: <http://www.onsemi.com/orderlit>

For additional information, please contact your local
Sales Representative