

Is Now Part of

ON Semiconductor®

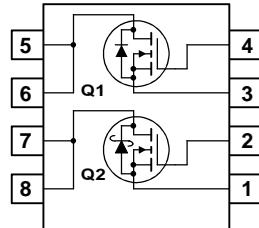
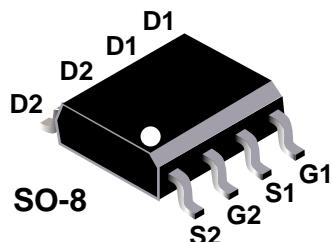
To learn more about ON Semiconductor, please visit our website at
www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

FDS6994S

Dual Notebook Power Supply N-Channel PowerTrench® SyncFet™



General Description

The FDS6994S is designed to replace two single SO-8 MOSFETs and Schottky diode in synchronous DC:DC power supplies that provide various peripheral voltages for notebook computers and other battery powered electronic devices. FDS6994S contains two unique 30V, N-channel, logic level, PowerTrench MOSFETs designed to maximize power conversion efficiency.

The high-side switch (Q1) is designed with specific emphasis on reducing switching losses while the low-side switch (Q2) is optimized to reduce conduction losses. Q2 also includes an integrated Schottky diode using Fairchild's monolithic SyncFET technology.

Features

- **Q2:** Optimized to minimize conduction losses
Includes SyncFET Schottky body diode
8.2A, 30V $R_{DS(on)} = 15 \text{ m}\Omega$ @ $V_{GS} = 10\text{V}$
 $R_{DS(on)} = 17.5 \text{ m}\Omega$ @ $V_{GS} = 4.5\text{V}$
- **Q1:** Optimized for low switching losses
Low gate charge (85.5 nC typical)
6.9A, 30V $R_{DS(on)} = 21 \text{ m}\Omega$ @ $V_{GS} = 10\text{V}$
 $R_{DS(on)} = 26 \text{ m}\Omega$ @ $V_{GS} = 4.5\text{V}$

Absolute Maximum Ratings

$T_A = 25^\circ\text{C}$ unless otherwise noted

Symbol	Parameter	Q2	Q1	Units
V_{DSS}	Drain-Source Voltage	30	30	V
V_{GSS}	Gate-Source Voltage	± 16	± 16	V
I_D	Drain Current - Continuous	8.2	6.9	A
	- Pulsed			
P_D	Power Dissipation for Dual Operation	2		W
	Power Dissipation for Single Operation	1.6		
		1		
		0.9		
T_J, T_{STG}	Operating and Storage Junction Temperature Range	-55 to +150		°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	40	°C/W

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
FDS6994S	FDS6994S	13"	12mm	2500 units

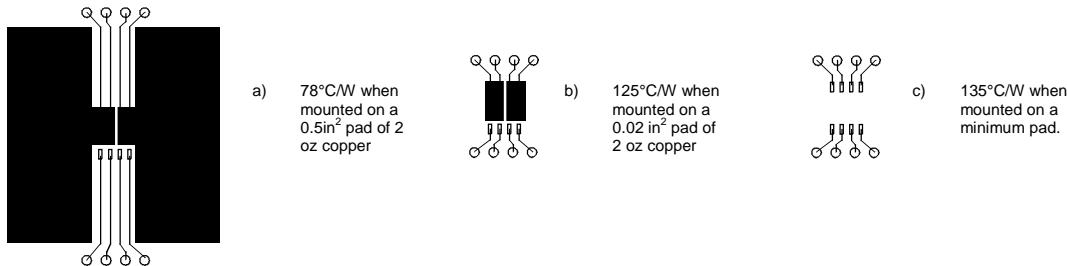
Electrical Characteristics

$T_A = 25^\circ\text{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Type	Min	Typ	Max	Units
Off Characteristics							
BV_{DSS}	Drain-Source Breakdown Voltage	$V_{\text{GS}} = 0 \text{ V}$, $I_D = 1 \text{ mA}$ $V_{\text{GS}} = 0 \text{ V}$, $I_D = 250 \text{ }\mu\text{A}$	Q2 Q1	30 30			V
$\Delta \text{BV}_{\text{DSS}}$ ΔT_J	Breakdown Voltage Temperature Coefficient	$I_D = 1 \text{ mA}$, Referenced to 25°C $I_D = 250 \text{ }\mu\text{A}$, Referenced to 25°C	Q2 Q1		23 24		$\text{mV/}^\circ\text{C}$
I_{DSS}	Zero Gate Voltage Drain Current	$V_{\text{DS}} = 24 \text{ V}$, $V_{\text{GS}} = 0 \text{ V}$	Q2 Q1			500 1	μA
I_{GSS}	Gate-Body Leakage	$V_{\text{GS}} = \pm 16 \text{ V}$, $V_{\text{DS}} = 0 \text{ V}$	All			± 100	nA
On Characteristics (Note 2)							
$V_{\text{GS}(\text{th})}$	Gate Threshold Voltage	$V_{\text{DS}} = V_{\text{GS}}$, $I_D = 1 \text{ mA}$ $V_{\text{DS}} = V_{\text{GS}}$, $I_D = 250 \text{ }\mu\text{A}$	Q2 Q1	1 1	1.5 1.9	3 3	V
$\Delta V_{\text{GS}(\text{th})}$ ΔT_J	Gate Threshold Voltage Temperature Coefficient	$I_D = 1 \text{ mA}$, Referenced to 25°C $I_D = 250 \text{ }\mu\text{A}$, Referenced to 25°C	Q2 Q1		-2 -5		$\text{mV/}^\circ\text{C}$
$R_{\text{DS}(\text{on})}$	Static Drain-Source On-Resistance	$V_{\text{GS}} = 10 \text{ V}$, $I_D = 8.2 \text{ A}$ $V_{\text{GS}} = 10 \text{ V}$, $I_D = 8.2 \text{ A}$, $T_J = 125^\circ\text{C}$ $V_{\text{GS}} = 4.5 \text{ V}$, $I_D = 7.6 \text{ A}$	Q2		10 15 11	15 24 17.5	$\text{m}\Omega$
		$V_{\text{GS}} = 10 \text{ V}$, $I_D = 6.9 \text{ A}$ $V_{\text{GS}} = 10 \text{ V}$, $I_D = 6.9 \text{ A}$, $T_J = 125^\circ\text{C}$ $V_{\text{GS}} = 4.5 \text{ V}$, $I_D = 6.2 \text{ A}$	Q1		16 24 19	21 33.5 26	
$I_{\text{D}(\text{on})}$	On-State Drain Current	$V_{\text{GS}} = 10 \text{ V}$, $V_{\text{DS}} = 5 \text{ V}$	Q2 Q1	30 20			A
g_{FS}	Forward Transconductance	$V_{\text{DS}} = 10 \text{ V}$, $I_D = 8.2 \text{ A}$ $V_{\text{DS}} = 10 \text{ V}$, $I_D = 6.9 \text{ A}$	Q2 Q1	42 41			S
Dynamic Characteristics							
C_{iss}	Input Capacitance	$V_{\text{DS}} = 15 \text{ V}$, $V_{\text{GS}} = 0 \text{ V}$, $f = 1.0 \text{ MHz}$	Q2 Q1		2815 800		pF
C_{oss}	Output Capacitance		Q2 Q1		540 205		pF
C_{rss}	Reverse Transfer Capacitance		Q2 Q1		210 90		pF
R_{G}	Gate Resistance	$V_{\text{GS}} = 15 \text{ mV}$, $f = 1.0 \text{ MHz}$	Q2 Q1		2.8 2.6	4.9 4.6	Ω

Electrical Characteristics (continued)

$T_A = 25^\circ\text{C}$ unless otherwise noted


Symbol	Parameter	Test Conditions	Type	Min	Typ	Max	Units
Switching Characteristics (Note 2)							
$t_{d(on)}$	Turn-On Delay Time	$V_{DD} = 15\text{ V}$, $I_D = 1\text{ A}$, $V_{GS} = 10\text{ V}$, $R_{GEN} = 6\Omega$	Q2		11	20	ns
			Q1		11	20	ns
t_r	Turn-On Rise Time		Q2		8	16	ns
			Q1		7	14	ns
$t_{d(off)}$	Turn-Off Delay Time		Q2		50	80	ns
			Q1		27	43	ns
t_f	Turn-Off Fall Time		Q2		17	31	ns
			Q1		4	8	ns
Q_g	Total Gate Charge	Q2: $V_{DS} = 15\text{ V}$, $I_D = 7.9\text{ A}$, $V_{GS} = 5\text{ V}$	Q2		25	35	nC
			Q1		8	12	nC
Q_{gs}	Gate-Source Charge	Q1: $V_{DS} = 15\text{ V}$, $I_D = 6.5\text{ A}$, $V_{GS} = 5\text{ V}$	Q2		6		nC
			Q1		3		nC
Q_{gd}	Gate-Drain Charge		Q2		7		nC
			Q1		3		nC

Drain-Source Diode Characteristics and Maximum Ratings

I_S	Maximum Continuous Drain-Source Diode Forward Current	Q2 Q1			2.3 1.3		A
t_{RR}	Reverse Recovery Time	$I_F = 8.2\text{ A}$, $d_I/d_t = 300\text{ A}/\mu\text{s}$	Q2		25		ns
Q_{RR}	Reverse Recovery Charge				19		nC
t_{RR}	Reverse Recovery Time	$I_F = 6.9\text{ A}$, $d_I/d_t = 100\text{ A}/\mu\text{s}$	Q2		23		ns
Q_{RR}	Reverse Recovery Charge				10		nC
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0\text{ V}$, $I_S = 2.3\text{ A}$ $V_{GS} = 0\text{ V}$, $I_S = 1.3\text{ A}$	Q2 Q1		0.4 0.53	7 1.2	V

Notes:

- $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width < 300μs, Duty Cycle < 2.0%

3. See "SyncFET Schottky body diode characteristics" below.

Typical Characteristics for Q2

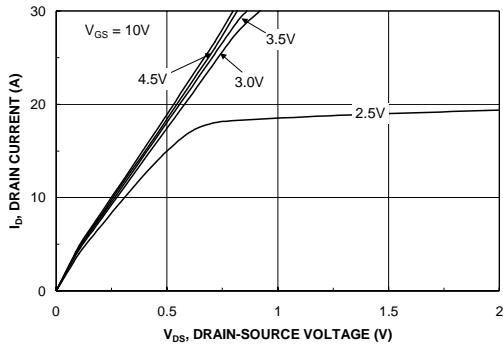


Figure 1. On-Region Characteristics.

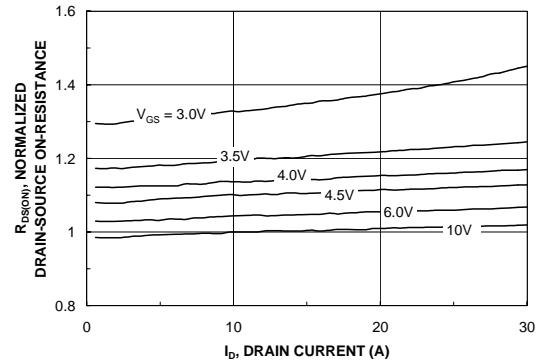


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

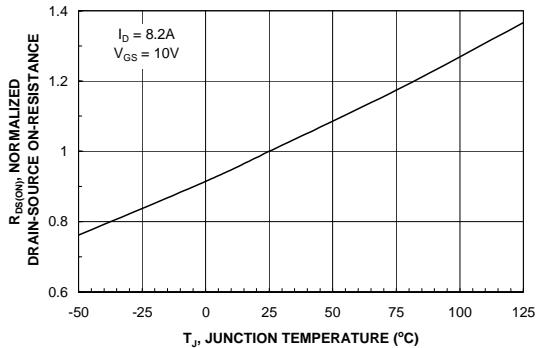


Figure 3. On-Resistance Variation with Temperature.

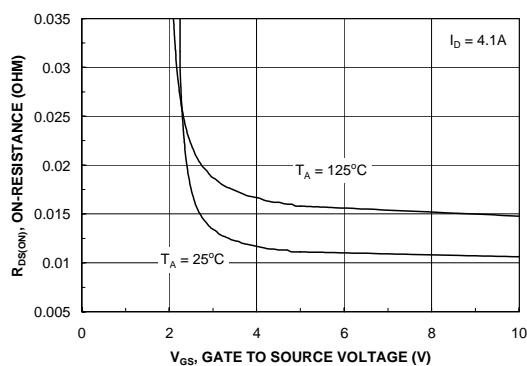


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

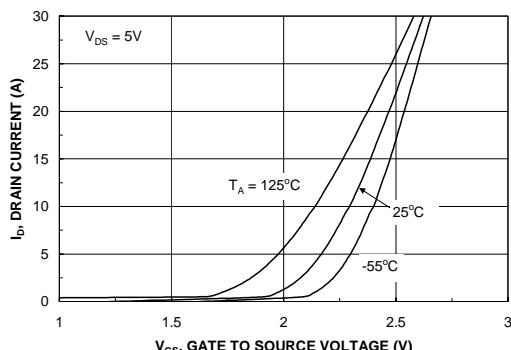


Figure 5. Transfer Characteristics.

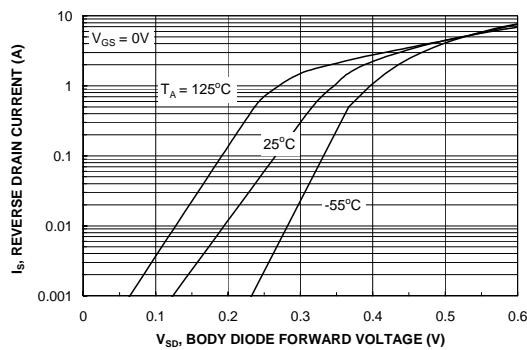


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics for Q2

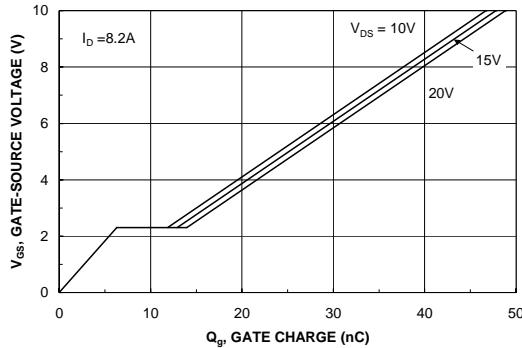


Figure 7. Gate Charge Characteristics.

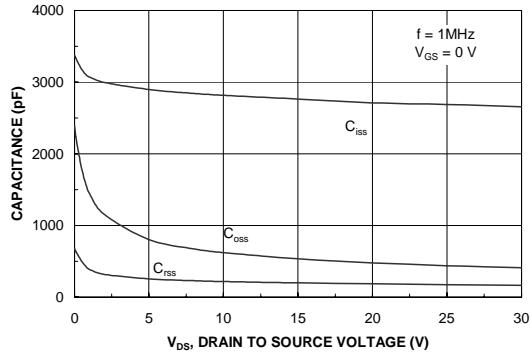


Figure 8. Capacitance Characteristics.

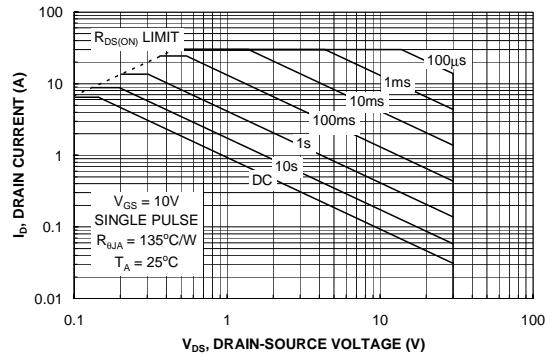


Figure 9. Maximum Safe Operating Area.

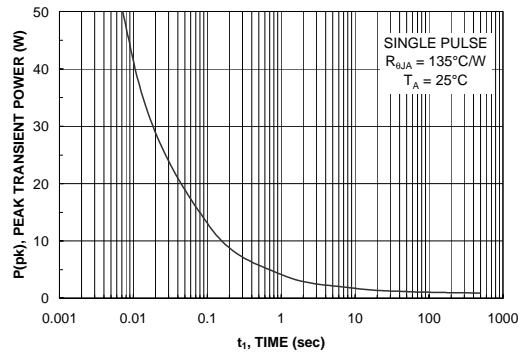


Figure 10. Single Pulse Maximum Power Dissipation.

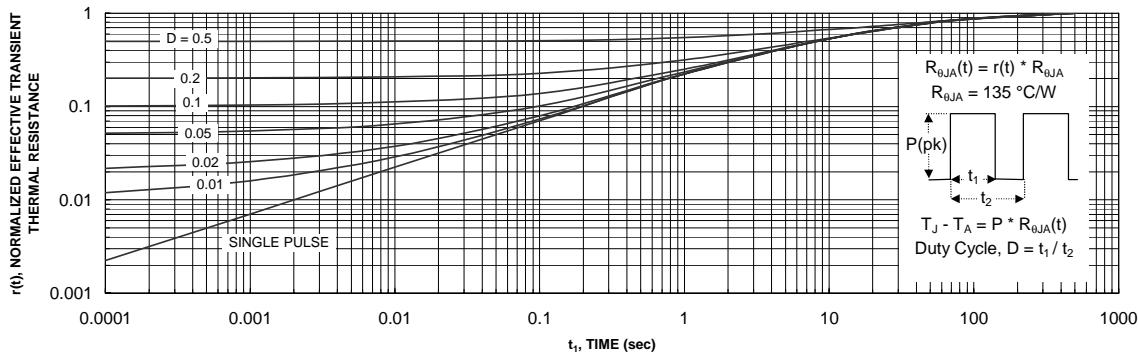


Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1c.
Transient thermal response will change depending on the circuit board design.

Typical Characteristics for Q1

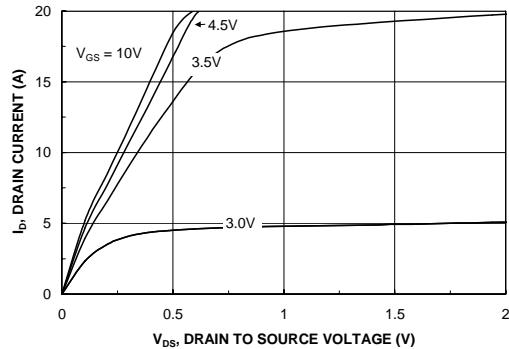


Figure 11. On-Region Characteristics.

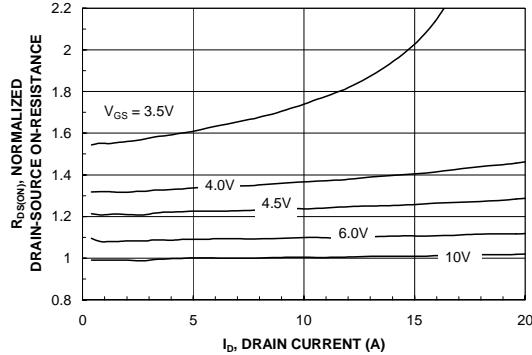


Figure 12. On-Resistance Variation with Drain Current and Gate Voltage.

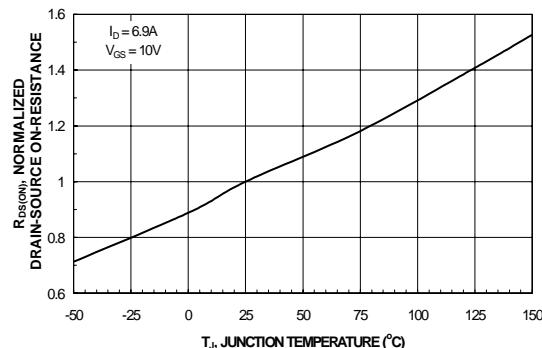


Figure 13. On-Resistance Variation with Temperature.

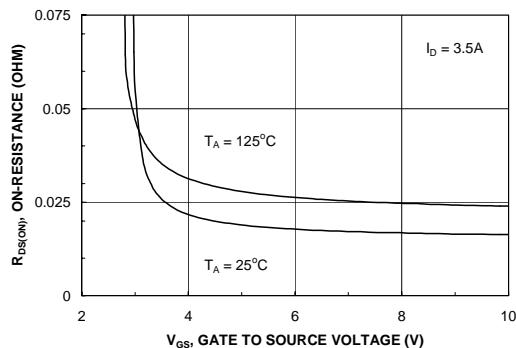


Figure 14. On-Resistance Variation with Gate-to-Source Voltage.

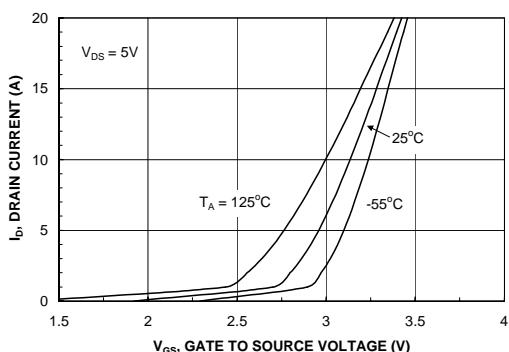


Figure 15. Transfer Characteristics.

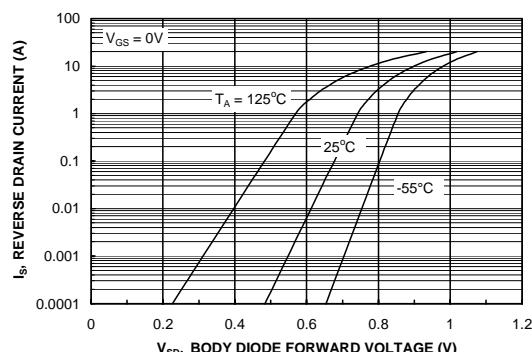


Figure 16. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics Q1

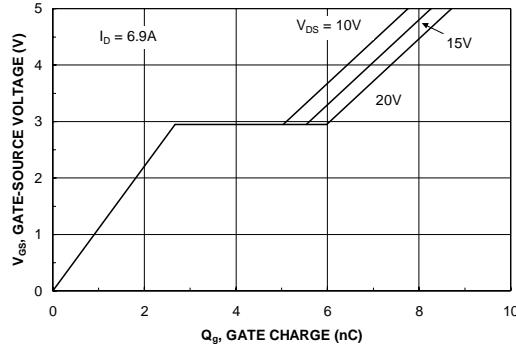


Figure 17. Gate Charge Characteristics.

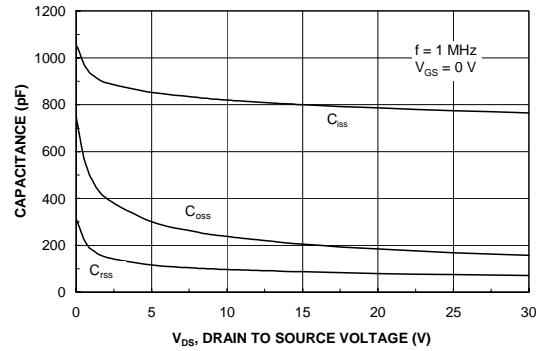


Figure 18. Capacitance Characteristics.

Figure 19. Maximum Safe Operating Area.

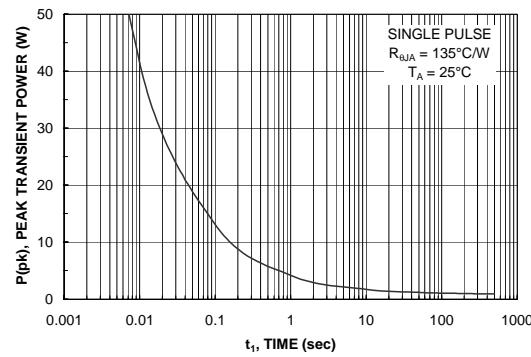
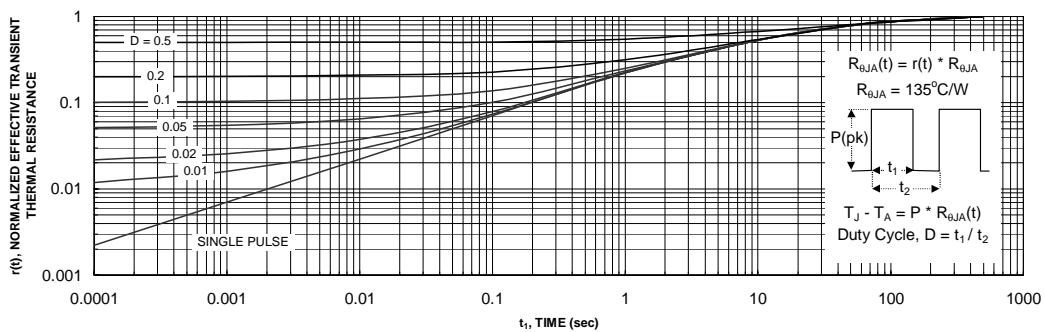
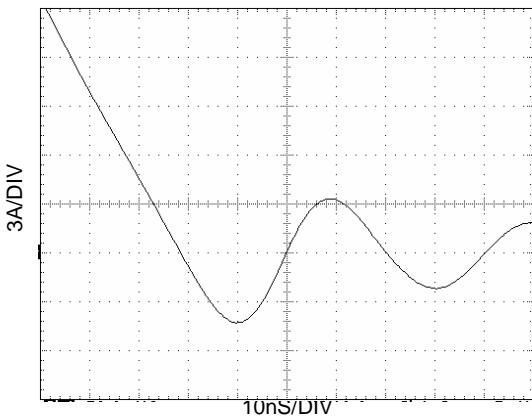


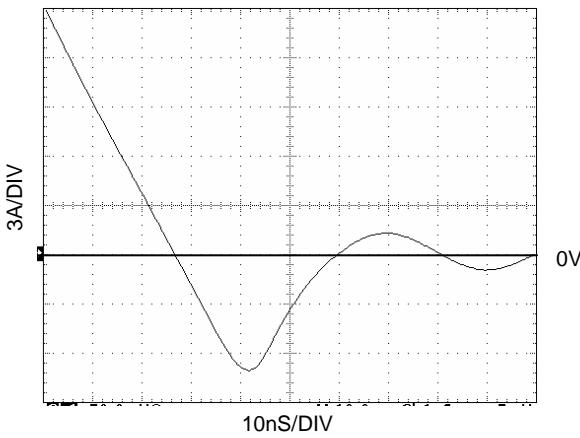
Figure 20. Single Pulse Maximum Power Dissipation.



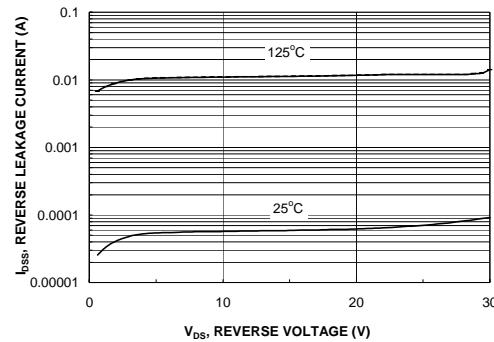

Figure 21. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1c.
Transient thermal response will change depending on the circuit board design.

Typical Characteristics (continued) This section copied from FDS6984S datasheet


SyncFET Schottky Body Diode Characteristics

Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 22 shows the reverse recovery characteristic of the FDS6994S.


Figure 22. FDS6994S SyncFET body diode reverse recovery characteristic.

For comparison purposes, Figure 23 shows the reverse recovery characteristics of the body diode of an equivalent size MOSFET produced without SyncFET (FDS6690A).

Figure 23. Non-SyncFET (FDS6690A) body diode reverse recovery characteristic.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

Figure 24. SyncFET body diode reverse leakage versus drain-source voltage and temperature.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACE TM	FACT Quiet Series TM	OCX TM	SILENT SWITCHER [®]	UniFET TM
ActiveArray TM	GlobalOptoisolator TM	OCXPro TM	SMART START [™]	UltraFET [®]
Bottomless TM	GTO TM	OPTOLOGIC [®]	SPM TM	VCX TM
Build it Now TM	HiSeC TM	OPTOPLANAR TM	Stealth TM	Wire TM
CoolFET TM	I ² C TM	PACMAN TM	SuperFET [™]	
CROSSVOLT TM	i-Lo TM	POP TM	SuperSOT [™] -3	
DOME [™]	ImpliedDisconnect TM	Power247 [™]	SuperSOT [™] -6	
EcoSPARK TM	IntelliMAX [™]	PowerEdge [™]	SuperSOT [™] -8	
E ² CMOST [™]	ISOPLANAR [™]	PowerSaver [™]	SyncFET [™]	
EnSigna [™]	LittleFET [™]	PowerTrench [®]	TCM [™]	
FACT [™]	MICROCOUPLER [™]	QFET [®]	TinyBoost [™]	
FAST [®]	MicroFET [™]	QS [™]	TinyBuck [™]	
FASTR [™]	MicroPak [™]	QT Optoelectronics [™]	TinyPWM [™]	
FPS [™]	MICROWIRE [™]	Quiet Series [™]	TinyPower [™]	
FRFET [™]	MSX [™]	RapidConfigure [™]	TinyLogic [®]	
	MSXPro [™]	RapidConnect [™]	TINYOPTO [™]	
Across the board. Around the world. [™]		μSerDes [™]	TruTranslation [™]	
The Power Franchise [®]		ScalarPump [™]	UHC [™]	
Programmable Active Droop [™]				

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free
USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: <http://www.onsemi.com/orderlit>

For additional information, please contact your local
Sales Representative