
MC10141

Four Bit Universal Shift Register

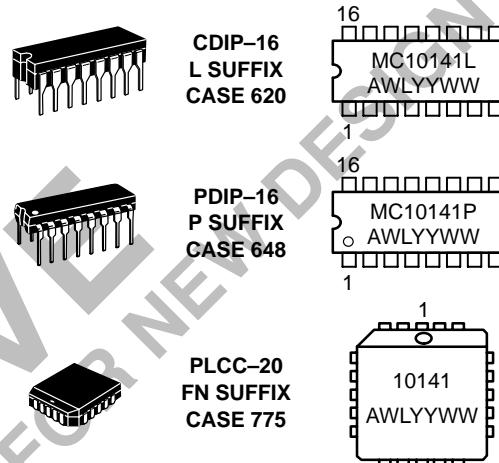
The MC10141 is a four-bit universal shift register which performs shift left, or shift right, serial/parallel in, and serial/parallel out operations with no external gating. Inputs S1 and S2 control the four possible operations of the register without external gating of the clock. The flip-flops shift information on the positive edge of the clock. The four operations are stop shift, shift left, shift right, and parallel entry of data. The other six inputs are all data type inputs; four for parallel entry data, and one for shifting in from the left (DL) and one for shifting in from the right (DR).

- $P_D = 425 \text{ mW typ/pkg (No Load)}$
- $f_{\text{Shift}} = 200 \text{ MHz typ}$
- $t_r, t_f = 2.0 \text{ ns typ (20\%--80\%)}$

LOGIC DIAGRAM

TRUTH TABLE

SELECT		OPERATING MODE	OUTPUTS			
S1	S2		Q0 _{n+1}	Q1 _{n+1}	Q2 _{n+1}	Q3 _{n+1}
L	L	Parallel Entry	D0	D1	D2	D3
L	H	Shift Right*	Q1 _n	Q2 _n	Q3 _n	DR
H	L	Shift Left*	DL	Q0 _n	Q1 _n	Q2 _n
H	H	Stop Shift	Q0 _n	Q1 _n	Q2 _n	Q3 _n


*Outputs as exist after pulse appears at "C" input with input conditions as shown. (Pulse = Positive transition of clock input).

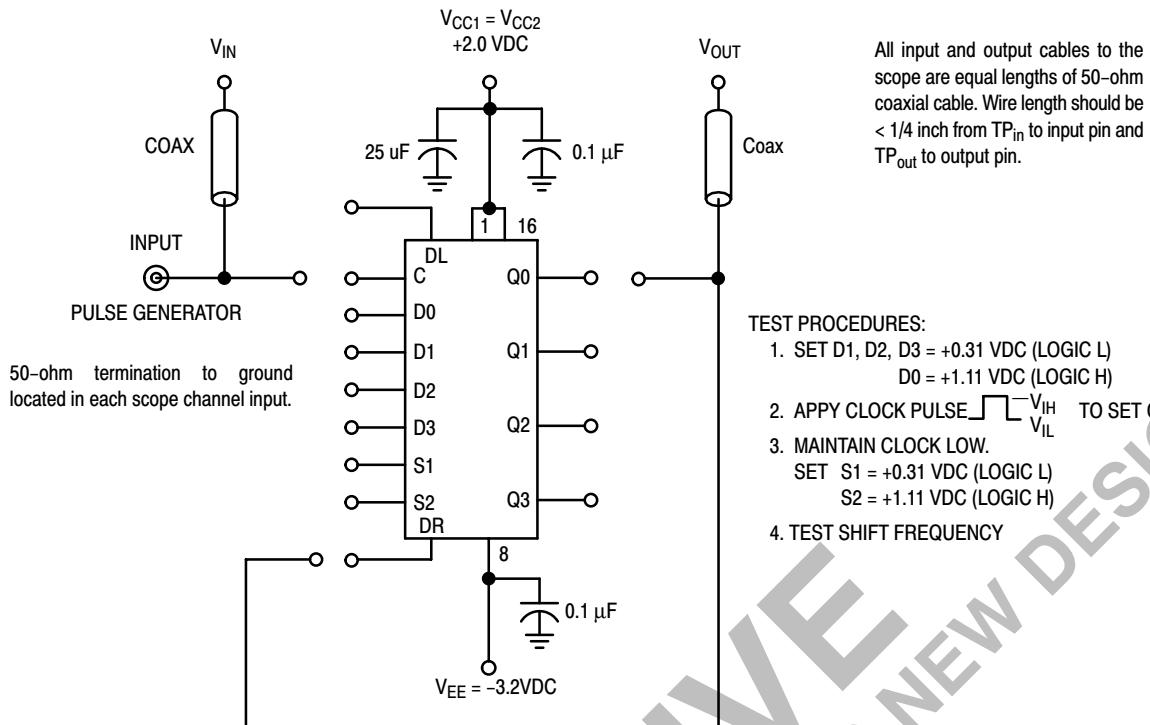
ON Semiconductor

<http://onsemi.com>

MARKING DIAGRAMS

A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week

DIP PIN ASSIGNMENT


V _{CC1}	1	16	V _{CC2}
Q2	2	15	Q1
Q3	3	14	Q0
C	4	13	DL
DR	5	12	D0
D3	6	11	D1
S2	7	10	S1
V _{EE}	8	9	D2

Pin assignment is for Dual-in-Line Package.
For PLCC pin assignment, see the Pin Conversion Tables on page 18 of the ON Semiconductor MECL Data Book (DL122/D).

ORDERING INFORMATION

Device	Package	Shipping
MC10141L	CDIP-16	25 Units / Rail
MC10141P	PDIP-16	25 Units / Rail
MC10141FN	PLCC-20	46 Units / Rail

SHIFT FREQUENCY TEST CIRCUIT

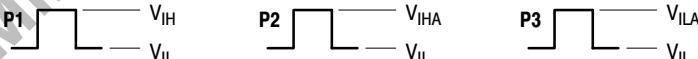
DEVICE NOT RECOMMENDED FOR NEW DESIGN

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Pin Under Test	Test Limits						Unit	
			-30°C		+25°C			+85°C		
			Min	Max	Min	Typ	Max	Min	Max	
Power Supply Drain Current	I_E	8		112		82	102		112	mAdc
Input Current	I_{inH}	5		350			220		220	μ Adc
		6		350			220		220	
		7		390			245		245	
		4		425			265		265	
	I_{inL}	12	0.5		0.5			0.3		μ Adc
Output Voltage Logic 1	V_{OH}	3	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc
Output Voltage Logic 0	V_{OL}	3	-1.890	-1.675	-1.850		-1.650	-1.825	-1.615	Vdc
Threshold Voltage Logic 1	V_{OHA} (Note 1.)	3	-1.080		-0.980			-0.910		Vdc
		3	-1.080		-0.980			-0.910		
		3	-1.080		-0.980			-0.910		
		3	-1.080		-0.980			-0.910		
Threshold Voltage Logic 0	V_{OLA} (Note 1.)	3		-1.655			-1.630		-1.595	Vdc
		3		-1.655			-1.630		-1.595	
		3		-1.655			-1.630		-1.595	
		3		-1.655			-1.630		-1.595	
Switching Times (50 Ω Load)										ns
Propagation Delay										
Setup Time (t_{setup})	t_{4+3+} t_{12+4+} t_{10+4+} t_{4+12+}	3 14 14 14	1.7 2.5 5.5 1.5	3.9	1.8 2.5 5.0 1.5	2.9	3.8	2.0 2.5 5.5 1.5	4.2	
Hold Time (t_{hold})										
Rise Time (20 to 80%)	t_{3+}	3	1.0	3.4	1.1	2.0	3.3	1.1	3.6	
Fall Time (20 to 80%)	t_{3-}	3	1.0	3.4	1.1	2.0	3.3	1.1	3.6	
Shift Frequency	f_{shift}		150		150	200		150		MHz

1. These tests to be performed in sequence as shown.

2. See shift frequency test circuit for test procedures.


3. Reset to zero before performing test.

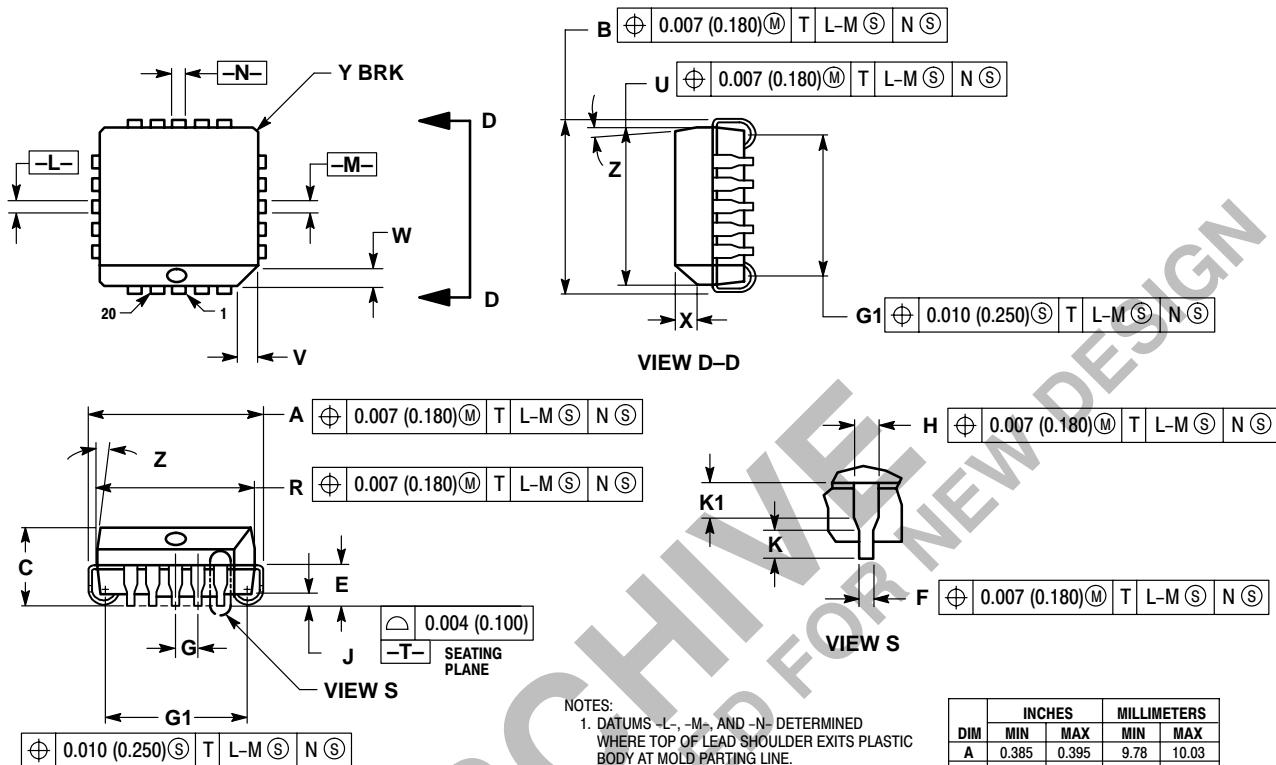
4. Reset to one before performing test.

ELECTRICAL CHARACTERISTICS (continued)

@ Test Temperature			TEST VOLTAGE VALUES (Volts)					P1	P2	P3	(V _{cc}) Gnd
			V _{IHmax}	V _{ILmin}	V _{IHAMin}	V _{ILAmax}	V _{EE}				
		-30°C	-0.890	-1.890	-1.205	-1.500	-5.2				
		+25°C	-0.810	-1.850	-1.105	-1.475	-5.2				
		+85°C	-0.700	-1.825	-1.035	-1.440	-5.2				
Characteristic	Symbol	Pin Under Test	TEST VOLTAGE APPLIED TO PINS LISTED BELOW					P1	P2	P3	(V _{cc}) Gnd
			V _{IHmax}	V _{ILmin}	V _{IHAMin}	V _{ILAmax}	V _{EE}				
Power Supply Drain Current	I _E	8					8				1, 16
Input Current	I _{inH}	5	5				8				1, 16
		6	6				8				1, 16
		7	7				8				1, 16
		4	4				8				1, 16
Output Voltage Logic 1	V _{OH}	3	6				8	4			1, 16
		3					8	4			1, 16
Output Voltage Logic 0	V _{OL}	3					8	4			1, 16
		3					8	4			1, 16
		3					8	4			1, 16
		3					8	4			1, 16
Threshold Voltage Logic 1	V _{OA} (Note 1.)	3				6					1, 16
		3	6			7					1, 16
		3				8					1, 16
		3				8					1, 16
Threshold Voltage Logic 0	V _{OL} (Note 1.)	3				6		4			1, 16
		3				7		4			1, 16
		3				8		4			1, 16
		3	6			8		4			1, 16
Switching Times (50Ω Load)							-3.2 V				+2.0 V
Propagation Delay Setup Time (t _{setup})	t ₄₊₃₊ t ₁₂₊₄₊ t ₁₀₊₄₊ t ₄₊₁₂₊	3					8				1, 16
		14					8				1, 16
		14					8				1, 16
		14					8				1, 16
Hold Time (t _{hold})											
Rise Time (20 to 80%)	t ₃₊	3									1, 16
Fall Time (20 to 80%)	t ₃₋	3									1, 16
Shift Frequency	f _{shift}										1, 16

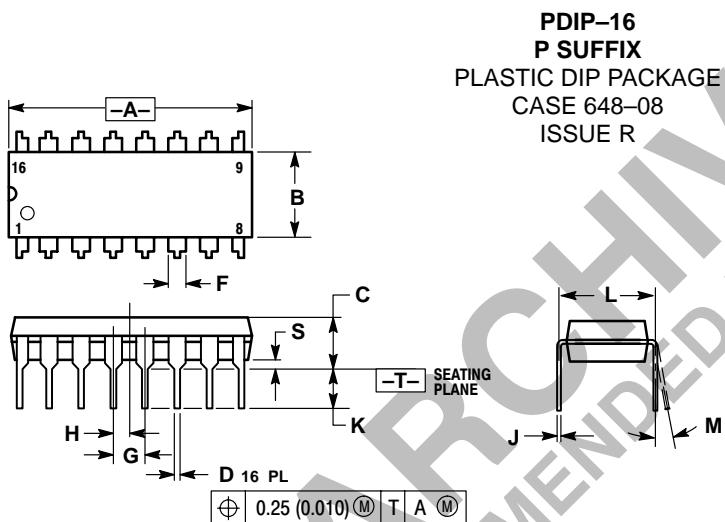
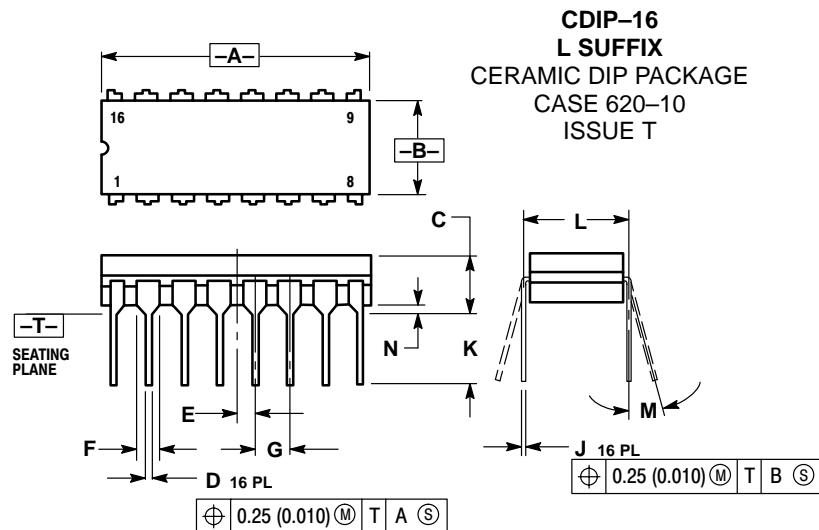
1. These tests to be performed in sequence as shown.

2. See shift frequency test circuit for test procedures.


3. Reset to zero before performing test.

4. Reset to one before performing test.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.



PACKAGE DIMENSIONS

PLCC-20
FN SUFFIX
PLASTIC PLCC PACKAGE
CASE 775-02
ISSUE C

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.385	0.395	9.78	10.03
B	0.385	0.395	9.78	10.03
C	0.165	0.180	4.20	4.57
E	0.090	0.110	2.29	2.79
F	0.013	0.019	0.33	0.48
G	0.050 BSC		1.27 BSC	
H	0.026	0.032	0.66	0.81
J	0.020	---	0.51	---
K	0.025	---	0.64	---
R	0.350	0.356	8.89	9.04
U	0.350	0.356	8.89	9.04
V	0.042	0.048	1.07	1.21
W	0.042	0.048	1.07	1.21
X	0.042	0.056	1.07	1.42
Y	---	0.020	---	0.50
Z	2°	10°	2°	10°
G1	0.310	0.330	7.88	8.38
K1	0.040	---	1.02	---

PACKAGE DIMENSIONS

Notes

DEVICE NOT RECOMMENDED FOR NEW DESIGN
ARCHIVE

ARCHIVE
COMMENDED FOR NEW DESIGN

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031

Phone: 81-3-5740-2700
Email: r14525@onsemi.com

ON Semiconductor Website: <http://onsemi.com>

For additional information, please contact your local
Sales Representative.