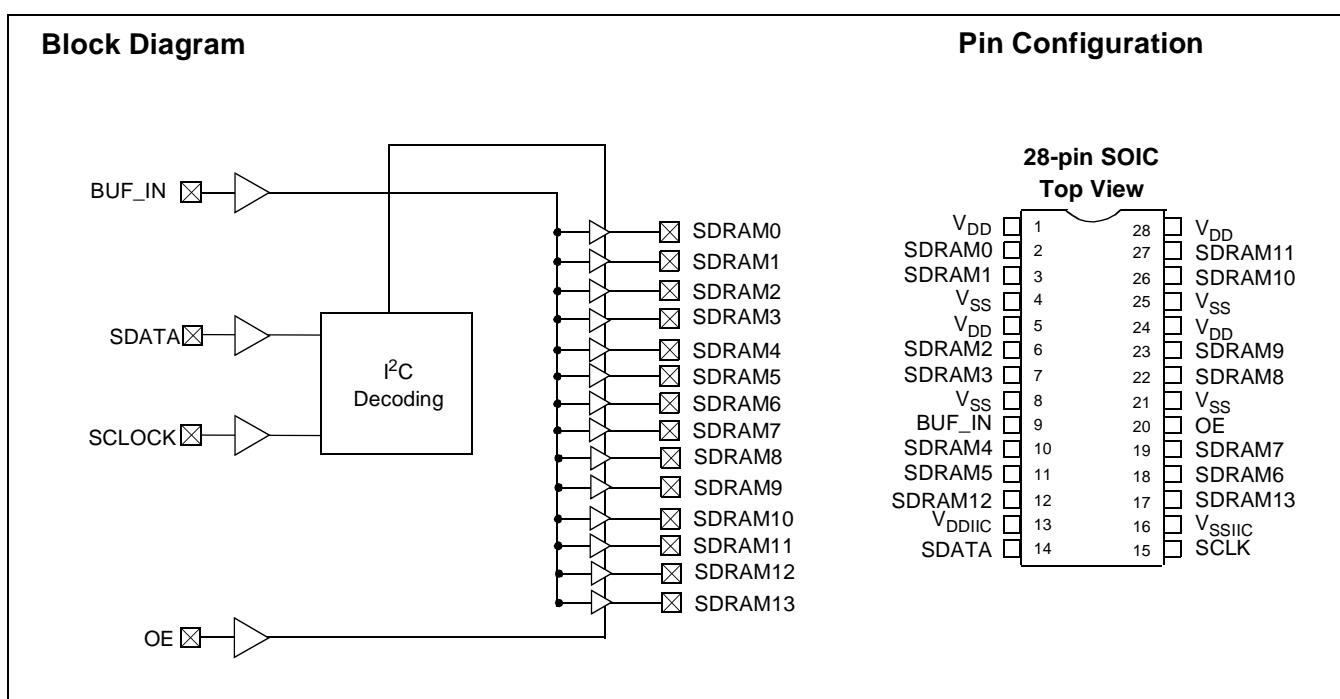


14 Output, 3.3V SDRAM Buffer for Desktop PCs with 3 DIMMs


Features

- One input to 14 output buffer/driver
- Supports up to three SDRAM DIMMs
- Two additional outputs for feedback
- I²C™ interface for output control
- Low skew outputs
- Up to 100 MHz operation
- Multiple V_{DD} and V_{SS} pins for noise reduction
- Dedicated OE pin for testing
- Low EMI outputs
- 28-pin SOIC (300-mil) package
- 3.3V operation

Functional Description

The CY2314ANZ is a 3.3V buffer designed to distribute high-speed clocks in desktop PC applications. The part has 14 outputs, 12 of which can be used to drive up to three SDRAM DIMMs, and the remaining can be used for external feedback to a PLL. The device operates at 3.3V and outputs can run up to 100 MHz, thus making it compatible with Pentium® II processors. The CY2314ANZ can be used in conjunction with the CY2280, CY2281, CY2282 or similar clock synthesizer for a complete Pentium II motherboard solution.

The CY2314ANZ also includes an I²C interface which can enable or disable each output clock. On power-up, all output clocks are enabled. A separate Output Enable pin facilitates testing on ATE.

Pentium is a registered trademark of Intel Corporation.
I²C is a trademark of Philips Corporation.

Pin Summary

Name	Pins	Description
V _{DD}	1, 5, 24, 28	3.3V Digital voltage supply
V _{SS}	4, 8, 21, 25	Ground
V _{DDIIC}	13	I ² C Voltage supply
V _{SSIIC}	16	Ground for I ² C
BUF_IN	9	Input clock
OE	20	Output Enable, three-states outputs when LOW. Internal pull-up to V _{DD}
SDATA	14	I ² C data input, internal pull-up to V _{DD}
SCLK	15	I ² C clock input, internal pull-up to V _{DD}
SDRAM [0-13]	2, 3, 6, 7, 10, 11, 18, 19, 22, 23, 26, 27, 12, 17	SDRAM clock outputs

Device Functionality

OE	SDRAM [0-13]
0	High-Z
1	1 x BUF_IN

Serial Configuration Map

- The Serial bits will be read by the clock driver in the following order:
 - Byte 0 - Bits 7, 6, 5, 4, 3, 2, 1, 0
 - Byte 1 - Bits 7, 6, 5, 4, 3, 2, 1, 0
 - .
 - Byte N - Bits 7, 6, 5, 4, 3, 2, 1, 0
- Reserved and unused bits should be programmed to "0"
- I²C Address for the CY2314ANZ is:

A6	A5	A4	A3	A2	A1	A0	R/W
1	1	0	1	0	0	1	----

Byte 0: SDRAM Active/Inactive Register (1 = Enable, 0 = Disable), Default = Enabled

Bit	Pin #	Description
Bit 7	11	SDRAM5 (Active/Inactive)
Bit 6	10	SDRAM4 (Active/Inactive)
Bit 5	--	Reserved, drive to 0
Bit 4	--	Reserved, drive to 0
Bit 3	7	SDRAM3 (Active/Inactive)
Bit 2	6	SDRAM2 (Active/Inactive)
Bit 1	3	SDRAM1 (Active/Inactive)
Bit 0	2	SDRAM0 (Active/Inactive)

Byte 1: SDRAM Active/Inactive Register (1 = Active, 0 = Inactive), Default = Active

Bit	Pin #	Description
Bit 7	27	SDRAM11 (Active/Inactive)
Bit 6	26	SDRAM10 (Active/Inactive)
Bit 5	23	SDRAM9 (Active/Inactive)
Bit 4	22	SDRAM8 (Active/Inactive)
Bit 3	--	Reserved, drive to 0
Bit 2	--	Reserved, drive to 0
Bit 1	19	SDRAM7 (Active/Inactive)
Bit 0	18	SDRAM6 (Active/Inactive)

Byte 2: SDRAM Active/Inactive Register (1 = Active, 0 = Inactive), Default = Active

Bit	Pin #	Description
Bit 7	17	SDRAM13 (Active/Inactive)
Bit 6	12	SDRAM12 (Active/Inactive)
Bit 5	--	Reserved, drive to 0
Bit 4	--	Reserved, drive to 0
Bit 3	--	Reserved, drive to 0
Bit 2	--	Reserved, drive to 0
Bit 1	--	Reserved, drive to 0
Bit 0	--	Reserved, drive to 0

Maximum Ratings

Supply Voltage to Ground Potential.....	-0.5V to +7.0V	Max. Soldering Temperature (10 sec.).....	260°C
DC Input Voltage (Except BUF_IN)	-0.5V to $V_{DD} + 0.5V$	Junction Temperature	150°C
DC Input Voltage (BUF_IN)	-0.5V to +7.0V	Static Discharge Voltage	
Storage Temperature	-65°C to +150°C	(per MIL-STD-883, Method 3015)	>2000V

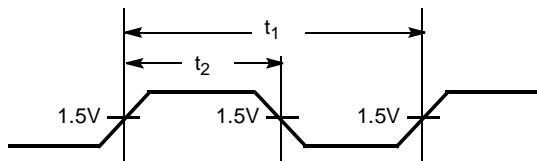
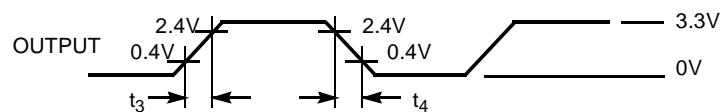
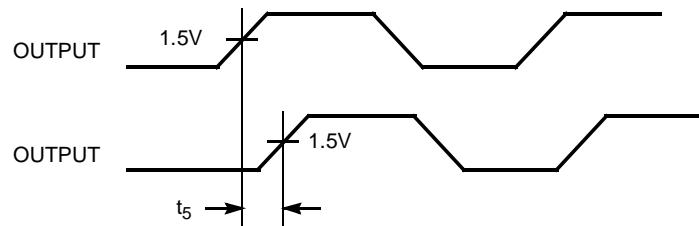
Operating Conditions [1]

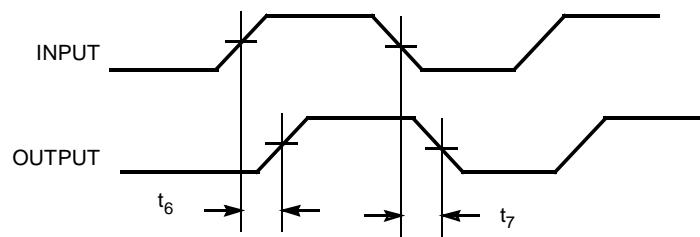
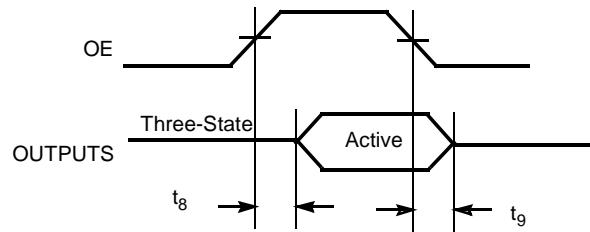
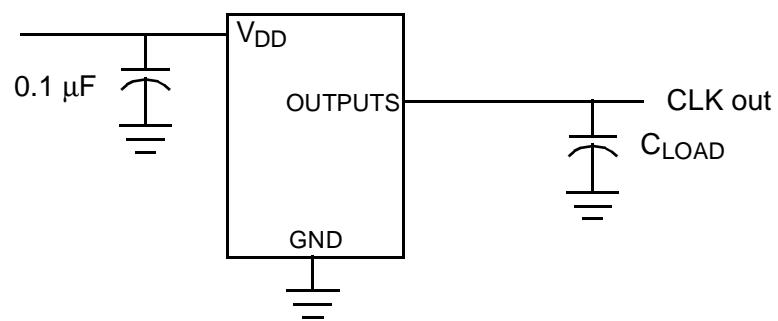
Parameter	Description	Min.	Max.	Unit
V_{DD}	Supply Voltage	3.135	3.465	V
T_A	Operating Temperature (Ambient Temperature)	0	70	°C
C_L	Load Capacitance		30	pF
C_{IN}	Input Capacitance		7	pF

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min.	Max.	Unit
V_{IL}	Input LOW Voltage ^[2]	Except I ² C pins		0.8	V
V_{ILiic}	Input LOW Voltage	For I ² C pins only		0.7	V
V_{IH}	Input HIGH Voltage ^[2]		2.0		V
I_{IL}	Input LOW Current (BUF_IN input)	$V_{IN} = 0V$	-10	10	µA
I_{IL}	Input LOW Current (Except BUF_IN Pin)	$V_{IN} = 0V$		100	µA
I_{IH}	Input HIGH Current	$V_{IN} = V_{DD}$	-10	10	µA
V_{OL}	Output LOW Voltage ^[3]	$I_{OL} = 25\text{ mA}$		0.4	V
V_{OH}	Output HIGH Voltage ^[3]	$I_{OH} = -36\text{ mA}$	2.4		V
I_{DD}	Supply Current ^[3]	Unloaded outputs, 100 MHz		200	mA
I_{DD}	Supply Current ^[3]	Loaded outputs, 100 MHz		290	mA
I_{DD}	Supply Current ^[3]	Unloaded outputs, 66.67 MHz		150	mA
I_{DD}	Supply Current ^[3]	Loaded outputs, 66.67 MHz		185	mA
I_{DDS}	Supply Current	$BUF_{IN}=V_{DD}$ or V_{SS} All other inputs at V_{DD}		500	µA

Notes:

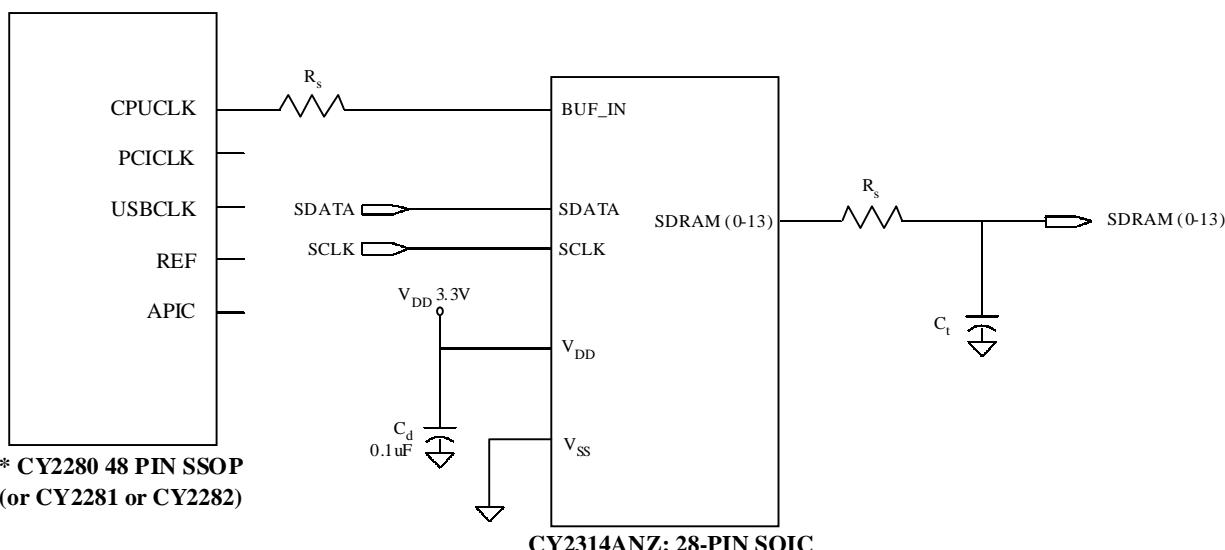



1. Electrical parameters are guaranteed under the operating conditions specified.
2. BUF_IN input has a threshold voltage of $V_{DD}/2$.
3. Parameter is guaranteed by design and characterization. Not 100% tested in production.




Switching Characteristics^[4] Over the Operating Range

Parameter	Name	Test Conditions	Min.	Typ.	Max.	Unit
	Maximum Operating Frequency				100	MHz
	Duty Cycle ^[3,5] = $t_2 \div t_1$	Measured at 1.5V	45.0	50.0	55.0	%
t_3	Rising Edge Rate ^[3]	Measured between 0.4V and 2.4V	0.9	1.5	4.0	V/ns
t_4	Falling Edge Rate ^[3]	Measured between 2.4V and 0.4V	0.9	1.5	4.0	V/ns
t_5	Output to Output Skew ^[3]	All outputs equally loaded	-250		+250	ps
t_6	SDRAM Buffer LH Prop. Delay ^[3]	Input edge greater than 1V/ns	1.0	3.5	5.0	ns
t_7	SDRAM Buffer HL Prop. Delay ^[3]	Input edge greater than 1V/ns	1.0	3.5	5.0	ns
t_8	SDRAM Buffer Enable Delay ^[3]	Input edge greater than 1V/ns	1.0	5	12	ns
t_9	SDRAM Buffer Disable Delay ^[3]	Input edge greater than 1V/ns	1.0	20	30	ns

Notes:

4. All parameters specified with loaded outputs.
5. Duty cycle of input clock is 50%. Rising and falling edge rate of the input clock is greater than 1V/ns.


Switching Waveforms
Duty Cycle Timing

All Outputs Rise/Fall Time

Output-Output Skew

Switching Waveforms (continued)
SDRAM Buffer LH and HL Propagation Delay

SDRAM Buffer Enable and Disable Times

Test Circuit

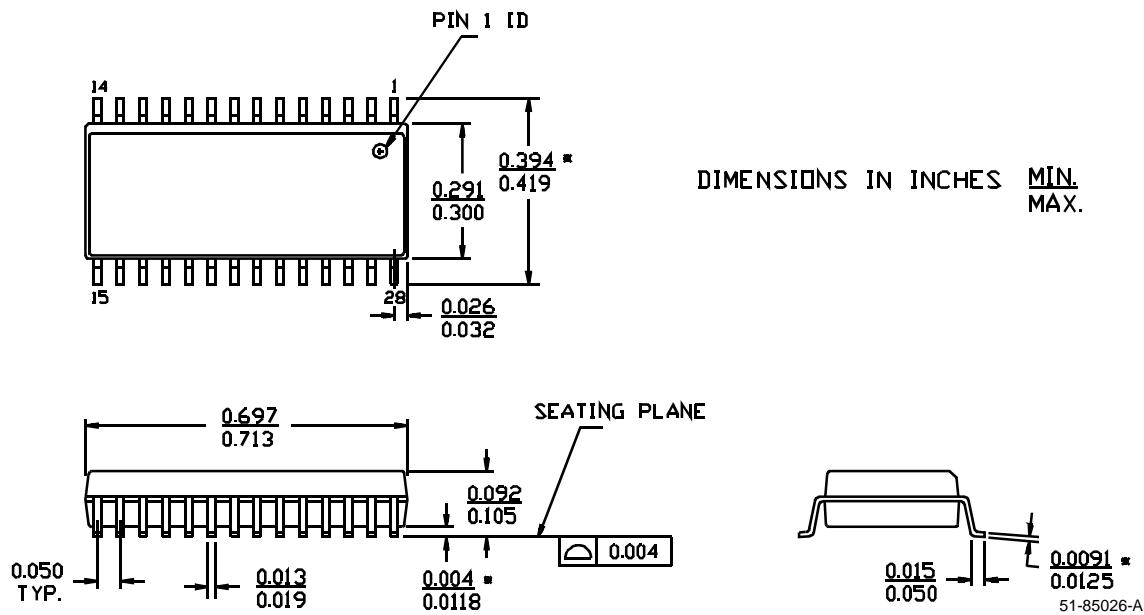
Application Information

Clock traces must be terminated with either series or parallel termination, as they are normally done.

Application Circuit

C_d = DECOUPLING CAPACITORS
 C_t = OPTIONAL EMI-R REDUCING CAPACITORS
 R_s = SERIES TERMINATING RESISTORS

Summary


- Surface mount, low-ESR, ceramic capacitors should be used for filtering. Typically, these capacitors have a value of $0.1 \mu\text{F}$. In some cases, smaller value capacitors may be required.
- The value of the series terminating resistor satisfies the following equation, where R_{trace} is the loaded characteristic impedance of the trace, R_{out} is the output impedance of the buffer (typically 25Ω), and R_{series} is the series terminating resistor.

$$R_{series} > R_{trace} - R_{out}$$
- Footprints must be laid out for optional EMI-reducing capacitors, which should be placed as close to the terminating resistor as is physically possible. Typical values of these capacitors range from 4.7 pF to 22 pF .
- A Ferrite Bead **may** be used to isolate the Board V_{DD} from the clock generator V_{DD} island. Ensure that the Ferrite Bead offers greater than 50Ω impedance at the clock frequency, under loaded DC conditions. Please refer to the application note "Layout and Termination Techniques for Cypress Clock Generators" for more details.
- If a Ferrite Bead is used, a $10 \mu\text{F}$ – $22 \mu\text{F}$ tantalum bypass capacitor should be placed close to the Ferrite Bead. This capacitor prevents power supply droop during current surges.

Ordering Information

Ordering Code	Package Name	Package Type	Operating Range
CY2314ANZSC-1	S21	28-Pin SOIC	Commercial

Document #: 38-00687-A

Package Diagram
28-Lead (300-Mil) Molded SOIC S21
