100G Interlaken MegaCore Function User Guide

Contents

About This MegaCore Function	1-1
Features	1-1
IP Core Supported Combinations of Number of Lanes and Data Rate	1-2
IP Core Theoretical Raw Aggregate Bandwidth	1-2
Device Family Support	1-2
MegaCore Verification	1-3
Performance and Resource Utilization	1-4
Device Speed Grade Support	1-5
Release Information	1-5
Installation and Licensing	1-6
OpenCore Plus Evaluation	1-6
OpenCore Plus Time-Out Behavior	1-7
Getting Started With the 100G Interlaken MegaCore Function	2-1
Design Flow	2-1
Specifying Parameters and Generating the MegaCore Function	2-1
Simulating the MegaCore Function	2-2
Instantiating the MegaCore Function in Your Design	2-3
Compiling the Full Design and Programming the FPGA	2-9
100G Interlaken IP Core Parameter Settings	3-1
Number of Lanes	3-1
Meta Frame Length in Words	3-2
Data Rate	3-2
Transceiver Reference Clock Frequency	3-2
Include Advanced Error Reporting and Handling	3-3
Enable M20K ECC Support	3-4
Include Diagnostic Features	3-4
Include In-Band Flow Control Block	3-5
Number of Calendar Pages	3-5
Transfer Mode Selection	3-6
Data Format	3 6

Functional Description	4-1
Interfaces Overview	4-1
Application Interface	4-1
Interlaken Interface	4-1
Out-of-Band Flow Control Interface	4-2
Management Interface	4-2
Transceiver Control Interfaces	4-2
High Level Block Diagram	4-4
Clocking and Reset Structure for IP Core	4-4
100G Interlaken IP Core Clock Signals	4-5
IP Core Reset	4-5
IP Core Reset Sequence with the Reconfiguration Controller	4-6
Interleaved and Packet Modes	4-7
Dual Segment Mode	4-8
M20K ECC Support	4-9
100G Interlaken IP Core Transmit Path	4-10
100G Interlaken IP Core Transmit User Data Interface Examples	4-10
100G Interlaken IP Core In-Band Calendar Bits on Transmit Side	4-16
100G Interlaken IP Core Transmit Path Blocks	4-17
100G Interlaken IP Core Receive Path	4-18
100G Interlaken IP Core Receive User Data Interface Examples	4-18
100G Interlaken IP Core RX Errored Packet Handling	4-22
In-Band Calendar Bits on the 100G Interlaken IP Core Receiver User Data Interface	4-24
100G Interlaken IP Core Receive Path Blocks	4-25
100G Interlaken MegaCore Function Signals	5-1
100G Interlaken IP Core Clock Interface Signals	
100G Interlaken IP Core Reset Interface Signals	
100G Interlaken IP Core User Data Transfer Interface Signals	5-3
100G Interlaken IP Core Interlaken Link and Miscellaneous Interface Signals	
100G Interlaken IP Core Management Interface	5-12
Device Dependent Signals	
Transceiver Reconfiguration Controller Interface Signals	
Arria 10 External PLL Interface Signals	5-15
Arria 10 Transceiver Reconfiguration Interface Signals	5-16

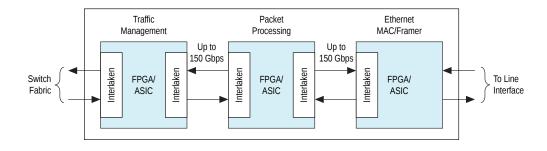
100G Interlaken IP Core Register Map	6-1
100G Interlaken IP Core Testbench	7-1
100G Interlaken IP Core Testbench Interface Signals	
Testbench Simulation Behavior	
Running the Testbench With the Example Design	7-3
Setting Up the Testbench Example	
Simulating the Example Design	7-3
100G Interlaken IP Core Test Features	8-1
PRBS Generation and Validation	8-1
Setting up PRBS Mode in Arria V and Stratix V Devices	8-2
Setting up PRBS Mode in Arria 10 Devices	8-3
CRC32 Error Injection	
CRC24 Error Injection	8-7
Advanced Parameter Settings	9-1
Hidden Parameters	9-1
Counter Reset Bits	9-1
Include Temp Sense	9-2
RXFIFO Address Width	9-2
SCRAM Constant	9-2
SWAP_TX_LANES and SWAP_RX_LANES (Data Word Lane Swapping)	9-2
Modifying Hidden Parameter Values	9-3
Out-of-Band Flow Control in the 100G Interlaken MegaCore Function.	10-1
Out-of-Band Flow Control Block Clocks	
TX Out-of-Band Flow Control Signals	
RX Out-of-Band Flow Control Signals	
Performance and Fmax Requirements for 100G Ethernet Traffic	A-1
Additional Information	B-1
Document Pavicion History	R 1

100G Interlaken MegaCore Function User Guide TOC-5

How to Contact Altera	B-3
Typographic Conventions	B-4

2013.12.02

UG-01128


Subscribe (

Interlaken is a high-speed serial communication protocol for chip-to-chip packet transfers. The Altera 100G Interlaken MegaCore function implements the *Interlaken Protocol Specification, Revision 1.2*. It supports specific combinations of number of lanes (12 or 24) and lane rates from 6.25 gigabits per second (Gbps) to 12.5 Gbps, on Stratix V and Arria V GZ devices, providing raw bandwidth of 123.75 Gbps to 150 Gbps.

Interlaken provides low I/O count compared to earlier protocols, supporting scalability in both number of lanes and lane speed. Other key features include flow control, low overhead framing, and extensive integrity checking. The 100G Interlaken MegaCore function incorporates a physical coding sublayer (PCS), a physical media attachment (PMA), and a media access control (MAC) block.

Figure 1-1: Typical Interlaken Application

Related Information

Interlaken Protocol Specification, Revision 1.2

Features

The 100G Interlaken MegaCore function has the following features:

- Compliant with the *Interlaken Protocol Specification*, Rev 1.2.
- Supports 12 and 24 serial lanes in configurations that provide up to 150 Gbps raw bandwidth.
- Supports per-lane data rates of 6.25, 10.3125, and 12.5 Gbps using Altera on-chip high-speed transceivers.
- Supports dynamically configurable BurstMax and BurstMin values.
- Supports Packet mode and Interleaved (Segmented) mode for user data transfer.
- Supports dual segment mode for efficient user data transfer.

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

- Supports up to 256 logical channels in out-of-the-box configuration.
- Supports optional user-controlled in-band flow control with 1, 2, 4, 8, or 16 16-bit calendar pages.
- Supports optional out-of-band flow control blocks.
- Supports memory block ECC in Stratix V and Arria 10 devices.

Related Information

Interlaken Protocol Specification, Rev 1.2

IP Core Supported Combinations of Number of Lanes and Data Rate

Table 1-1: 100G Interlaken IP Core Supported Combinations of Number of Lanes and Data Rate

Yes indicates a supported combination.

Number of Lanes	Lane Rate (Gbps)			
Transcr of Lanes	6.25	10.3125	12.5	
12	_	Yes	Yes	
24	Yes	_	_	

IP Core Theoretical Raw Aggregate Bandwidth

Table 1-2: 100G Interlaken IP Core Theoretical Raw Aggregate Bandwidth in Gbps

Number of Lanes	Lane Rate (Gbps)			
Number of Earles	6.25	10.3125	12.5	
12	_	123.75	150.00	
24	150.00	_	_	

Device Family Support

The following table lists the device support level definitions for Altera IP cores.

Table 1-3: Altera IP Core Device Support Levels

FPGA Device Families

Preliminary support — The core is verified with preliminary timing models for this device family. The IP core meets all functional requirements, but might still be undergoing timing analysis for the device family. It can be used in production designs with caution.

Final support — The IP core is verified with final timing models for this device family. The IP core meets all functional and timing requirements for the device family and can be used in production designs.

Altera Corporation About This MegaCore Function

The following table shows the level of support offered by the 100G Interlaken MegaCore function for each Altera device family.

Table 1-4: Device Family Support

Device Family	Support
Stratix V (GS, GT, and GX)	Final
Arria V (GZ)	Final
Arria 10 ⁽¹⁾	Preliminary

MegaCore Verification

Before releasing a version of the 100G Interlaken MegaCore function, Altera runs comprehensive regression tests in the current version of the Quartus II software. These tests use standalone methods. These files are tested in simulation and hardware to confirm functionality. Altera tests and verifies the 100G Interlaken MegaCore function in hardware for different platforms and environments.

Constrained random techniques generate appropriate stimulus for the functional verification of the MegaCore function. Functional coverage metrics measure the quality of the random stimulus, and ensure that all important features are verified.

About This MegaCore Function

Altera Corporation

⁽¹⁾ In the Quartus II 13.1 Arria 10 Edition software, the 100G Interlaken IP core offers simulation and compilation support for Arria 10 devices, but does not offer configuration support. Compilation does not generate a Program Object File (.pof).

Performance and Resource Utilization

Table 1-5: 100G Interlaken MegaCore Function FPGA Resource Utilization

Lists the resources and expected performance for selected variations of the 100G Interlaken IP core using the Quartus II software v13.1 and v13.1 Arria 10 edition releases for the following devices:

- Arria 10 device 10AX115S2F45I2SGES
- Arria V GZ device 5AGZE1H2F35I3
- Stratix V GX device 5SGXMA7N2F45I3
- Stratix V GT device 5SGTEA5N1F45C2

The results in this table do not include the out-of-band flow control block.

The numbers of ALMs and logic registers are rounded up to the nearest 100. The numbers of ALMs, before rounding, are the **ALMs needed** numbers from the Quartus II Fitter Report.

	Parameters		Resource Utilization			
Device	Number Per-Lane Data	ALMs Needed	Logic Registers		M20K Blocks	
	Lanes	Rate (Gbps)	ALIVIS NEEded	Primary	Secondary	IVIZUR DIUCKS
	12	10.3125	18600	32800	2300	38
Arria 10	12	12.500	18600	32800	2300	38
	24	6.25	25800	46500	3200	125
Arria V GZ	12	10.3125	18700	33800	2800	38
Stratix V GX	12	10.3125	18900	33900	2900	38
otrucia v GA	24	6.250	25400	48400	3000	125
	12	10.3125	19300	34000	2700	38
Stratix V GT	12	12.500	18800	34100	2600	38
	24	6.250	26100	48800	2700	125

In all cases, Altera recommends that you set the **Optimization Technique** in the Analysis & Synthesis Settings dialog box to **Speed**.

Related Information

- Fitter Resources Reports in the Quartus II Help
 Information about Quartus II resource utilization reporting for 28-nm devices, including ALMs needed.
- Quartus II Handbook, Volume 1: Design and Synthesis
 Includes information about how to apply the Speed setting.

Altera Corporation About This MegaCore Function

Device Speed Grade Support

Table 1-6: Minimum Recommended Device Family Speed Grades

For each device family the 100G Interlaken IP core supports, Altera recommends that you configure the 100G Interlaken IP core only in the device speed grades listed in the table, and any faster (lower numbered) device speed grades that are available. Altera does not support configuration of this IP core in slower speed grades.

	IP Core Variation			
Device Family	12 Lanes		24 Lanes	
	10.3125 Gbps	12.5 Gbps	6.25 Gbps	
Arria 10	I3, C3	I2, C2	I3, C3	
Arria V GZ	I3, C3	_	I3, C3	
Stratix V GX	I3, C3	I2, C2	I3, C3	
Stratix V GT	I3, C3	I2, C2	I3, C3	
Stratix V GS	I3, C3	I2, C2	I3, C3	

Release Information

Table 1-7: 100G Interlaken MegaCore Function Release Information

Item	Value
Version	13.1
Release Date	November 2013
Ordering Code	IP-ILKN/100G
Vendor ID	6AF7
Product ID	00D6

Altera verifies that the current version of the Quartus II software compiles the previous version of each MegaCore function, if this MegaCore function was included in the previous release. Any exceptions to this verification are reported in the *MegaCore IP Library Release Notes and Errata*. Altera does not verify compilation with MegaCore function versions older than the previous release.

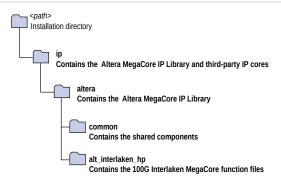
A 100G Interlaken IP core with optimized feature set or low resource utilization is available by request.

Related Information

MegaCore IP Library Release Notes and Errata

About This MegaCore Function

Altera Corporation



Installation and Licensing

The 100G Interlaken MegaCore function is part of the MegaCore IP Library, which is distributed with the Quartus II software and downloadable from the Altera web site, www.altera.com.

Figure 1-2: 100G Interlaken MegaCore Install Directory Structure

Directory structure after you install the 100G Interlaken MegaCore function, where < path > is the installation directory. The default installation directory on Windows is **C:\altera**\<*version number*>; on Linux it is /opt/altera<*version number*>.

You can use Altera's free OpenCore Plus evaluation feature to evaluate the MegaCore function in simulation and in hardware before you purchase a license. You must purchase a license for the MegaCore function only when you are satisfied with its functionality, and you want to take your design to production.

After you purchase a license for the 100G Interlaken MegaCore function, you can request a license file from the Altera web site at www.altera.com/licensing and install it on your computer. When you request a license file, Altera emails you a license.dat file. If you do not have internet access, contact your local Altera representative.

Related Information

- www.altera.com
- www.altera.com/licensing

OpenCore Plus Evaluation

With the Altera free OpenCore Plus evaluation feature, you can perform the following actions:

- Simulate the behavior of a megafunction (Altera IP core or AMPPSM megafunction) in your system using the Quartus II software and Altera-supported Verilog HDL simulators.
- Verify the functionality of your design and evaluate its size and speed quickly and easily.
- Generate time-limited device programming files for designs that include IP cores.
- Program a device and verify your design in hardware.

About This MegaCore Function

OpenCore Plus Time-Out Behavior

OpenCore Plus hardware evaluation supports the following two operation modes:

- *Untethered*—the design runs for a limited time.
- *Tethered*—requires a connection between your board and the host computer. If tethered mode is supported by all megafunctions in a design, the device can operate for a longer time or indefinitely.

All IP cores in a device time out simultaneously when the most restrictive evaluation time is reached. If there is more than one IP core in a design, a specific IP core's time-out behavior may be masked by the time-out behavior of the other IP cores.

Note: For Altera IP cores, the untethered time-out is 1 hour; the tethered time-out value is indefinite.

After the hardware evaluation time expires, the 100G Interlaken IP core behaves as if its reset signal were held asserted, and your design stops working.

Related Information

- Altera Software Installation and Licensing
- AN 320: OpenCore Plus Evaluation of Megafunctions

About This MegaCore Function

Altera Corporation

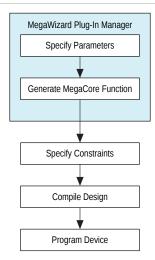
Getting Started With the 100G Interlaken MegaCore Function

2

2013.12.02

UG-01128

Subscribe


Send Feedback

Design Flow

You can customize the 100G Interlaken MegaCorefunction to support a wide variety of applications. You use the MegaWizard Plug-In Manager to parameterize this MegaCore function.

Figure 2-1: 100G Interlaken MegaCore Function Design Flow

Stages for creating a system with the 100G Interlaken MegaCore function and the Quartus II software.

Specifying Parameters and Generating the MegaCore Function

To specify 100G Interlaken MegaCore function parameters using the MegaWizard Plug-In Manager, perform the following steps:

- 1. Create a Quartus II project using the **New Project Wizard** available from the File menu. Ensure that you target a device family supported by the 100G Interlaken MegaCore function, and specify the output language to be Verilog HDL.
- 2. Launch the **MegaWizard Plug-in Manager** from the Tools menu, and follow the prompts in the MegaWizard Plug-In Manager interface to create a custom megafunction variation.

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

Note: To select the 100G Interlaken MegaCore function, click **Installed Plug-Ins > Interfaces > Interlaken > 100G Interlaken v**<*version* >.

- **3.** Specify the parameters in the 100G Interlaken parameter editor.
- **4.** Click **Finish** to generate the 100G Interlaken MegaCore function and supporting files.
- 5. If you generate the 100G Interlaken MegaCore function instance in a Quartus II project, you are prompted to add the Quartus II IP File (.qip) to the current Quartus II project. You can also turn on Automatically add Quartus II IP Files to all projects.

The .qip file contains information about the generated IP core. In most cases, the .qip file contains all of the necessary assignments and information required to process the MegaCore function or system in the Quartus II compiler. The MegaWizard Plug-In Manager generates a single .qip file for each MegaCore function.

6. Click Exit to close the MegaWizard Plug-In Manager.

IEEE encrypted functional simulation models for the simulators listed in the *Simulating Altera Designs* chapter in volume 3 of the *Quartus II Handbook* are included in the supporting files. The models appear in a set directory hierarchy in the project directory. The functional simulation model is a cycle-accurate Verilog HDL model produced by the Quartus II software.

Note: Use the simulation models only for simulation and not for synthesis or any other purposes. Using these models for synthesis creates a nonfunctional design.

Related Information

- Simulating Altera Designs
- 100G Interlaken IP Core Parameter Settings on page 3-1
 Details about the parameters available in the 100G Interlaken parameter editor.

Simulating the MegaCore Function

You can simulate your 100G Interlaken MegaCore function variation using any of the vendor-specific IEEE encrypted functional simulation models which are generated in the new *<instance name>_sim* subdirectory of your project directory.

The 100G Interlaken MegaCore function supports the Synopsys VCS, Cadence NC Sim, and Mentor Graphics Modelsim-SE simulators.

For more information about functional simulation models for Altera IP cores, refer to the *Simulating Altera Designs* chapter in volume 3 of the *Quartus II Handbook*.

The MegaWizard generates a testbench which demonstrates the resetting, clocking, and toggling of the 100G Interlaken IP core user interfaces.

Related Information

- Simulating Altera Designs
- **100G Interlaken IP Core Testbench** on page 7-1 When you generate the IP core, the Quartus II software generates a testbench.

Getting Started With the 100G Interlaken MegaCore Function

Altera Corporation

Instantiating the MegaCore Function in Your Design

After you generate your 100G Interlaken MegaCore function variation, you can instantiate it in the RTL for your design. When you integrate your IP core instance in your design, you must pay attention to the following items:

Pin Assignments on page 2-3

Transceiver Logical Channel Numbering on page 2-3

Adding the Reconfiguration Controller on page 2-6

Adding the External PLL on page 2-8

Pin Assignments

When you integrate your 100G Interlaken MegaCore function instance in your design, you must make appropriate pin assignments. You do not need to specify pin assignments for simulation. However, you should make the pin assignments before you compile, to provide direction to the Quartus II Fitter and to specify the signals that should be assigned to device pins.

You can create a virtual pin to avoid making specific pin assignments for top-level signals while you are simulating and not ready to map the design to hardware. Do not create virtual pins for clock or Interlaken link data signals.

For the Arria 10 device family, you must configure a PLL external to the 100G Interlaken IP core. The required number of PLLs depends on the distribution of your Interlaken lane data pins in the different A10 transceiver blocks.

Related Information

Quartus II Help

For information about the Quartus II software, including virtual pins and the MegaWizard Plug-In Manager.

Transceiver Logical Channel Numbering

In Arria V and Stratix V devices, logical channel numbering starts from zero. The logical channel numbering starts at the bottom of the die with logical channel 0 and continues in physical pin order through the four ordered transceiver blocks on the same side of the device. Each data channel and TX PLL has its own dedicated reconfiguration interface with an assigned logical channel.

In Arria 10 devices, you control the mapping of Interlaken lanes directly in the Arria 10 Native PHY IP core that is included in the 100G Interlaken IP core.

In Arria V and Stratix V devices, you can control the logical channel assignments in the IP core. You typically assign lanes to match the logical channel numbering. However, you can map the twelve Interlaken lanes in a 12-lane variation to any two adjacent transceiver blocks on the same side of the device. You can use the information in the following table to map the lanes to their default logical channel numbering. The logical channel numbering always starts at the bottom of a transceiver block.

Send Feedback

Table 2-1: Transceiver Logical Channel Numbering

The default expected mapping of logical channels to Interlaken lanes in Arria V and Stratix V devices.

Transceiver Block Number		Direction	Interlaken Lane Number in IP Core
	27	TX PLL 3	
	26	TX	23
	20	RX	
	25	TX	22
		RX	- 22
	24	TX	21
3		RX	
3	23	TX	20
		RX	
	22	TX	19
		RX	19
	21	TX	18
		RX	10
	20	TX PLL 2	

Getting Started With the 100G Interlaken MegaCore Function

Transceiver Block Number	Logical Channel Number in Device	Direction	Interlaken Lane Number in IP Core	
	19	TX	17	
		RX		
	18	TX	16	
		RX		
	17	TX	15	
2		RX		
2	17	TX		
	16	RX	_ 14	
	15	TX		
		RX	_ 13	
	14	TX		
	14	RX	_ 12	
	13	TX PLL 1		
	12	TX	11	
		RX		
	11	TX	10	
		RX		
	10	TX	9	
1		RX	9	
	9	TX	8	
		RX		
	8	TX	7	
		RX		
	7	TX	6	
		RX		
	6	TX PLL 0		

Transceiver Block Number	Logical Channel Number in Device	Direction	Interlaken Lane Number in IP Core	
0	5	TX	. 5	
		RX		
	4	TX	4	
		RX		
	3	TX		
		RX	3	
	2	TX	2	
		RX		
	1	TX		
		RX	_ 1	
	0	TX	0	
		RX	U	

For example, in an Arria V or Stratix V device, to change the VOD setting for lane 9, you write logical channel 10 to the Reconfiguration Controller.

Related Information

Altera Transceiver PHY IP User Guide

Background information to better understand logical channel numbering.

Adding the Reconfiguration Controller

100G Interlaken IP core variations that target an Arria V or a Stratix V device require an external reconfiguration controller to function correctly in hardware. 100G Interlaken IP core variations that target an Arria 10 device include a reconfiguration controller block and do not require an external reconfiguration controller.

Keeping the Reconfiguration Controller external to the IP core in Arria V and Stratix V devices provides the flexibility to share the Reconfiguration Controller among multiple IP cores and to accommodate FPGA transceiver layouts based on the usage model of your application. In Arria 10 devices, you can configure individual transceiver channels flexibly through an Avalon-MM Arria 10 transceiver reconfiguration interface.

The following simple instructions show you how to instantiate an Altera Transceiver Reconfiguration Controller and how to connect the design blocks:

Generating the Reconfiguration Controller on page 2-7

Connecting the Reconfiguration Controller to the MegaCore Function on page 2-7

Getting Started With the 100G Interlaken MegaCore Function

Generating the Reconfiguration Controller

You can generate the Altera Transceiver Reconfiguration Controller using the MegaWizard Plug-In Manager.

Note: To select the reconfiguration controller, click **Installed Plug-Ins > Interfaces > Interlaken > Transceiver PHY > Transceiver Reconfiguration Controller v**<*version >*.

In the Transceiver Reconfiguration Controller parameter editor, you select the features of the transceiver that can be dynamically reconfigured. However, you must ensure that the following two features are turned on:

1. Enable PLL calibration

2. Enable Analog controls

You must also set the value of the **Number of reconfiguration interfaces** parameter. Each TX PLL requires its own reconfiguration interface, whether or not you intend to reconfigure it. The following formula determines the correct number of reconfiguration interfaces:

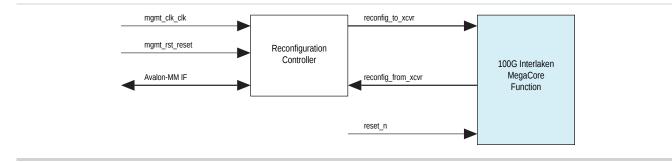
NUMBER_OF_RECONFIGURATION_INTERFACES = NUMBER_OF_LANES + NUMBER_OF_TX_PLLs where

- NUMBER_OF_LANES is the total number of physical lanes used in your implemented design.
- NUMBER_OF_TX_PLLs is the total number of transceiver blocks (number of TX PLLs) used in your design.

For example, for a design that includes a 12-lane Interlaken variation that is configured in two transceiver blocks, you must set **Number of reconfiguration interfaces** to the value of 14.

Connecting the Reconfiguration Controller to the MegaCore Function

The Reconfiguration Controller communicates with the 100G Interlaken MegaCore on two busses:


- reconfig_to_xcvr(output)
- reconfig_from_xcvr(input)

Each of these busses connects to the bus of the same name in the 100G Interlaken MegaCore function.

You must also connect the following signals:

- mgmt_clk_clk: Reconfiguration Controller clock (input)
- mgmt_rst_reset: Reconfiguration Controller reset (input)
- reconfig_busy: Reconfiguration Controller busy indication (output)

Figure 2-2: Typical Connection of Reconfiguration Controller to 100G Interlaken MegaCore Function

Altera recommends that you set the Reconfiguration Controller input clock frequency to 100 MHz. Refer to the *Altera Transceiver PHY IP Core User Guide* for frequency range requirements specific to the device family.

The Reconfiguration Controller reset input should be asserted high during power up and remain asserted until its clock input becomes stable with mgmt_clk_locked signal indicating a locked condition of the clock. Upon power up, the Reconfiguration Controller asserts reconfig_busy output high. The reconfig_busy signal remains asserted until the Reconfiguration Controller completes the configuration of all transceivers.

Related Information

Altera Transceiver PHY IP Core User Guide

Adding the External PLL

100G Interlaken IP core variations that target an Arria 10 device require an external transceiver PLL to function correctly in hardware. 100G Interlaken IP core variations that target an Arria V or Stratix V device include the transceiver PLLs and do not require that you configure any additional PLLs.

You can use the MegaWizard Plug-In Manager to generate an external PLL IP core that configures a PLL on the device. Under Installed Plug-Ins, select Arria 10 Transceiver ATX PLL v13.1, Arria 10 Transceiver CMU PLL v13.1, or Arria 10 FPLL v13.1.

Note: On the second screen of the MegaWizard Plug-In Manager, the PLL IP cores are located under **Installed Plug-Ins > PLL**.

In the parameter editor, set the following parameter values:

- PLL output frequency to one half the per-lane data rate of the IP core variation. The transceiver performs dual edge clocking, using both the rising and falling edges of the input clock from the PLL. Therefore, this PLL output frequency setting drives the transceiver with the correct clock for the Interlaken lanes.
- **PLL reference clock frequency** to a frequency at which you can drive the TX PLL input reference clock. You must drive the external PLL reference clock input signal at the frequency you specify for this parameter.

The number of external PLLs you must define depends on the distribution of your Interlaken TX serial lines across physical transceiver channels. You specify the clock network to which each PLL output connects by setting the clock network in the PLL parameter editor.

You must connect the external PLL signals and the Arria 10 100G Interlaken IP core transceiver Tx PLL interface signals according to the following rules:

- Connect the tx_serial_clk input pin for each Interlaken lane to the output port of the same name in the corresponding external PLL.
- Connect the tx_pll_locked input pin of the 100G Interlaken IP core to the logical AND of the pll_locked output signals of the external PLLs for all of the Interlaken lanes.
- Connect the tx_pll_powerdown output pin of the 100G Interlaken IP core to the pll_powerdown reset pin of the external PLLs for all of the Interlaken lanes.

User logic must provide the AND function and connections. Refer to the example design for example working user logic including one correct method to instantiate and connect an external PLL.

Getting Started With the 100G Interlaken MegaCore Function

Related Information

- Arria 10 Transceiver PHY User Guide
 - Information about the correspondence between PLLs and transceiver channels, and information about how to configure an external PLL for your own design. You specify the clock network to which the PLL output connects by setting the clock network in the PLL parameter editor.
- Arria 10 External PLL Interface on page 4-3
- 100G Interlaken IP Core Testbench on page 7-1
- Pin Assignments on page 2-3
- Arria 10 External PLL Interface Signals on page 5-15

Compiling the Full Design and Programming the FPGA

You can use the **Start Compilation** command on the Processing menu in the Quartus II software to compile your design.

After successfully compiling your design, program the target Altera device with the Programmer and verify the design in hardware. Programming the device requires that you have a license for your 100G Interlaken MegaCore function variation.

Table 2-2: Information About Compiling and Programming Using the Quartus II Software

For Information About	Refer To
Compiling your design	Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II Handbook
Programming the device	Quartus II Programmer chapter in volume 3 of the Quartus II Handbook

Related Information

- Quartus II Incremental Compilation for Hierarchical and Team-Based Design
- Quartus II Programmer

100G Interlaken IP Core Parameter Settings

2013.12.02

UG-01128

Subscribe Send Feedback

You customize the 100G Interlaken MegaCore function by specifying parameters in the 100G Interlaken parameter editor, which you access from the MegaWizard Plug-In Manager.

This chapter describes the parameters and how they affect the behavior of the MegaCore function. To customize your 100G Interlaken MegaCore function, you can modify parameters to specify the following properties:

Number of Lanes on page 3-1

Meta Frame Length in Words on page 3-2

Data Rate on page 3-2

Transceiver Reference Clock Frequency on page 3-2

Include Advanced Error Reporting and Handling on page 3-3

Enable M20K ECC Support on page 3-4

Include Diagnostic Features on page 3-4

Include In-Band Flow Control Block on page 3-5

Number of Calendar Pages on page 3-5

Transfer Mode Selection on page 3-6

Data Format on page 3-6

Number of Lanes

The Number of lanes parameter specifies the number of lanes available for Interlaken communication. The supported values are 12 and 24.

The default value of the **Number of lanes** parameter is 12.

The 100G Interlaken MegaCore function supports various combinations of number of lanes and lane rates. Ensure that your parameter settings specify a supported combination.

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at $www. alter a. com/common/legal. html. \ Alter a warrants performance of its semiconductor products to current specifications in accordance with the semiconductor products and the semiconductor products are considered by the semiconductor products and the semiconductor products are considered by the semiconductor products and the semiconductor products are considered by the semiconductor products and the semiconductor products are considered by the semiconductor pro$ Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008

Table 3-1: 100G Interlaken IP Core Supported Combinations of Number of Lanes and Data Rate

Yes indicates a supported combination.

Number of Lanes	Lane Rate (Gbps)		
	6.25	10.3125	12.5
12	_	Yes	Yes
24	Yes	_	_

Meta Frame Length in Words

The **Meta frame length in words** parameter specifies the length of the meta frame, in 64-bit (8-byte) words. In the Interlaken specification, this parameter is called the **MetaFrameLength** parameter.

Smaller values for this parameter shorten the time to achieve lock. Larger values reduce overhead while transferring data, after lock is achieved.

For simulation, you can set the **Meta frame length in words** parameter to the value of 128 for fast lane locking. For hardware testing, Altera recommends that you set the **Meta frame length in words** parameter to the value of 2048.

The default value of the **Meta frame length in words** parameter is 2048.

Data Rate

The **Data Rate** parameter specifies the data rate on each lane. All lanes have the same data rate (lane rate).

The default value of the **Data Rate** parameter is 10312.5 Mbps (10.3125 Gbps).

The 100G Interlaken MegaCore function supports various combinations of number of lanes and lane rates. Ensure that your parameter settings specify a supported combination.

Table 3-2: 100G Interlaken IP Core Supported Combinations of Number of Lanes and Data Rate

Yes indicates a supported combination.

Number of Lanes	Lane Rate (Gbps)		
	6.25	10.3125	12.5
12	_	Yes	Yes
24	Yes	_	_

Transceiver Reference Clock Frequency

The **Transceiver reference clock frequency** parameter specifies the expected frequency of the pll_ref_clk input clock.

If the actual frequency of the pll_ref_clk input clock does not match the value you specify for this parameter, the design fails in both simulation and hardware.

100G Interlaken IP Core Parameter Settings

Table 3-3: 100G Interlaken IP Core Supported pll_ref_clk Frequencies

The sets of valid frequencies vary with the per-lane data rate of the transceivers.

Per-Lane Data Rate	Valid pll_ref_clk Frequencies (MHz)	
10.3125	206.25, 257.8125, 322.265625, 412.5, 515.625, 644.53125	
12.5, 6.25	156.25, 195.3125, 250, 312.5, 390.625, 500, 625	

The default value of the **Transceiver reference clock frequency** parameter is 412.5 MHz.

Related Information

- 100G Interlaken IP Core Clock Signals on page 4-5
- 100G Interlaken IP Core Clock Interface Signals on page 5-1

Include Advanced Error Reporting and Handling

The **Include advanced error reporting and handling** parameter specifies whether your 100G Interlaken MegaCore function checks the integrity of incoming packets on the Interlaken link and reports the packet corruption errors it detects.

If you turn on **Include advanced error reporting and handling**, the IP core reports the following errors on the irx_err output signal:

- CRC24 errors
- · Loss of lane alignment
- Illegal control word
- Illegal framing pattern
- Missing SOP or EOP indicator

If you turn off **Include advanced error reporting and handling**, the irx_err signal acts identically to the crc24_err signal: it reports only CRC24 errors.

Your IP core calculates and inserts CRC24 bits in outgoing Interlaken communication, and checks incoming Interlaken communication for CRC24 errors in the control and data words, whether or not you turn on this parameter.

If you turn this parameter on, your IP core reports incoming packet corruption errors, increasing system robustness. If you turn the parameter off your IP core has lower latency and requires fewer resources on the device.

Note: If you turn off this parameter, compilation will generate warnings, because the Synopsys Design Constraints file (.sdc) does not change to accommodate the absence of this functionality. You can ignore these warnings.

A checkmark in the check box to the left of the parameter turns this parameter on, specifying that the IP core include this feature. A check box with no checkmark indicates that the option is turned off, and the IP core does not include the feature.

By default, the **Include advanced error reporting and handling** parameter is turned off.

Related Information

100G Interlaken IP Core RX Errored Packet Handling on page 4-22

Enable M20K ECC Support

The **Enable M20K ECC support** parameter specifies whether your 100G Interlaken MegaCore function variation supports the ECC feature in the Stratix V and Arria 10 M20K memory blocks that are configured as part of the IP core. This parameter is relevant only for IP core variations that target a Stratix V device or an Arria 10 device.

You can turn this parameter on to enable single-error correct, double-adjacent-error correct, and triple-adjacent-error detect ECC functionality in the M20K memory blocks configured in your IP core. You can turn this parameter off to increase IP core latency and save resources on the device. If you turn on this feature, you enhance data reliability but increase latency and resource utilization. Without the ECC feature, a single M20K memory block can support a data path width of 40 bits. With the ECC feature, eight of those bits are dedicated to the ECC, and an M20K memory block can support a maximum data path width of 32 bits. Therefore, to support the same data bus width, the Quartus II Fitter must configure additional M20K blocks. The ECC check adds latency to the path through the memory block, and increases the amount of device memory used by your IP core.

Note: If you turn off this parameter, compilation will generate warnings, because the Synopsys Design Constraints file (.sdc) does not change to accommodate the absence of this functionality. You can ignore these warnings.

A checkmark in the check box to the left of the parameter turns this parameter on, specifying that the IP core supports this feature. A check box with no checkmark indicates that the option is turned off, and the IP core does not support this feature.

By default, the **Enable M20K ECC support** parameter is turned off.

Related Information

- Embedded Memory Blocks in Stratix V Devices
 Information about the built-in ECC feature in Stratix V devices.
- Embedded Memory Blocks in Arria 10 Devices
 Information about the built-in ECC feature in Arria 10 devices.

Include Diagnostic Features

The **Include diagnostic features** parameter enables the following diagnostic modes for initial board bringup and for system testing in the factory and in the field:

- CRC error counters
- CRC-32 error injection on the Interlaken link
- PRBS generation and checking
- Factory test features

You can turn this parameter on to enable this IP core functionality, or turn it off to save resources on the device. If you turn this parameter on, you control the diagnostic modes by accessing 100G Interlaken IP core registers.

Note: If you turn off this parameter, compilation will generate warnings, because the Synopsys Design Constraints file (.sdc) does not change to accommodate the absence of this functionality. You can ignore these warnings.

100G Interlaken IP Core Parameter Settings

A checkmark in the check box to the left of the parameter turns this parameter on, specifying that the IP core has this additional functionality. A check box with no checkmark indicates that the option is turned off, and the IP core does not have this functionality.

By default, the **Include diagnostic features** parameter is turned off.

Related Information

- PRBS Generation and Validation on page 8-1
- CRC32 Error Injection on page 8-6
- **CRC24 Error Injection** on page 8-7

Include In-Band Flow Control Block

The **Include in-band flow control functionality** parameter specifies whether your 100G Interlaken MegaCore function includes an in-band flow control block.

You can turn this parameter on to include in-band flow control functionality in your IP core, or turn it off to save resources on the device. If you turn on the parameter, you can specify the number of calendar pages the IP core supports.

Note: If you turn off this parameter, compilation will generate warnings, because the Synopsys Design Constraints file (.sdc) does not change to accommodate the absence of this functionality. You can ignore these warnings.

A checkmark in the check box to the left of the parameter turns this parameter on, specifying that the IP core include the in-band flow control block. A check box with no checkmark indicates that the option is turned off, and the IP core does not include a in-band flow control block.

By default, the **Include in-band flow control functionality** parameter is turned off.

Related Information

- 100G Interlaken IP Core In-Band Calendar Bits on Transmit Side on page 4-16
- In-Band Calendar Bits on the 100G Interlaken IP Core Receiver User Data Interface on page 4-24

Number of Calendar Pages

When **Include in-band flow control functionality** is turned on, the **Number of calendar pages** parameter specifies the number of 16-bit pages of in-band flow control data that your 100G Interlaken MegaCore function supports. The supported values are 1, 2, 4, 8, and 16.

Each 16-bit calendar page includes 16 in-band flow control bits. The application determines the interpretation of the in-band flow control bits. The IP core supports a maximum of 256 channels with in-band flow control.

If your design requires a different number of pages, select the lowest supported number of pages which is larger than the number required, and ignore any unused pages. For example, if your configuration requires three in-band flow control calendar pages, you can set **Number of Calendar pages** to 4 and use pages 3, 2, and 1 while ignoring page 0.

The default value of the **Number of calendar pages** parameter is 1.

Transfer Mode Selection

The **Transfer mode selection** parameter specifies whether the 100G Interlaken transmitter expects incoming traffic to the TX user data transfer interface to be interleaved or packet based. The supported values are **Interleaved** and **Packet**. Interleaved mode is also called Segmented mode. The value of this parameter cannot be modified dynamically; it is determined when you generate the IP core.

If the value of this parameter is **Packet**, the 100G Interlaken transmitter expects incoming traffic to the TX user data transfer interface to be packet based. This setting enables the internal enhanced scheduler and causes the IP core to send data on the Interlaken link based on the programmed BurstMax and BurstMin parameter settings.

If the value of this parameter is **Interleaved**, the 100G Interlaken transmitter expects you to provide scheduling information on the Start of Burst and End of Burst signals. In Interleaved mode, you can send either packet-based traffic or interleaved traffic, but you must provide the correct SOB and EOB signals even when sending non-interleaved packets.

If packets are always sent contiguously in your application, Altera recommends that you set this parameter to the value of **Packet**. This setting enables simpler transfers on the user data transfer interface, and enables the 100G Interlaken IP core to perform enhanced scheduling based on the BurstMax and BurstMin settings. If the data bursts that arrive on the TX application interface might be interleaved between channels, then you must set **Transfer mode selection** to the value of **Interleaved**.

The default value of the **Transfer mode selection** parameter is **Interleaved**.

Related Information

Interleaved and Packet Modes on page 4-7

Data Format

The **Data format** parameter specifies whether the 100G Interlaken IP core opportunistically generates dual segment mode output to the RX user data transfer interface and handles dual segment mode input to the TX user data transfer interface. The supported parameter values are **Single segment** and **Dual segment**.

This parameter affects both the RX user data transfer interface and the TX user data transfer interface. The 100G Interlaken IP core can accept dual segment input from the application on the TX user data transfer interface only if you specify the value of **Dual segment** for the **Data format** parameter.

The default value of the **Data format** parameter is **Single segment** (single segment mode).

Enabling the 100G Interlaken IP core to send dual segment mode output to the RX user data transfer interface improves bandwidth by decreasing idle bytes in outgoing communication. Likewise, enabling the IP core to receive dual segment mode input on the TX user data transfer interface improves system bandwidth by decreasing idle bytes in incoming communication. However, if you turn on this feature, you must ensure your application can process data sent in dual segment format. In addition, enabling dual segment mode configures more complex logic in the IP core, impacting resource utilization.

Related Information

Dual Segment Mode on page 4-8

Functional Description

4

2013.12.02

UG-01128

Subscribe (

Send Feedback

The 100G Interlaken MegaCore function provides the functionality described in the *Interlaken Protocol Specification, Revision 1.2*.

Related Information

Interlaken Protocol Specification, Revision 1.2

Interfaces Overview

The Altera 100G Interlaken MegaCore function supports the following interfaces:

Application Interface on page 4-1

Interlaken Interface on page 4-1

Out-of-Band Flow Control Interface on page 4-2

Management Interface on page 4-2

Transceiver Control Interfaces on page 4-2

Application Interface

The application interface, also called the user data transfer interface, provides up to 256 channels of communication to and from the Interlaken link.

Related Information

- **High Level Block Diagram** on page 4-4 The figure lists the major application interface signals.
- 100G Interlaken IP Core User Data Transfer Interface Signals on page 5-3
 Comprehensive list of application interface signals and information about required signal behavior.

Interlaken Interface

The Interlaken interface complies with the *Interlaken Protocol Specification*, *Revision 1.2*. It provides a high-speed transceiver interface to an Interlaken link.

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

The 100G Interlaken MegaCore function value for the Interlaken BurstMax parameter is determined by the value you specify on the burst_max_in input signal. The 100G Interlaken MegaCore function supports three values for BurstMax, 128 bytes, 256 and 512 bytes.

Note: You should only modify the value of the burst_max_in signal when no traffic is present.

You can configure your 100G Interlaken MegaCore function to use 1, 2, 4, 8, or 16 pages of 16 calendar bits. The application determines the use of the in-band flow control bits that the MegaCore function receives on the incoming Interlaken link, and the application is responsible for specifying the values of the in-band flow control bits the MegaCore function transmits on the outgoing Interlaken link.

Related Information

- Interlaken Protocol Specification, Revision 1.2
 Available from the Interlaken Alliance web site at www.interlakenalliance.com.
- 100G Interlaken IP Core Interlaken Link and Miscellaneous Interface Signals on page 5-9 Information about setting the BurstMax and BurstShort values, including the encoding of your desired value on the burst_max_in or burst_short_in input signal.
- 100G Interlaken IP Core User Data Transfer Interface Signals on page 5-3 Information about the in-band flow control signals.

Out-of-Band Flow Control Interface

The optional out-of-band flow control interface conforms to the out-of-band requirements in Section 5.3.4.2, Out-of-Band Flow Control, of the *Interlaken Protocol Specification, Revision 1.2*.

Related Information

- Interlaken Protocol Specification, Revision 1.2

 Available from the Interlaken Alliance web site at www.interlakenalliance.com.
- Out-of-Band Flow Control in the 100G Interlaken MegaCore Function on page 10-1

Management Interface

The management interface provides access to the 100G Interlaken IP core internal status and control registers. This interface does not provide access to the hard PCS registers on the device.

The management interface complies with the Avalon Memory-Mapped (Avalon-MM) specification defined in the *Avalon Interface Specifications*.

Related Information

Avalon Interface Specifications

Transceiver Control Interfaces

The 100G Interlaken IP core provides several interfaces to control the transceiver. The transceiver control interfaces in your 100G Interlaken IP core variation depend on the device family the variation targets.

The 100G Interlaken IP core supports the following transceiver control interfaces:

Transceiver Reconfiguration Controller Interface on page 4-3

Altera Corporation Functional Description

Arria 10 External PLL Interface on page 4-3

Arria 10 Transceiver Reconfiguration Interface on page 4-3

Transceiver Reconfiguration Controller Interface

100G Interlaken IP core variations that target an Arria V or a Stratix V device require an external reconfiguration controller to function correctly in hardware. 100G Interlaken IP core variations that target an Arria 10 device include a reconfiguration controller block and do not require an external reconfiguration controller.

Related Information

• Altera Transceiver PHY IP Core User Guide

Describes the Altera Transceiver Reconfiguration Controller and the signals that connect to the 100G Interlaken IP core transceiver reconfiguration controller interface.

Arria 10 External PLL Interface

100G Interlaken IP core variations that target an Arria 10 device require an external transceiver PLL to function correctly in hardware. 100G Interlaken IP core variations that target an Arria V or Stratix V device include the transceiver PLLs and do not require that you configure any additional PLLs.

Related Information

- Arria 10 Transceiver PHY User Guide
 Information about the Arria 10 transceiver PLLs and clock network.
- Adding the External PLL on page 2-8
 Describes how to generate an external TX PLL, including parameter requirements.
- Arria 10 External PLL Interface Signals on page 5-15

Arria 10 Transceiver Reconfiguration Interface

The Arria 10 transceiver reconfiguration interface provides access to the registers in the embedded Arria 10 Native PHY IP core. This interface provides direct access to the hard PCS registers on the device.

This interface is available only in variations that target an Arria 10 device. In variations that target an Arria V device or a Stratix V device, user logic reconfigures the transceivers through the transceiver reconfiguration controller, an external block that you must instantiate in your design outside the 100G Interlaken IP core.

The Arria 10 transceiver reconfiguration interface complies with the Avalon Memory-Mapped (Avalon-MM) specification defined in the *Avalon Interface Specifications*.

Related Information

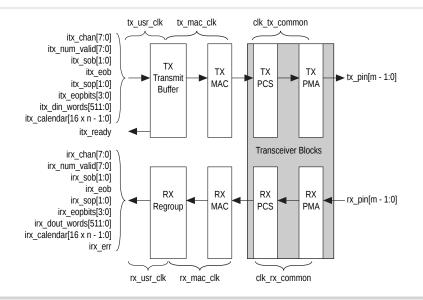
Avalon Interface Specifications

Defines the Avalon Memory-Mapped (Avalon-MM) specification.

Arria 10 Transceiver PHY User Guide

Information about the Arria 10 transceiver reconfiguration interface.

Arria 10 Transceiver Registers


Information about the Arria 10 transceiver registers.

Functional Description Altera Corporation

High Level Block Diagram

Figure 4-1: 100G Interlaken Block Diagram

The 100G Interlaken MegaCore function consists of two paths: an Interlaken TX path and an Interlaken RX path. Each path includes MAC, PCS, and PMA blocks. The PCS blocks are implemented in hard IP.

Related Information

- **100G Interlaken IP Core Transmit Path Blocks** on page 4-17 For more information about the Interlaken TX path.
- **100G Interlaken IP Core Receive Path Blocks** on page 4-25 For more information about the Interlaken RX path.

Clocking and Reset Structure for IP Core

The following topics describe the clocking and reset structure of the 100G Interlaken IP core:

100G Interlaken IP Core Clock Signals on page 4-5

IP Core Reset on page 4-5

IP Core Reset Sequence with the Reconfiguration Controller on page 4-6

Altera Corporation Functional Description

100G Interlaken IP Core Clock Signals

Table 4-1: 100G Interlaken IP Core Clocks

Clock Name	Description
pll_ref_clk	Reference clock for the RX transceiver PLL in IP core variations that target an Arria 10 device. Reference clock for RX and TX transceiver PLLs in all other variations.
tx_serial_clk[NUM_LANES-1:0]	Clocks for the individual transceiver channels in 100G Interlaken IP core variations that target an Arria 10 device.
rx_usr_clk	Clock for the receive application interface
tx_usr_clk	Clock for the transmit application interface
mm_clk	Management clock for 100G Interlaken IP core register access
reconfig_clk	Management clock for Arria 10 hard PCS register access, including access for Arria 10 transceiver reconfiguration and testing features

If you choose to instantiate the optional out-of-band flow control blocks, your 100G Interlaken MegaCore function has additional clock domains.

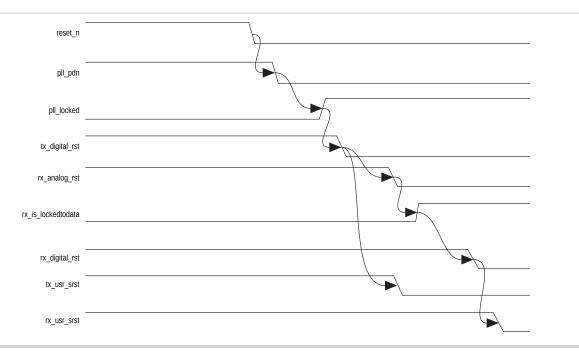
Related Information

Out-of-Band Flow Control Block Clocks on page 10-2

Comprehensive list of out-of-band flow control block clocks and information about their expected frequencies.

IP Core Reset

The 100G Interlaken MegaCore function variations have a single asynchronous reset, the reset_n signal. The 100G Interlaken IP MegaCore manages the initialization sequence internally. After you assert reset_n low, the core automatically goes through the entire reset sequence.


Note: Altera recommends that you hold the reset_n signal low for at least the duration of two mm_clk cycles, to ensure the reset sequence proceeds correctly.

Functional Description Altera Corporation

Figure 4-2: 100G Interlaken IP Core Transceiver Initialization Sequence

The internal initialization sequence implemented by the reset controller included in the 100G Interlaken IP core. In Arria 10 devices, the pll_locked signal originates in the external PLL. In other devices, it originates in the 100G Interlaken IP core itself.

Following completion of the reset sequence internally, the 100G Interlaken MegaCore function begins link initialization. If your 100G Interlaken MegaCore function and its Interlaken link partner initialize the link successfully, you can observe the assertion of the lane and link status signals according to the Interlaken specification. For example, you can monitor the tx_lanes_aligned, sync_locked, word_locked, and rx_lanes_aligned output status signals.

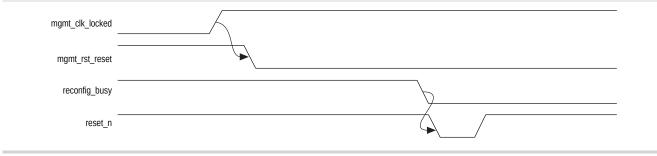
Related Information

IP Core Reset Sequence with the Reconfiguration Controller on page 4-6

You must wait until the required Altera Transceiver Reconfiguration Controller completes configuration of the transceivers before you assert the reset_n signal.

IP Core Reset Sequence with the Reconfiguration Controller

If your 100G Interlaken IP core targets an Arria V device or a Stratix V device, you must connect the 100G Interlaken IP core to an Altera Reconfiguration Controller. At power up, the Reconfiguration Controller configures the transceivers. After power up, upon completion of the transceiver configuration process, the Reconfiguration Controller returns control of the reset to your application. You must wait until the Reconfiguration Controller completes configuration of the transceivers before you assert the reset_n signal.


The Reconfiguration Controller indicates the end of the configuration cycle by deasserting the reconfig_busy signal. After reconfig_busy is deasserted, you can assert reset_n. Altera recommends that you hold the reset_n signal low for at least the duration of two mm_clk cycles, to ensure the reset sequence proceeds correctly.

Altera Corporation Functional Description

Figure 4-3: Reset Sequence With the Reconfiguration Controller

Indicates when you can safely assert the reset_n signal of the 100G Interlaken MegaCore IP core.

Related Information

Altera Transceiver PHY IP Core User Guide
 For more information about the Altera Reconfiguration Controller.

Interleaved and Packet Modes

You can configure the 100G Interlaken IP core to accept interleaved data transfers from the application on the TX user data transfer interface, or to not accept interleaved data transfers on this interface. If the IP core can accept interleaved data transfers, it is in Interleaved mode, sometimes also called Segmented mode. If the IP core does not accept interleaved data transfers, it is in Packet mode. The value you specify for the **Transfer mode selection** parameter in the 100G Interlaken parameter editor determines the IP core transmit mode.

In Packet mode, the 100G Interlaken IP Core performs Optional Scheduling Enhancement based on Section 5.3.2.1.1 of the *Interlaken Protocol Specification, Revision* 1.2. The IP core ignores the itx_sob and itx_eob signals. Instead, the IP core performs optional enhanced scheduling based on the settings of BurstMax, BurstMin, and BurstShort.

In Interleaved mode, the 100G Interlaken IP Core inserts burst control words on the Interlaken link based on the itx_sob and itx_eob inputs. The internal optional enhanced scheduling is disabled and the BurstMax and BurstMin values are ignored. BurstShort is still in effect. To avoid overflowing the transmit FIFO, you should not send a burst that is longer than 1024 bytes.

In Interleaved mode or in Packet mode, the 100G Interlaken IP core is capable of accepting non-interleaved data on the TX user data transfer interface (itx_din_words). However, if the IP core is in Interleaved mode, the application must drive the itx_sob and itx_eob inputs correctly.

In Interleaved mode or in Packet mode, the 100G Interlaken IP core can generate interleaved data transfers on the RX user data transfer interface (irx_dout_words). The application must be able to accept interleaved data transfers if the Interlaken link partner transmits them on the Interlaken link. In this case, the Interlaken link partner must send traffic in Interleaved mode that conforms with the 100G Interlaken IP core BurstShort value.

Note: Altera recommends that the transmitter (link partner) only send packets with a minimum packet size of 64 bytes.

Functional Description Altera Corporation

Related Information

- Interlaken Protocol Specification, Revision 1.2
- Transfer Mode Selection on page 3-6
- 100G Interlaken IP Core User Data Transfer Interface Signals on page 5-3

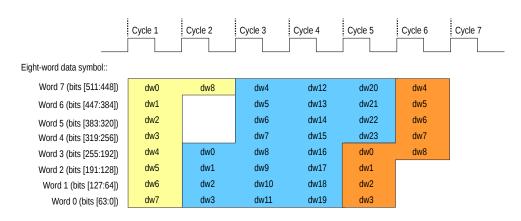
Dual Segment Mode

In dual segment mode, the 100G Interlaken IP core can minimize wasted bandwidth on the user data transfer interface by starting a packet transfer at Byte 31 (Word 3) of the data bus (irx_dout_words[511:0]), if the previous packet ended with four or fewer 64-bit words transferred in the current rx_usr_clk cycle.

In dual segment mode, the IP core is capable of accepting dual segment input on the TX user data transfer interface (itx_din_words[511:0]). However, the application can control IP core input signals to specify that the current incoming data transfer does not use dual segment mode. In addition, if you tie the relevant input signals (itx_sob[0], itx_sop[0], and itx_num_valid[3:0]) permanently low in your design, the Quartus II Fitter compiles away the IP core logic that generates dual segment output from the IP core.

You must enforce the following additional constraints in sending dual segment traffic to the TX user data transfer interface:

- The application can start a packet or burst transfer in a single cycle on only one of the most significant byte (Byte 63) or the middle position (Byte 31) in the 512-bit data symbol. Therefore, the application can assert only one of itx_sop[1] and itx_sop[0], and only one of itx_sob[1] and itx_sob[0], in a given cycle. This constraint ensures that the minimum number of idle and data bytes between consecutive starts of packet or burst is at least 64.
- The application can end a packet or burst transfer only once in a single cycle. Therefore, the minimum number of idle and data bytes between consecutive ends of packet or burst must be at least 64.


The same constraints apply to dual segment traffic on the RX user data transfer interface: the minimum number of idle and data bytes between consecutive starts of packet or burst must be at least 64, and the minimum number of idle and data bytes between consecutive ends of packet or burst must be at least 64. The 100G Interlaken IP core enforces these constraints on the RX user data transfer interface.

Altera Corporation Functional Description

Figure 4-4: Dual Segment Data Transfer

In a dual segment data transfer, the end of one data burst and the start of another can appear in the same clock cycle. In this example, each column represents a single 512-bit data symbol, divided into 64-bit words, and each color represents a separate data burst. The second and third data bursts are dual segment transfers.

Related Information

- Data Format on page 3-6
- 100G Interlaken IP Core User Data Transfer Interface Signals on page 5-3
- 100G Interlaken IP Core Dual Segment Interleaved Data Transfer Transmit Example on page 4-14 Example of dual segment data transfers on the TX user data transfer interface.
- 100G Interlaken IP Core Dual Segment Interleaved Data Transfer Receive Example on page 4-20 Example of dual segment data transfers on the RX user data transfer interface.

M20K ECC Support

If you turn on **Enable M20K ECC support** in your Arria V or Arria 10 100G Interlaken IP core variation, the IP core takes advantage of the built-in device support for ECC checking in all M20K blocks configured in the IP core on the device. The feature performs single-error correct, double-adjacent-error correct, and triple-adjacent-error detect ECC functionality in the M20K memory blocks configured in your IP core. The IP core reports ECC error statistics in the registers CNT_ERR_TX, CNT_UNCOR_TX, CNT_ERR_RX, and CNT_UNCOR_RX at offsets 0x122 through 0x125.

This feature enhances data reliability but increases latency and resource utilization. Without the ECC feature, a single M20K memory block can support a data path width of 40 bits. With the ECC feature, eight of those bits are dedicated to the ECC, and an M20K memory block can support a maximum data path width of 32 bits. Therefore, when M20K ECC support is turned on the IP core configures additional M20K memory blocks. The ECC check adds latency to the path through the memory block, and increases the amount of device memory used by your IP core.

Related Information

Embedded Memory Blocks in Stratix V Devices
 Information about the built-in ECC feature in Stratix V devices.

Functional Description Altera Corporation

- Embedded Memory Blocks in Arria 10 Devices
 Information about the built-in ECC feature in Arria 10 devices.
- Enable M20K ECC Support on page 3-4
- 100G Interlaken IP Core Register Map on page 6-1
 Describes the CNT_ERR_TX, CNT_UNCOR_TX, CNT_ERR_RX, and CNT_UNCOR_RX 100G Interlaken
 IP core M20K ECC status registers.

100G Interlaken IP Core Transmit Path

The 100G Interlaken MegaCore function accepts application data from up to 256 channels and combines it into a single data stream in which data is labeled with its source channel. The 100G Interlaken TX MAC and PCS blocks format the data into protocol-compliant bursts and insert Idle words where required.

100G Interlaken IP Core Transmit User Data Interface Examples

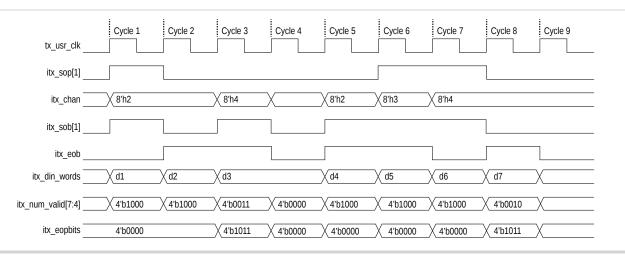
The following examples illustrate how to use the Altera 100G Interlaken IP core TX user data interface:

100G Interlaken IP Core Interleaved Mode (Segmented Mode) Example on page 4-10

100G Interlaken IP Core Packet Mode Operation Example on page 4-12

100G Interlaken IP Core Back-Pressured Packet Transfer Example on page 4-13

100G Interlaken IP Core Dual Segment Interleaved Data Transfer Transmit Example on page 4-14


100G Interlaken IP Core Interleaved Mode (Segmented Mode) Example

In Interleaved Mode, you are responsible for scheduling the burst. You need to drive an extra pair of signals, Start of Burst (SOB) and End of Burst (EOB), to indicate the burst boundary. You can send the traffic in packet order or interleaved order, as long as you set the SOB and EOB flags correctly to establish the data boundaries.

Figure 4-5: Packet Transfer on Transmit Interface in Interleaved Single Segment Mode

This example illustrates the expected behavior of the 100G Interlaken IP core application interface transmit signals during data transfers from the application to the IP core on the TX user data transfer interface in interleaved, single segment mode.

The figure shows the timing diagram for an interleaved data transfer in Interleaved mode. In cycle 1, the application asserts itx_sop[1] and itx_sob[1], indicating that this cycle is both the start of the burst and the start of the packet. The value the application drives on itx_chan indicates the data originates from channel 2.

In cycle 2, the application asserts itx_eob, indicating the data the application transfers to the IP core in this clock cycle is the end of the burst. (itx_chan only needs to be valid when itx_sob[1] or itx_sop[1] is asserted). itx_num_valid[7:4] indicates all eight words are valid. However, the data in this cycle is not end of packet data. The application is expected to transfer at least one additional data burst in this packet, possibly interleaved with one or more bursts in packets from different data channels.

Cycle 3 is a short burst with both <code>itx_sob[1]</code> and <code>itx_eob</code> asserted. The application drives the value of three on <code>itx_num_valid[7:4]</code> to indicate that three words of the eight-word <code>itx_din_words</code> data bus are valid. The data is packed in the most significant words of <code>itx_din_words</code>. The application drives the value of <code>4'b1011</code> on <code>itx_eopbits</code> to indicate that the data the application transfers to the IP core in this cycle are the final words of the packet, and that in the final word of the packet, only three bytes are valid data. The value the application drives on <code>itx_chan</code> indicates this burst originates from channel 4.

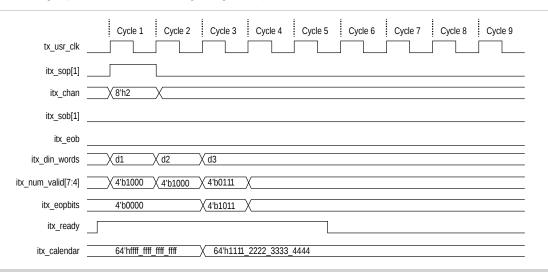
In cycle 4, the itx_num_valid[7:4] signal has the value of zero, which means this cycle is an idle cycle.

In cycle 5, the application sends another single-cycle data burst from channel 2, by assertingitx_sob[1] and itx_eob to indicate this data is both the start and end of the burst. The application does not assert itx_sop[1], because this burst is not start of packet data. itx_eopbits has the value of 4'b0000, indicating this burst is also not end of packet data. This data follows the data burst transferred in cycles 1 and 2, within the same packet from channel 2.

In cycle 6, the application sends a start of packet, single-cycle data burst from channel 3.

In cycles 7 and 8, the application sends a two-cycle data packet in one two-cycle burst. In cycle 8, the second data cycle, the application drives the value of two on itx_num_valid[7:4] and the value of 4'b1011 on itx_eopbits, to tell the IP core that in this clock cycle, the two most significant words of the data

symbol contain valid data and the remaining words do not contain valid data, and that in the second of these two words, only the three most significant bytes contain valid data.


In Interleaved Mode, you can transfer a packet without interleaving as long as the channel number does not toggle during the same packet transfer. However, you must still assert the itx_sob and itx_eob signals correctly to maintain the proper burst boundaries.

If you do not drive the itx_sob and itx_eob signals, the 100G Interlaken IP Core does not operate properly and the transmit FIFO may overflow, since in this mode the internal logic is looking for itx_sob and itx_eob assertion for insertion of proper burst control words.

100G Interlaken IP Core Packet Mode Operation Example

Figure 4-6: Packet Transfer on Transmit Interface in Packet Mode

This example illustrates the expected behavior of the 100G Interlaken IP core application interface transmit signals during a packet transfer in single segment packet mode.

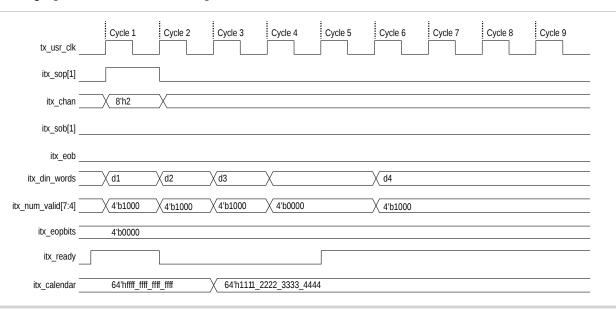
The figure illustrates a packet mode data transfer of 179 bytes on the transmit interface into the IP core. In this mode, the 100G Interlaken IP core ignores the itx_sob and itx_eob input signals.

To start a transfer, you assert itx_sop[1] when you have data ready on itx_din_words. At the following rising edge of the clock, the IP core detects that itx_sop[1] is asserted, indicating that the value on itx_din_words in the current cycle is the start of an incoming data packet. When you assert itx_sop[1], you must also assert the correct value on itx_chan to tell the IP core the data channel source of the data. In this example, the value 2 on itx_chan tells the IP core that the data originates from channel number 2.

During the SOP cycle (labeled with data value d1) and the cycle that follows the SOP cycle (labeled with data value d2), you must hold the value of itx_num_valid[7:4] at 4'b1000. In the following clock cycle, labeled with data value d3, you must hold the following values on critical input signals to the IP core:

- itx_num_valid[7:4] at the value of 4'b0111 to indicate the current data symbol contains seven 64-bit words of valid data.
- itx_eopbits[3] high to indicate the current cycle is an EOP cycle.
- itx_eopbits[2:0] at the value of 3'b011 to indicate that only three bytes of the final valid data word are valid data bytes.

This signal behavior correctly transfers a data packet with the total packet length of 179 bytes to the IP core, as follows:


- In the SOP cycle, the IP core receives 64 bytes of valid data (d1).
- In the following clock cycle, the IP core receives another 64 bytes of valid data (d2).
- In the third clock cycle, the EOP cycle, the IP core receives six full words ($6 \times 8 = 48$ bytes) and three bytes of valid data, for a total of 51 valid bytes.

The total packet length is 64 + 64 + 51 = 179 bytes.

100G Interlaken IP Core Back-Pressured Packet Transfer Example

Figure 4-7: Packet Transfer on Transmit Interface with Back Pressure

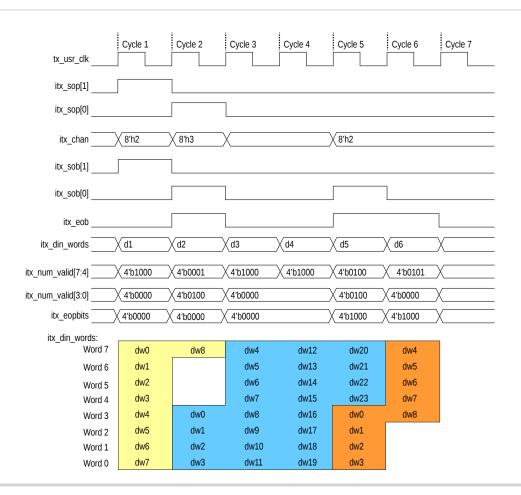
This example illustrates the expected behavior of the 100G Interlaken application interface transmit signals during a packet transfer with back pressure.

In this example, the 100G Interlaken IP Core accepts the first four data symbols (256 bytes) of a data packet. The clock cycles in which the application transfers the data values d2 and d3 to the 100G Interlaken IP Core are grace-period cycles following the 100G Interlaken IP Core's de-assertion of itx_ready.

The 100G Interlaken IP Core supports up to 4 cycles of grace period, enabling you to register the input data and control signals, as well as the itx_ready signal, without changing functionality. The grace period supports your design in achieving timing closure more easily. In any case you must ensure that you hold itx_num_valid at the value of 0 when you are not driving data.

You can think of this interface as a FIFO write interface. When itx_num_valid[7:4] is nonzero, both data and control information (including itx_num_valid[7:4] itself) are written to the transmit side data interface. The itx_ready signal is the inverse of a hypothetical FIFO-almost-full flag. When itx_ready is high, the 100G Interlaken IP Core is ready to accept data. When itx_ready is low, you can continue to send data for another 6 to 8 clock cycles of tx_usr_clk.

Related Information


100G Interlaken IP Core In-Band Calendar Bits on Transmit Side on page 4-16 Description of in-band calendar bits on the TX user data transfer interface.

100G Interlaken IP Core Dual Segment Interleaved Data Transfer Transmit Example

Figure 4-8: Dual Segment Data Transfer on Transmit Interface in Interleaved Mode

This example illustrates the expected behavior of the 100G Interlaken IP core application interface transmit signals during dual segment transfers of three data bursts in interleaved mode.

The figure shows three data bursts in dual segment mode on the TX user data transfer interface. In cycle 1, the application asserts itx_sop[1] and itx_sob[1], indicating that this cycle is both the start of the burst and the start of the packet, and that data starts from the most significant byte of the data symbol. The application drives the value of 2 on itx_chan to indicate the data originates from channel 2.

In cycle 2, the following two events occur:

- The first data burst completes. The application asserts itx_eob, indicating the data the application transfers to the IP core in this clock cycle is the end of the burst. The value the application drives on itx_num_valid[7:4] indicates that one word in this data symbol is valid data associated with this burst. In addition, the application drives itx_eopbits to the value of 4'b0000 to indicate that the data the application transfers to the IP core in this clock cycle is not the end of the packet. Therefore, all bytes in this data word are valid.
- A second data burst starts at Word 3. This transfer is a dual segment transfer, as is allowed whether or not the IP core is configured in dual segment mode on the RX side. The application asserts <code>itx_sop[0]</code> and <code>itx_sob[0]</code>, indicating that this cycle is both the start of the burst and the start of the packet, and that data in this burst and packet starts from Byte 31 of the data symbol. The application drives the value of 3 on <code>itx_chan</code> to indicate the data originates from channel 3. The value of <code>itx_num_valid[3:0]</code> is 4'b0100, indicating this data transfer is a dual segment data transfer—that it begins at Word 3. The value of <code>itx_num_valid[7:4]</code> has no relevance for the data words in this burst that appear in this data symbol, except to indicate the previous burst includes no data in these words of the data symbol (Words 3 through 0), and therefore, that they are available for the second data burst. As is required, the dual segment data transfer places valid data in all four words in the least significant half of the data symbol.

In cycles 3 and 4, the second data burst continues with no EOB or EOP indication. The IP core does not sample the value of itx_chan in these clock cycles, and its value is therefore a Don't Care. The value on itx_num_valid[7:4] indicates that all eight words in each of these data symbols are valid data associated with this burst.

In cycle 5, the following two events occur:

- The second data burst completes. The application asserts itx_eob, indicating the data transferred in this clock cycle is the end of the burst. The value the application drives on itx_num_valid[7:4] indicates that four words in this data symbol are valid data associated with this burst. In addition, the value the application drives on itx_eopbits indicates the data is the end of the packet, and that all eight bytes of the final data word are valid data bytes.
- A third data burst starts at Word 3. This transfer is a dual segment transfer, as is allowed whether or not the IP core is configured in dual segment mode on the RX side. The application asserts <code>itx_sob[0]</code>, indicating that this cycle is the start of the burst and that data in this burst starts from Byte 31 of the data symbol. However, the application does not assert <code>itx_sop[0]</code>, indicating this burst is not the first burst in the packet. The value the application drives on <code>itx_chan</code> indicates the data originates from channel 2. Therefore, we can conclude this data burst is the second burst in a packet from channel 2. The value the application drives on <code>itx_num_valid[3:0]</code> is 4'b0100, indicating this data transfer is a dual segment data transfer—that it begins at Word 3. The value of <code>itx_num_valid[7:4]</code> has no relevance for the data words in this burst that appear in this data symbol, except to indicate the previous burst includes no data in these words of the data symbol (Words 3 through 0), and therefore, that they are available for the second data burst. As is required, the dual segment data transfer places valid data in all four words in the least significant half of the data symbol.

In cycle 6, the third data burst completes. The application asserts itx_eob, indicating the data transfered in this clock cycle is the end of the burst. The value on itx_num_valid[7:4] indicates that five words in this data symbol are valid data associated with this burst. In addition, the value the application drives on itx_eopbits indicates the data is the end of the packet, and that all eight bytes of the final data word are valid data bytes. Because the data from this burst occupies words 7 through 3 of the data symbol, another burst cannot start in the current data symbol.

In dual segment mode as in single segment mode, if the IP core is in Interleaved mode, you can transfer a packet without interleaving—if you do not toggle the channel number during the packet transfer, the packet is not interleaved with another packet. However, you must still assert the itx_sob and itx_eob signals correctly to maintain the proper burst boundaries.

If you do not drive the itx_sob and itx_eob signals, the 100G Interlaken IP Core does not operate properly and the transmit FIFO may overflow, since in this mode the internal logic is looking for itx_sob and itx_eob assertion for insertion of proper burst control words.

Related Information

Dual Segment Mode on page 4-8

100G Interlaken IP Core In-Band Calendar Bits on Transmit Side

If you turn on **Include in-band flow control functionality**, the <code>itx_calendar</code> input signal supports inband flow control. It is synchronous with <code>tx_usr_clk</code>, but does not align with the packets on the user data interface. The 100G Interlaken IP Core reads the <code>itx_calendar</code> bits and encodes them in control words (Burst control words and Idle control words) opportunistically.

If you hold all the calendar bits at one, you indicate an XON setting for each channel. You should set the calendar bits to 1 to indicate that the Interlaken link partner does not need to throttle the data it transfers to this 100G Interlaken IP Core. Set this value by default if you choose not to use the in-band flow control feature of the 100G Interlaken IP Core. If you decide to turn off any channel, you must drive the corresponding bits of itx_calendar with zero (the XOFF setting) for that channel.

If you turn on **Include in-band flow control functionality**, the 100G Interlaken IP Core transmits each page of the <code>itx_calendar</code> bits on the Interlaken link in a separate control word, starting with the most significant page and working through the pages, in order, to the least significant page. If you turn off **Include in-band flow control functionality**, the IP core fills each flow control bit in each control word with the value of 1.

Consider an example where the number of calendar pages is four and itx_calendar bits are set to the value $64'h1111_2222_3333_4444$. In this example, the Number of calendar pages parameter is set to four, and therefore the width of the itx_calendar signal is $4 \times 16 = 64$ bits. Each of these bits is a calendar bit. The transmission begins with the page with the value of 16'h1111 and works through the pages in order until the least significant page with the value of 16'h4444.

In this example, four control words are required to send the full set of 64 calendar bits from the itx_calendar signal. The 100G Interlaken IP Core automatically sets the Reset Calendar bit[56] of the next available control word to the value of one, to indicate the start of transmission of a new set of calendar pages, and copies the most significant page (16'h1111 in this example) to the In-Band Flow Control bits[55:40] of the control word. It maps the most significant bit of the page to the control word bit[55] and the least significant bit of the page to the control word bit[40].

The table shows the value of the Reset Calendar bit and the In-Band Flow Control bits in the four Interlaken link control words that transmit the 64'h1111_2222_3333_4444 value of itx_calendar:

Table 4-2: Value of Reset Calendar Bit and In-band Flow Control Bits in the Example

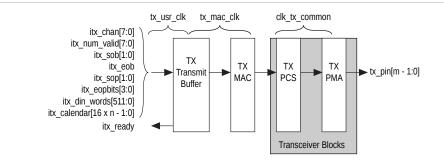
Control Word	Reset Calendar Bit (bit [56])	In-Band Flow Control Bits (bits [55:40])
First	1	16'b0001000100010001 (16'h1111)

Control Word	Reset Calendar Bit (bit [56])	In-Band Flow Control Bits (bits [55:40])
Second	0	16'b0010001000100010 (16'h2222)
Third	0	16'b0011001100110011 (16'h3333)
Fourth	0	16'b0100010001000100 (16'h4444)

For details of the control word format, refer to the *Interlaken Protocol Specification*, Revision 1.2.

The 100G Interlaken IP Core supports itx_calendar widths of 1, 2, 4, 8, and 16 16-bit calendar pages. You configure the width in the 100G Interlaken IP Core parameter editor.

By convention, in a standard case, each calendar bit corresponds to a single data channel. However, the 100G Interlaken IP Core assumes no default usage. You must map the calendar bits to channels or link status according to your specific application needs. For example, if your design has 64 physical channels, but only 16 priority groups, you can use a single calendar page and map each calendar bit to four physical channels. As another example, for a different application, you can use additional calendar bits to pass quality-of-service related information to the Interlaken link partner.


If your application flow-controls a channel, you are responsible for dropping the relevant packet. Altera supports the transfer of the <code>itx_calendar</code> values you provide without examining the data that is affected by in-band flow control of the Interlaken link.

Related Information

- Interlaken Protocol Specification, Revision 1.2
- **100G Interlaken IP Core Back-Pressured Packet Transfer Example** on page 4-13 Example of in-band calendar bits usage on the TX user data transfer interface.

100G Interlaken IP Core Transmit Path Blocks

Figure 4-9: 100G Interlaken IP Core Transmit Path

The 100G Interlaken IP core transmit data path has the following four main functional blocks:

100G Interlaken IP Core TX Transmit Buffer on page 4-18

100G Interlaken IP Core TX MAC on page 4-18

100G Interlaken IP Core TX PCS on page 4-18

100G Interlaken IP Core TX PMA on page 4-18

100G Interlaken IP Core TX Transmit Buffer

The 100G Interlaken MegaCore function TX transmit buffer performs the following functions:

- Aligns the incoming user application data, itx_data, in the IP core internal format.
- Implements domain crossing from the tx_usr_clk clock domain to the tx_mac_clk clock domain.

100G Interlaken IP Core TX MAC

The 100G Interlaken MegaCore function TX MAC performs the following functions:

- Inserts burst and idle control words in the incoming data stream. Burst delineation allows packet segmentation in the Interlaken protocol.
- Performs flow adaption of the data stream, repacking the data to ensure the maximum number of words is available on each valid clock cycle.
- Calculates and inserts CRC-24 bits in all burst and idle words.
- Inserts calendar data in all burst and idle words, if you configure in-band flow control.
- Stripes the data across the PCS lanes. Configurable order, default is MSB of the data goes to lane 0.
- Buffers data between the application and the TX PCS block in the TX FIFO buffer. The TX PCS block uses the FIFO buffer to recover bandwidth when the number of words delivered to the transmitter is less than the full width.

100G Interlaken IP Core TX PCS

TX PCS logic is an embedded hard macro and does not consume FPGA soft logic elements.

The 100G Interlaken MegaCore function TX PCS block performs the following functions for each lane:

- Inserts the meta frame words in the incoming data stream.
- Calculates and inserts the CRC-32 bits in the meta frame diagnostic words.
- Scrambles the data according to the scrambler seed and the protocol-specified polynomial.
- Performs 64B/67B encoding.

100G Interlaken IP Core TX PMA

The 100G Interlaken MegaCore function TX PMA serializes the data and sends it out on the Interlaken link.

100G Interlaken IP Core Receive Path

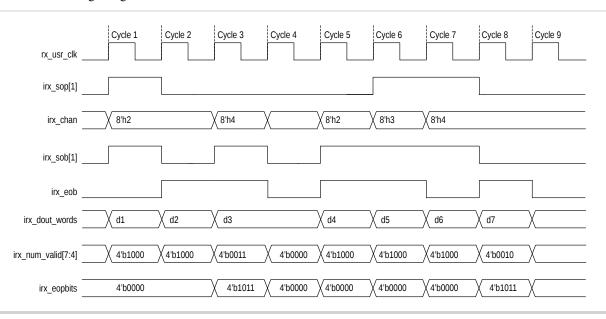
The 100G Interlaken MegaCore function receives data on the Interlaken link, monitors and removes Interlaken overhead, and provides user data and calendar information to the application.

Calendar information is available only if you turn on **Include in-band flow control block** in the 100G Interlaken parameter editor.

100G Interlaken IP Core Receive User Data Interface Examples

The following examples illustrate how to use the Altera 100G Interlaken IP core RX user data interface:

100G Interlaken IP Core Receiver Side Example on page 4-19


100G Interlaken IP Core Dual Segment Interleaved Data Transfer Receive Example on page 4-20

100G Interlaken IP Core Receiver Side Example

The 100G Interlaken IP Core can generate interleaved data transfers on the RX user data transfer interface. The IP core always toggles the <code>irx_sob</code> and <code>irx_eob</code> signals to indicate the beginning of the burst and end of the burst. In single segment mode, only <code>irx_sob[1]</code> toggles. In dual segment mode, <code>irx_sob[0]</code> toggles if the current burst starts at word 4 of the data symbol.

Figure 4-10: 100G Interlaken IP Core Receiver Side Single Segment Example

This example illustrates the expected behavior of the 100G Interlaken IP core application interface receive signals during data transfers from the IP core to the application on the RX user data transfer interface in interleaved, single segment mode.

The figure shows the timing diagram for an interleaved data transfer in Interleaved mode. In cycle 1, the IP core asserts <code>irx_sop[1]</code> and <code>irx_sob[1]</code>, indicating that this cycle is both the start of the burst and the start of the packet. The first word is MSB aligned at the top. The value the IP core drives on <code>irx_chan</code> indicates the data targets channel 2. You must sample <code>irx_chan</code> during cycles in which <code>irx_sob[1]</code> is asserted. The <code>irx_chan</code> output signal is not guaranteed to remain valid for the duration of the burst.

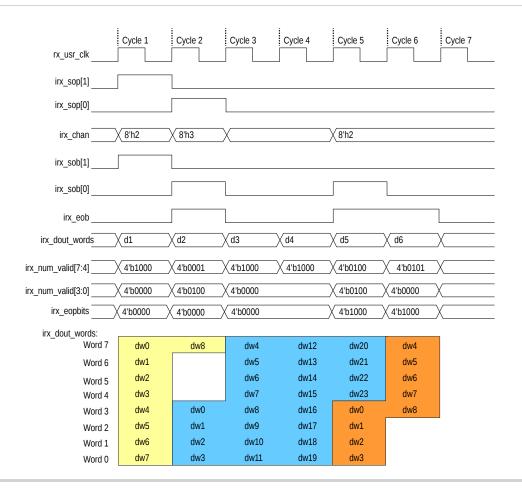
In cycle 2, the IP core asserts <code>irx_eob</code>, indicating the data the IP core transfers to the application in this clock cycle is the end of the burst. <code>irx_num_valid[7:4]</code> indicates all eight words are valid. However, the data in this cycle is not end of packet data. The IP core will transfer at least one additional data burst in this packet, possibly interleaved with one or more bursts in packets that target different data channels.

Cycle 3 is a short burst with both <code>irx_sob[1]</code> and <code>irx_eob</code> asserted. The IP core drives the value of three on <code>irx_num_valid[7:4]</code> to indicate that three words of the eight-word <code>irx_dout_words</code> data bus are valid. The data is packed in the most significant words of <code>irx_dout_words</code>. The IP core drives the value of 4'b1011 on <code>irx_eopbits</code> to indicate that the data the IP core transfers to the application in this cycle are the final words of the packet, and that in the final word of the packet, only three bytes are valid data. The value the IP core drives on <code>irx_chan</code> indicates this burst targets channel 4.

In cycle 4, the irx_num_valid[7:4] signal has the value of zero, which means this cycle is an idle cycle.

In cycle 5, the IP core sends another single-cycle data burst to channel 2, by assertingirx_sob[1] and irx_eob to indicate this data is both the start and end of the burst. The IP core does not assert

irx_sop[1], because this burst is not start of packet data. irx_eopbits has the value of 4'b0000, indicating this burst is also not end of packet data. This data follows the data burst transferred in cycles 1 and 2, within the same packet the IP core is sending to channel 2.


In cycle 6, the IP core sends a start of packet, single-cycle data burst to channel 3.

In cycles 7 and 8, the IP core sends a two-cycle data packet in one two-cycle burst. In cycle 8, the second data cycle, the IP core drives the value of two on <code>irx_num_valid[7:4]</code> and the value of 4'b1011 on <code>irx_eopbits</code>, to tell the application that in this clock cycle, the two most significant words of the data symbol contain valid data and the remaining words do not contain valid data, and that in the second of these two words, only the three most significant bytes contain valid data.

100G Interlaken IP Core Dual Segment Interleaved Data Transfer Receive Example

Figure 4-11: Dual Segment Data Transfer on Receive Interface in Interleaved Mode

This example illustrates the expected behavior of the 100G Interlaken IP core application interface receive signals during dual segment transfers of three data bursts in interleaved mode. The 100G Interlaken IP core can generate dual segment data transfers only if you configure the IP core in dual segment mode.

The figure shows three data bursts in dual segment mode on the RX user data transfer interface. In cycle 1, the IP core asserts <code>irx_sop[1]</code> and <code>irx_sob[1]</code>, indicating that this cycle is both the start of the burst and the start of the packet, and that data starts from the most significant byte of the data symbol. The IP core drives the value of 2 on <code>irx_chan</code> to indicate the data targets channel 2.

In cycle 2, the following two events occur:

- The first data burst completes. The IP core asserts <code>irx_eob</code>, indicating the data the IP core transfers to the application in this clock cycle is the end of the burst. The value the IP core drives on <code>irx_num_valid[7:4]</code> indicates that one word in this data symbol is valid data associated with this burst. In addition, the IP core drives <code>irx_eopbits</code> to the value of 4'b0000 to indicate that the data the IP core transfers to the application in this clock cycle is not the end of the packet.
- A second data burst starts at Word 3, as is allowed in dual segment mode. The IP core asserts <code>irx_sop[0]</code> and <code>irx_sob[0]</code>, indicating that this cycle is both the start of the burst and the start of the packet, and that data in this burst and packet starts from Byte 31 of the data symbol. The IP core drives the value of 3 on <code>irx_chan</code> to indicate the data targets channel 3. The value of <code>irx_num_valid[3:0]</code> is 4'b0100, indicating this data transfer is a dual segment data transfer—that it begins at Word 3. The value of <code>irx_num_valid[7:4]</code> has no relevance for the data words in this burst that appear in this data symbol, except to indicate the previous burst includes no data in these words of the data symbol (Words 3 through 0), and therefore, that they are available for the second data burst. As is required, the dual segment data transfer places valid data in all four words in the least significant half of the data symbol.

In cycles 3 and 4, the second data burst continues with no EOB or EOP indication. The application should not sample the value of <code>irx_chan</code> in these clock cycles. The value on <code>irx_num_valid[7:4]</code> indicates that all eight words in each of these data symbols are valid data associated with this burst.

In cycle 5, the following two events occur:

- The second data burst completes. The IP core asserts <code>irx_eob</code>, indicating the data transfered in this clock cycle is the end of the burst. The value the IP core drives on <code>irx_num_valid[7:4]</code> indicates that four words in this data symbol are valid data associated with this burst. In addition, the value the IP core drives on <code>irx_eopbits</code> indicates the data is the end of the packet, and that all eight bytes of the final data word are valid data bytes.
- A third data burst starts at Word 3, as is allowed in dual segment mode. The IP core asserts <code>irx_sob[0]</code>, indicating that this cycle is the start of the burst and that data in this burst starts from Byte 31 of the data symbol. However, the IP core does not assert <code>irx_sop[0]</code>, indicating this burst is not the first burst in the packet. The value the IP core drives on <code>irx_chan</code> indicates the data targets channel 2. Therefore, we can conclude this data burst is the second burst in a packet that targets channel 2. The value the IP core drives on <code>irx_num_valid[3:0]</code> is 4'b0100, indicating this data transfer is a dual segment data transfer—that it begins at Word 3. The value of <code>irx_num_valid[7:4]</code> has no relevance for the data words in this burst that appear in this data symbol, except to indicate the previous burst includes no data in these words of the data symbol (Words 3 through 0), and therefore, that they are available for the second data burst. As is required, the dual segment data transfer places valid data in all four words in the least significant half of the data symbol.

In cycle 6, the third data burst completes. The IP core asserts <code>irx_eob</code>, indicating the data transfered in this clock cycle is the end of the burst. The value on <code>irx_num_valid[7:4]</code> indicates that five words in this data symbol are valid data associated with this burst. In addition, the value the IP core drives on <code>irx_eopbits</code> indicates the data is the end of the packet, and that all eight bytes of the final data word are valid data bytes. Because the data from this burst occupies words 7 through 3 of the data symbol, another burst cannot start in the current data symbol.

By default, the RX user data transfer interface can generate interleaved data. However, the IP core can also transfer a packet without interleaving—if the IP core does not toggle the channel number during the packet

transfer, the packet is not interleaved with another packet. In this case, the IP core still asserts the irx_sob and irx_eob signals correctly to maintain the proper burst boundaries.

Related Information

Dual Segment Mode on page 4-8

100G Interlaken IP Core RX Errored Packet Handling

The 100G Interlaken IP Core provides information about errored packets on the RX user data transfer interface through the following output signals:

- irx_eopbits[3:0]—If this signal has the value of 4'b0001, an error indication arrived with the packet on the incoming Interlaken link: the EOP_Format field of the control word following the final burst of the packet on the Interlaken link has this value, which indicates an error and EOP.
- irx_err—If you turn on **Include advanced error reporting and handling**, the 100G Interlaken IP Core checks the integrity of incoming packets on the Interlaken link, and reports the packet corruption errors it detects on the RX user data transfer interface in the irx_err output signal.

In both cases, the application is responsible for discarding the relevant packet.

If you turn on **Include advanced error reporting and handling**, the irx_err signal reflects the following errors:

- CRC24 errors
- Loss of lane alignment
- Illegal control word
- Illegal framing pattern
- Missing SOP or EOP indicator

If you turn on **Include advanced error reporting and handling**, the <code>irx_err</code> output signal is aligned with <code>irx_eopbits</code>, and is always asserted when <code>irx_eopbits</code> has the value of 4'b0001. However, <code>irx_eopbits</code> can have the value of 4'b0001 when <code>irx_err</code> is not asserted, if the error indication arrived on the Interlaken link but the 100G Interlaken IP Core does not detect any of the listed integrity issues in the incoming packet communication.

The irx_err signal indicates approximately where an error occurs: the corruption could have occurred at the SOP of the current packet, in some later cycle in the payload of the current packet, in a packet that is interleaved with the current packet, or in the current EOP cycle. When the IP core identifies an error in the data it receives on the Interlaken link, it marks every packet currently open on the link as errored, rather than attempt to associate the error with a specific channel. Therefore, the application need not drop any packets that are not marked explicitly as errored using one of the two mechanisms.

The irx_err signal asserts one time only, whether a single error or multiple errors occurred in the packet. If the current EOP cycle data is corrupted so badly that the EOP indication is missing, the irx_err error indication is aligned to the next EOP. If an error occurs during an IDLE cycle, the irx_err is aligned to the next EOP.

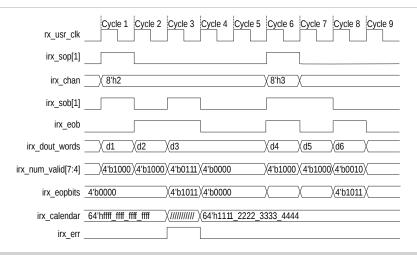
The application is responsible for discarding packets it receives from the IP core with <code>irx_err</code> asserted during the EOP cycle, just as it is responsible for discarding packets it receives from the IP core with <code>irx_eopbits</code> set to 4'b0001. If you turn on **Include advanced error reporting and handling**, the application is not responsible for tracking the open packets interleaved with the errored packet — the 100G Interlaken IP Core asserts <code>irx_err</code> in the EOP cycle of every potentially errored packet, and the

application can rely on the fact that if irx_err is not asserted and irx_eopbits has a value other than 4'b0001, the packet is not errored.

For CRC24 errors, you should use the crc24_err status signal, rather than relying on the irx_err signal, in the following situations:

- If you monitor the link when only Idle control words are being received (no data is flowing), you should monitor the real time status signal crc24_err.
- If you maintain a count of CRC-24 errors, you should monitor the number of times that the real time status signal crc24_err is asserted.

If you turn off **Include advanced error reporting and handling**, <code>irx_err</code> behaves identically to the <code>crc24_err</code> signal.


Related Information

Include Advanced Error Reporting and Handling on page 3-3

100G Interlaken IP Core Receiver Side Example With Errors and In-Band Calendar Bits

Figure 4-12: 100G Interlaken IP Core Receiver Side Single Segment Example With irx_err Errors

This example illustrates the expected behavior of the 100G Interlaken IP core application interface receive signals during a packet transfer in single segment mode with CRC or other errors. In the example, the errored packet transfer is followed by two idle cycles and a non-errored packet transfer.

This figure illustrates the attempted transfer of a 179-byte packet on the RX user data transfer interface to channel 2, after the 100G Interlaken IP Core receives the packet on the Interlaken link and detects corruption. Following the errored packet, the IP core transfers an uncorrupted packet to channel 3.

In cycle 1, the 100G Interlaken IP Core asserts <code>irx_sop[1]</code> when data is ready on <code>irx_dout_words</code>. When the 100G Interlaken IP Core asserts <code>irx_sop[1]</code>, it also asserts the correct value on <code>irx_chan</code> to tell the application the data channel destination of the data. In this example, the value 2 on <code>irx_chan</code> tells the application that the data should be sent to channel number 2.

During the SOP cycle (labeled with data value d1) and the cycle that follows the SOP cycle (labeled with data value d2), the 100G Interlaken IP Core holds the value of irx_num_valid[7:4] at 4'b1000. In the

following clock cycle, labeled with data value d3, the 100G Interlaken IP Core holds the following values on critical output signals:

- itx_num_valid[7:4] at the value of 4'b0111 to indicate the current data symbol contains seven 64-bit words of valid data.
- itx_eopbits[3] high to indicate the current cycle is an EOP cycle.
- itx_eopbits[2:0] at the value of 3'b011 to indicate that only three bytes of the final valid data word are valid data bytes.

This signal behavior, in the absence of the irx_err flag, would correctly transfer a data packet with the total packet length of 179 bytes from the 100G Interlaken IP Core.

However, the 100G Interlaken IP Core marks the packet as errored by asserting the irx_err signal, even though the irx_eopbits signal would appear to indicate the packet is valid.

The application is responsible for discarding the errored packet when it detects that the IP core has asserted the irx_err signal.

Following the corrupted packet, the IP core waits two idle cycles and then transfers a valid 139-byte packet.

Related Information

- 100G Interlaken IP Core Packet Mode Operation Example on page 4-12

 The first data transfer in the current example is the receiver interface equivalent of the transmitter interface transfer example described at this link.
- In-Band Calendar Bits on the 100G Interlaken IP Core Receiver User Data Interface on page 4-24 Description of in-band calendar bits on the RX user data transfer interface.

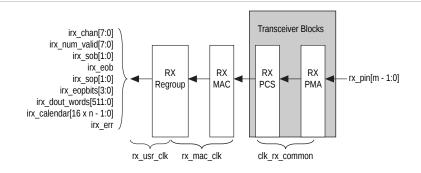
In-Band Calendar Bits on the 100G Interlaken IP Core Receiver User Data Interface

The 100G Interlaken IP core receiver logic decodes incoming control words (both Burst control words and Idle control words) on the incoming Interlaken link. If you turn on **Include in-band flow control functionality**, the receiver logic extracts the calendar pages from the In-Band Flow Control bits and assembles them into the <code>irx_calendar</code> output signal. If you turn off **Include in-band flow control functionality**, the IP core sets all the bits of <code>irx_calendar</code> to the value of 1, indicating that the IP core is not flow controlling the incoming data on the Interlaken link.

The 100G Interlaken IP core receives the most significant calendar page in a control word with the Reset Calendar bit set, indicating the beginning of the calendar page sequence. The mapping of bits from the control words to the <code>irx_calendar</code> output signal is consistent with the mapping of bits from the <code>itx_calendar</code> input signal to the control words.

On the RX side, your application is responsible for mapping the calendar pages to the corresponding channels, according to any interpretation agreed upon with the Interlaken link partner application in sideband communication. On the TX side, your application is responsible for throttling the data it transfers to the TX user data transfer interface, in response to the agreed upon interpretation of the irx_calendar bits.

Related Information


- 100G Interlaken IP Core In-Band Calendar Bits on Transmit Side on page 4-16
- 100G Interlaken IP Core Receiver Side Example With Errors and In-Band Calendar Bits on page 4-23

Example of in-band calendar bits usage on the RX user data transfer interface.

100G Interlaken IP Core Receive Path Blocks

Figure 4-13: 100G Interlaken IP Core Receive Path

The 100G Interlaken IP core receive data path has the following four main functional blocks:

100G Interlaken IP Core RX PMA on page 4-25

100G Interlaken IP Core RX PCS on page 4-25

100G Interlaken IP Core RX MAC on page 4-25

100G Interlaken IP Core RX Regroup Block on page 4-26

100G Interlaken IP Core RX PMA

The 100G Interlaken MegaCore function RX PMA deserializes data that the IP core receives on the serial lines of the Interlaken link.

100G Interlaken IP Core RX PCS

RX PCS logic is an embedded hard macro and does not consume FPGA soft logic elements.

The 100G Interlaken MegaCore function RX PCS block performs the following functions to retrieve the data:

- Detects word lock and word synchronization.
- Checks running disparity.
- Reverses gearboxing and 64/67B encoding.
- Descrambles the data.
- Delineates meta frame boundaries.
- Performs CRC-32 checking.
- Sends lane status information to the calendar and status blocks, if **Include in-band flow control functionality** is turned on.

100G Interlaken IP Core RX MAC

To recover a packet or burst, the RX MAC takes data from each of the PCS lanes and reassembles the packet or burst.

The 100G Interlaken MegaCore function RX MAC performs the following functions:

- Data de-striping, including lane alignment and burst assembly from the PCS lanes.
- CRC-24 validation
- Calendar recovery, if **Include in-band flow control functionality** is turned on

100G Interlaken IP Core RX Regroup Block

The 100G Interlaken MegaCore function RX regroup block performs the following functions:

- Translates the IP core internal data format to the outgoing user application data irx_data format.
- Implements domain crossing from the rx_mac_clk clock domain to the rx_usr_clk clock domain.

100G Interlaken MegaCore Function Signals

5

2013.12.02

UG-01128

Subscribe

Send Feedback

The 100G Interlaken MegaCore function communicates with the surrounding design through multiple external signals.

100G Interlaken IP Core Clock Interface Signals

Table 5-1: 100G Interlaken IP Core Clock Interface

Signal Name	Direction	Width (Bits)	Desc	cription
Clock Ports				
pll_ref_clk	Input	1	Transceiver reference clock in IP core variations that ta Transceiver reference clock PLLs in all other variations. Table 5-2: 100G Interlaken clk Frequencies	rget an Arria 10 device. for RX and TX transceiver
			The sets of valid frequencies rate of the transceivers.	s vary with the per-lane data
			Per-Lane Data Rate	Valid pll_ref_clk Frequen- cies (MHz)
			10.3125	206.25, 257.8125, 322.265625, 412.5, 515.625, 644.53125
			12.5, 6.25	156.25, 195.3125, 250, 312.5, 390.625, 500, 625
			The pll_ref_clk input of the value you specify for the frequency parameter.	
tx_serial_clk	Input	NUM_ LANES-	Clocks for the individual tra 100G Interlaken IP core van 10 device.	

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

Signal Name	Direction	Width (Bits)	Description
clk_tx_common	Output	1	PCS common lane clock driven by the SERDES transmit PLL. The clock rate is the lane rate divided by 40 bits. The clk_tx_common frequency is 156.25 MHz for 6.25 Gbps, 257.8 MHz for 10.3125 Gbps, and 312.5 MHz for 12.5 Gbps per lane.
clk_rx_common	Output	1	Master recovered lane clock. The Interlaken specification requires all incoming lanes to run at the same frequency.
tx_usr_clk	Input	1	Transmit side user data interface clock. To achieve 100 Gbps Ethernet traffic throughput, you must run this clock at one of the following minimum frequencies: • 225 MHz in dual segment mode, 12-lane variations • 300 MHz in single segment mode and in 24-lane
			variations
rx_usr_clk	Input	1	Receive side user data interface clock. To achieve 100 Gbps Ethernet traffic throughput, you must run this clock at one of the following minimum frequencies: • 225 MHz in dual segment mode, 12-lane variations • 300 MHz in single segment mode and in 24-lane variations
mm_clk	Input	1	Management clock. Clocks the register accesses. It is also used for clock rate monitoring and some analog calibration procedures. You must run this clock at a frequency in the range of 100 MHz–125 MHz.
reconfig_clk	Input	1	Clocks the Arria 10 transceiver reconfiguration interface. This clock is available only in IP core variations that target an Arria 10 device. You should run this clock at a frequency of 100 MHz.

Related Information

Performance and Fmax Requirements for 100G Ethernet Traffic on page 11-1

Explains the tx_usr_clk and rx_usr_clk frequency requirements.

100G Interlaken IP Core Reset Interface Signals

Table 5-3: 100G Interlaken IP Core Reset Interface

Signal Name	Direction	Width (Bits)	Description
100G Interlaken IP Core Reset Signals			

100G Interlaken MegaCore Function Signals

Signal Name	Direction	Width (Bits)	Description
reset_n	Input	1	Active-low reset signal for the 100G Interlaken IP core. Altera recommends that you hold this signal low for at least the duration of two mm_clk cycles, to ensure the reset sequence proceeds correctly.
reconfig_reset	Input	1	Reset signal for the Arria 10 transceiver reconfiguration interface. This signal is available only in IP core variations that target an Arria 10 device.
srst_tx_common	Output	1	Synchronous reset signal that the IP core asserts high while the transmitter is initializing. This signal is synchronous with clk_tx_common. This signal goes low to indicate that the transceiver PLL has locked to the reference clock. The TX PCS and the TX MAC are held in reset while the srst_tx_common clock is asserted. You can use this signal for diagnostic purposes.
srst_rx_common	Output	1	Synchronous reset that is active at startup. This signal is synchronous with clk_rx_common. This signal goes low to indicate that the transceiver PLL has achieved lock and the recovered clock has locked to data in normal operation, this signal is deasserted after the transceiver completes its reset sequence. The RX PCS and the RX MAC are held in reset while the srst_rx_common clock is asserted. This signal is also active in the event of a serious clock data recovery failure on any of the RX lanes.
tx_usr_srst	Output	1	Transmit side reset output signal. Indicates the transmit side user data interface is resetting. This signal is synchronous with tx_usr_clk. Your application can use this signal to reset any status counters you may maintain in the tx_usr_clk domain.
rx_usr_srst	Output	1	Receive side reset output signal. Indicates the receive side user data interface is resetting. This signal is synchronous with rx_usr_clk. Your application can use this signal to reset any status counters you may maintain in the rx_usr_clk domain.

100G Interlaken IP Core User Data Transfer Interface Signals

Table 5-4: 100G Interlaken IP Core User Data Transfer Interface

Signal Name	Direction	Width (Bits)	Description
100G Interlaken IP Core Transmit User Interface			

Signal Name	Direction	Width (Bits)	Description
itx_chan	Input	8	Transmit logic channel number. The IP core supports up to 256 channels. The 100G Interlaken IP core samples this value only when a bit of itx_sop or itx_sob is high and itx_num_valid has a non-zero value.
itx_num_ valid	Input	8	itx_num_valid[7:4] specifies the number of valid 64-bit words in the current packet in the current data symbol. The maximum value of itx_num_valid[7:4] is eight, because a data symbol on the 512 bit wide data path has eight words (8 x 64 bits = 512 bits).
			In non-valid cycles, you must set the value of itx_num_valid[7:4] to zero.
			In valid cycles, you must set the value of itx_num_valid[7:4] as follows:
			 4'b1000: if all eight words contain valid data from the current packet. 4'b0xxx: where xxx indicates the number of valid words that are part of the current packet, if the number is less than eight. Data is always MSB aligned (left aligned). For example, the value of 4'b0111 indicates that word 0 (bit [63:0]) is not valid.
			In dual segment mode, if the value of itx_num_valid[7:4] is four or less (but not zero), the application can hold itx_num_valid[2] high to indicate the current data symbol also includes the first four 64-bit words of a new packet. The only valid values for itx_num_valid[3:0] are 4'b0100 and 4'b0000.
			When itx_num_valid[3:0] has the value of 4'b0100, you must also hold itx_sop[0] high.
			You must set the value of itx_num_valid to zero in all non-valid cycles, even when itx_ready is not asserted.
itx_sop	Input	2	 Indicates the current data symbol on itx_din_words contains the start of a packet (SOP). This signal has the following valid values: 2'b00—The current data symbol does not contain the start of a packet. 2'b10—Ifitx_sop[1] has the value of 1, the start-of-packet aligns with the most significant byte (byte 63) of the data. 2'b01—Ifitx_sop[0] has the value of 1, the start-of-packet aligns with byte 31 of the data.

Signal Name	Direction	Width (Bits)	Description
itx_ eopbits	Input	4	Indicates whether the current data symbol contains the end of a packet (EOP) with or without an error, and specifies the number of valid bytes in the current end-of-packet, non-error 8-byte data word, if relevant.
			You must set the value of itx_eopbits as follows:
			 4b'0000: no end of packet, no error. 4b'0001: Error and end of packet. 4b'1xxx: End of packet. xxx indicates the number of valid bytes in the final valid 8-byte word of the packet, as follows:
			 3b'000: all 8 bytes are valid. 3b'001: 1 byte is valid.
			• • 3b'111: 7 bytes are valid.
			All other values (4'b01xx, 4'b001x) are undefined.
			The valid bytes always start in bit positions [63:56] of the final valid data word of the packet.
itx_sob	Input	2	Indicates the current data symbol contains the start of a burst (SOB). If the 100G Interlaken IP core is in Interleaved mode, you are responsible for providing this start of the burst signal. If the 100G Interlaken IP core is in Packet mode, the IP core ignores this signal. The 100G Interlaken IP core samples the itx_chan signal during this cycle.
			This signal has the following valid values:
			 2'b00—The current data symbol does not contain the start of a burst. 2'b10— If itx_sob[1] has the value of 1, the start-of-burst aligns with the most significant byte (byte 63) of the data. 2'b01— If itx_sob[0] has the value of 1, the start-of-burst aligns with byte 31 of the data.
			Typically, you use this mode for sending interleaved packets. However, you can still send non-interleaved packets as long as you provide the <code>itx_sob</code> and <code>itx_eob</code> signal values. You are responsible to comply with the BurstMax and BurstMin parameters. If the burst you send is too large, it can overflow the 100G Interlaken transmit buffer.
itx_eob	Input	1	End of the burst. If the 100G Interlaken IP core is in Interleaved mode, you are responsible for providing this end of the burst signal. If the100G Interlaken IP core is in Packet mode, the IP core ignores this signal. You are responsible to comply with the BurstMax and BurstMin parameters.
itx_din_ words	Input	512	The eight 64-bit words of input data (one data symbol). When itx_num_valid has the value of zero, the IP core ignores itx_din_words.

Signal Name	Direction	Width (Bits)	Description
itx_ calendar	Input	16 N	Multiple pages (16 bits per page) of calendar input bits. The 100G Interlaken IP Core copies these bits to the in-band flow control bits in N control words that it sends on the Interlaken link. N is the value of the Number of calendar pages parameter, which can be any of 1, 2, 4, 8. or 16. This signal is synchronous with tx_usr_clk, although it is not part of the user data transfer protocol.
itx_ready	Output	1	Flow control signal to back pressure transmit traffic. When this signal is high, you can send traffic to the IP core. When this signal is low, you should stop sending traffic to the IP core within one to four cycles.
			You can consider the inverse of itx_ready to be a FIFO-almost-full indicator. In full duplex mode, itx_ready is low when rx_lanes_aligned is low.
itx_ifc_ err	Output	1	Indicates the transmit side user data transfer interface received traffic that the 100G Interlaken IP Core does not support. The IP core asserts the itx_ifc_err signal in the following cases:
			 In Interleaved mode, the IP core receives a burst that exceeds the size of MaxBurst. itx_sop or itx_sob has the invalid value of 2'b11 in a valid data cycle. Two instances of non-zero itx_sop (a start of packet), or two instances of non-zero itx_sob (a start of burst), are separated by fewer than 64 bytes.
Receiver Use	r Interface		
irx_chan	Output	8	Receive logic channel number. The IP core supports up to 256 channels. You should sample this value when a bit of irx_sop or irx_sob is high and irx_num_valid has a non-zero value.

Signal Name	Direction	Width (Bits)	Description
irx_num_ valid	Output	8	irx_num_valid[7:4] specifies the number of valid 64-bit words in the current packet in the current data symbol. The maximum value of irx_num_valid[7:4] is eight, because a data symbol on the 512 bit wide data path has eight words (8 x 64 bits = 512 bits).
			In valid cycles, the IP core sets the value of irx_num_valid[7:4] as follows:
			 4'b1000: if all eight words contain valid data from the current packet. 4'b0xxx: where xxx indicates the number of valid words that are part of the current packet, if the number is less than eight. Data is always MSB aligned (left aligned). For example, the value of 4'b0111 indicates that word 0 (bit [63:0]) is not valid.
			In dual segment mode, if the value of irx_num_valid[7:4] is four or less (but not zero), the IP core can hold irx_num_valid[2] high to indicate the current data symbol also includes the first four 64-bit words of a new packet. The only valid values for irx_num_valid[3:0] are 4'b0100 and 4'b0000.
			When irx_num_valid[3:0] has the value of 4'b0100, the IP core also holds irx_sop[0] high.
			The IP core sets the value of irx_num_valid to zero in all non-valid cycles.
irx_sop	Output	2	Indicates the current data symbol on irx_dout_words contains the start of a packet (SOP). This signal has the following valid values:
			 2'b00—The current data symbol does not contain the start of a packet. 2'b10—If irx_sop[1] has the value of 1, the start-of-packet aligns with the most significant byte (byte 63) of the data. 2'b01—If irx_sop[0] has the value of 1, the start-of-packet aligns with byte 31 of the data. This value is valid only in variations configured in dual segment mode.

Signal Name	Direction	Width (Bits)	Description
irx_ eopbits	Output	4	Indicates whether the current data symbol contains the end of a packet (EOP) with or without an error, and specifies the number of valid bytes in the current end-of-packet, non-error 8-byte data word, if relevant.
			The IP core sets the value of irx_eopbits as follows:
			 4b'0000: no end of packet, no error. 4b'0001: Error and end of packet. 4b'1xxx: End of packet. xxx indicates the number of valid bytes in the final valid 8-byte word of the packet, as follows:
			 3b'000: all 8 bytes are valid. 3b'001: 1 byte is valid.
			• 3b'111: 7 bytes are valid.
			All other values (4'b01xx, 4'b001x) are undefined and are not generated by the IP core.
			The valid bytes always start in bit positions [63:56] of the final valid data word of the packet.
irx_sob	Output	2	Start of the burst. The 100G Interlaken IP core indicates the start of the burst. The signal irx_channel is only valid when irx_sob is high. This signal toggles in Packet Mode and in Interleaved Mode.
			This signal has the following valid values:
			 2'b00—The current data symbol does not contain the start of a burst. 2'b10—If irx_sob[1] has the value of 1, the start-of-burst aligns with the most significant byte (byte 63) of the data.
			• 2'b01— If irx_sob[0] has the value of 1, the start-of-burst aligns with byte 31 of the data.
irx_eob	Output	1	End of the burst. The 100G Interlaken IP core indicates the end of the burst. This signal toggles in Packet Mode and in Interleaved Mode.
irx_dout_ words	Output	512	The eight 64-bit words of output data (one data symbol). When irx_num_valid has the value of zero, you should ignore irx_dout_words.
irx_ calendar	Output	16 × N	Multiple pages (16 bits per page) of calendar output bits. The value is the in-band flow control bits from N control words on the incoming Interlaken link. N is the value of the Number of calendar pages parameter, which can be any of 1, 2, 4, 8, or 16. This signal is synchronous with rx_usr_clk, although it is not part of the user data transfer protocol.
irx_err	Output	1	Indicates an errored packet. This signal is valid only when both irx_num_valid[7:4] and irx_eopbits[3:0] are non-zero. When a CRC24 or other error occurs, the 100G Interlaken IP core asserts this signal for all open channel packets to label them all as errored packets, because the IP core cannot assign the error to a specific channel.

Altera Corporation

100G Interlaken MegaCore Function Signals

Related Information

- **Data Format** on page 3-6
 Describes the parameter to select single segment or dual segment mode.
- **Dual Segment Mode** on page 4-8 Describes the dual segment mode.
- 100G Interlaken IP Core RX Errored Packet Handling on page 4-22 Describes the behavior of the irx_err signal.
- Transfer Mode Selection on page 3-6
 Describes the parameter to select Packet or Interleaved mode.
- Interleaved and Packet Modes on page 4-7
 Describes the Packet and Interleaved modes.

100G Interlaken IP Core Interlaken Link and Miscellaneous Interface Signals

Table 5-5: 100G Interlaken IP Core SERDES Signals, Burst Parameter Signals, and Real Time Status Signals

Signal Name	Direction	Width (Bits)	Description					
SERDES Pins	SERDES Pins							
rx_pin	Input	Number of lanes	Receiver SERDES data pin on the RX Interlaken link.					
tx_pin	Output	Number of lanes	Transmit SERDES data pin on the TX Interlaken link.					
TX Burst Control	Settings							
burst_max_in	Input	4	Encodes the BurstMax parameter for the IP core. The actual value of the BurstMax parameter must be a multiple of 64 bytes. While traffic is present, this input signal should remain static. However, when no traffic is present, you can modify the value of the burst_max_in signal to modify the BurstMax value of the IP core. The 100G InterlakenIP core supports the following valid values for this signal:					
			2: 128 bytes 4: 256 bytes 8: 512 bytes					

Signal Name	Direction	Width (Bits)	Description
burst_short_	Input	4	Encodes the BurstShort parameter for the IP core.
in			The 100G Interlaken IP core supports the following valid value for this parameter:
			2: 64 bytes
			In general, the presence of the BurstMin parameter makes the BurstShort parameter obsolete.
burst_min_in	Input	4	Encodes the BurstMin parameter for the IP core.
			The IP core supports the following valid values for this signal:
			0: Disable optional enhanced scheduling. Altera recommends you do not drive this value in variations in dual segment mode. If you disable enhanced scheduling, performance is non-optimal.
			2: 64 bytes
			4: 128 bytes
			The BurstMin parameter should have a value that is less than or equal to half of the value of the BurstMax parameter.
			Altera recommends that you modify the value of this input signal only when no traffic is present on the TX user data interface. You do not need to reset the IP core.
Real-Time Transm	⊥ nit Status Sign	als (Synchronous with	tx_usr_clk)
tx_lanes_ aligned	Output	1	All of the transmitter lanes are aligned and are ready to send traffic.
itx_hungry	Output	1	A warning that the TX PCS requires more data.
			The PCS runs continuously with the provided data or inserted IDLE symbols. In normal operation, this signal is only asserted immediately after the IP core comes out of reset.
itx_overflow	Output	1	An error flag indicating that the PCS buffer is currently overflowing. This signal is asserted for the duration of the overflow condition: it is asserted in the first clock cycle in which the overflow occurs, and remains asserted until the PCS buffer pointers indicate that no overflow condition exists.

Signal Name	Direction	Width (Bits)	Description
itx_underflow	Output	1	An error flag indicating that the PCS buffer is currently underflowed. In normal operation, this signal may be asserted temporarily immediately after the 100G Interlaken IP core comes out of reset. It is asserted as a single cycle wide pulse.
Real-Time Receive	r Status Signa	als (Synchronous with	rx_usr_clk)
sync_locked	Output	Number of lanes	Receive lane has locked on the remote transmitter Meta Frame. These signals are level signals: all bits are expected to stay high unless a problem occurs on the serial line.
word_locked	Output	Number of lanes	Receive lane has identified the 67-bit word boundaries in the serial stream. These signals are level signals: all bits are expected to stay high unless a problem occurs on the serial line.
rx_lanes_ aligned	Output	1	All of the receiver lanes are aligned and are ready to receive traffic. This signal is a level signal.
crc24_err	Output	1	A CRC-24 error flag covering both control word and data word. This signal does not associate the CRC-24 error with a particular packet. Instead, its value indicates the overall SERDES status. You can use this signal to count the number of CRC-24 errors. This signal is asserted as a single cycle wide pulse. If the IP core detects back-to-back CRC24 errors, this signal toggles.
crc32_err	Output	Number of lanes	An error flag indicating diagnostic CRC32 failures per lane. This signal is asserted as a single cycle wide pulse. If back-to-back CRC32 errors are detected, this signal toggles.
irx_overflow	Output	1	An error flag indicating the presence of excessive jitter at the receiver side. This signal is included in the current IP core opportunistically for diagnostic purposes.
rdc_overflow	Output	1	An error flag indicating that the RX domain-crossing FIFO is currently overflowed. The RX domain-crossing FIFO transfers data from the PCS clock domain to the MAC clock domain.
rg_overflow	Output	1	An error flag indicating that the Reassembly FIFO is currently overflowed. The Reassembly FIFO is the receiver FIFO that feeds directly to the user data interface.

Signal Name	Direction	Width (Bits)	Description
rxfifo_fill_ level	Output	RXFIFO_ADDR_ WIDTH	The fill level of the Reassembly FIFO, in units of 64-bit words. The width of this signal is the value of the RXFIFO_ADDR_WIDTH parameter, which is 12 by default. You can use this signal to monitor when the RX Reassembly FIFO is empty.
sop_cntr_inc	Output	1	A pulse indicating that the 100G Interlaken IP core receiver user data interface received a start-of-packet. You can use this signal to increment a count of SOPs the application observes on the receive interface.
eop_cntr_inc	Output	1	A pulse indicating that the 100G Interlaken IP core receiver user data interface received an end-of-packet. You can use this signal to increment a count of EOPs the application observes on the receive interface.

Related Information

RXFIFO Address Width on page 9-2

Information about programming the depth of the Reassembly FIFO with the RXFIFO_ADDR_WIDTH parameter.

100G Interlaken IP Core Management Interface

The 100G Interlaken IP core management interface allows you to communicate with IP core internal status and control registers. This interface manages the PMA (resets and serial loopback controls) and PCS control and status registers. This interface does not provide access to the hard PCS registers on the device.

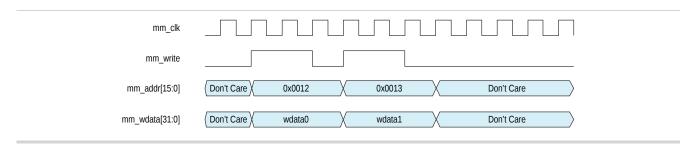
The management interface is a typical 32-bit memory-mapped register port. It complies with the Avalon Memory-Mapped (Avalon-MM) specification defined in the *Avalon Interface Specifications*.

Table 5-6: 100G Interlaken IP Core Management Interface Signals

Signal Name	Direction	Width (Bits)	Description
100G Interlaken IP Core Management Interface Signals			
mm_clk	Input	1	Management clock. Clocks the register accesses. It is also used for clock rate monitoring and some analog calibration procedures. You must run this clock at a frequency in the range of 100 MHz–125 MHz.

Signal Name	Direction	Width (Bits)	Description
mm_clk_locked	Input	1	Assert this signal to indicate that mm_clk is stable.
			The IP core responds to this signal in the same way it responds to the reset_n signal: loss of lock restarts the reset sequence.
			Altera recommends that you tie this signal high and not rely on its functionality. It is expected to be deprecated in the near future.
mm_read	Input	1	Read access to the register ports.
mm_write	Input	1	Write access to the register ports.
mm_addr	Input	16	Address to access the register ports.
mm_rdata	Output	32	When mm_rdata_valid is high, mm_rdata holds valid read data.
mm_rdata_valid	Output	1	Valid signal for mm_rdata.
mm_wdata	Input	32	When mm_write is high, mm_wdata holds valid write data.

If you do not use the management interface, drive the management inputs as follows:

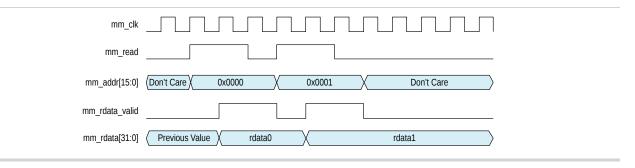

- mm_clk must connect to a stable clock. However, the clock signal need not be of unusually high quality.
- mm_clk_locked must be tied to zero.
- mm_read and mm_write must be tied to zero.

If you use the management interface, drive the control lines as shown in the examples and observing the following constraints:

- During a write operation, you must maintain the the mm_write signal asserted for at least two clock cycles. Back-to-back writes must be separated by at least one clock cycle.
- During a read operation, you must maintain the mm_read signal asserted for at least two clock cycles. Back-to-back reads must be separated by at least one clock cycle.

Figure 5-1: 100G Interlaken IP Core Management Interface Write Operation

Shows the timing requirements for a write operation on the 100G Interlaken IP core management interface.


100G Interlaken MegaCore Function Signals

Altera Corporation

Figure 5-2: 100G Interlaken IP Core Management Interface Read Operation

Shows the timing requirements for a read operation on the 100G Interlaken IP core management interface. The IP core asserts the mm_rdata_valid signal one cycle after the mm_read signal is asserted.

Related Information

Avalon Interface Specifications

Device Dependent Signals

Some of the 100G Interlaken MegaCore function signals depend on the device that your variation targets. Variations that target an Arria V device or a Stratix V device have an interface to connect to an Altera Transceiver Reconfiguration Controller that you must instantiate outside the 100G Interlaken IP core for successful functioning in hardware. Variations that target an Arria 10 device have Arria 10-specific requirements to support the Arria 10 transceivers. The following 100G Interlaken IP core interfaces are device specific:

Transceiver Reconfiguration Controller Interface Signals on page 5-14

Arria 10 External PLL Interface Signals on page 5-15

Arria 10 Transceiver Reconfiguration Interface Signals on page 5-16

Transceiver Reconfiguration Controller Interface Signals

100G Interlaken IP core variations that target an Arria V or a Stratix V device require an external reconfiguration controller to function correctly in hardware. 100G Interlaken IP core variations that target an Arria 10 device include a reconfiguration controller block and do not require an external reconfiguration controller.

Table 5-7: 100G Interlaken IP Core Arria V and Stratix V Transceiver Reconfiguration Controller Interface Signals

Signal Name	Direction	Width (Bits)	Description
reconfig_to_xcvr	Input	70 bits per reconfigu- ration interface.	Bus from the external transceiver reconfiguration controller to the 100G Interlaken IP core. The bus includes signals fro multiple transceiver reconfiguration interfaces. The reconfiguration controller has one interface to control each transceiver channel (one per Interlaken lane) plus one interface to control each TX PLL configured in the IP core. The width of each reconfiguration controller output reconfiguration interface is 70 bits.
reconfig_from_ xcvr	Output	46 bits per reconfigu- ration interface	Bus to the external transceiver reconfiguration controller from the 100G Interlaken IP core. The bus includes signals for multiple reconfiguration interfaces of the transceiver reconfiguration controller. The reconfiguration controller has one interface for each transceiver channel (one per Interlaken lane) plus one interface for each TX PLL configured in the IP core. The width of each reconfiguration controller input reconfiguration interface is 46 bits.

Arria 10 External PLL Interface Signals

100G Interlaken IP core variations that target an Arria 10 device require an external transceiver PLL to function correctly in hardware. 100G Interlaken IP core variations that target an Arria V or Stratix V device include the transceiver PLLs and do not require that you configure any additional PLLs.

Table 5-8: 100G Interlaken IP Core Arria 10 External PLL Interface Signals

Signal Name	Direction	Width (Bits)	Description
tx_serial_clk	Input	NUM_LANES	High-speed clock for Arria 10 transceiver channel, provided from external TX PLL.
tx_pll_locked	Input	1	PLL-locked indication from external TX PLL.
tx_pll_powerdown	Output	1	Output signal from the IP core internal reset controller. The IP core asserts this signal to tell the external PLLs to power down.

Related Information

Adding the External PLL on page 2-8

100G Interlaken MegaCore Function Signals

Altera Corporation

Arria 10 Transceiver Reconfiguration Interface Signals

The 100G Interlaken IP core Arria 10 transceiver reconfiguration interface allows you to communicate with Arria 10 hard PCS registers. This interface is available only in variations that target an Arria 10 device. You use this interface to reconfigure the transceiver and to take advantage of built-in transceiver features that the 100G Interlaken IP Core supports for IP core testing. The interface allows you to address a single register in a single transceiver channel at one time.

The Arria 10 transceiver reconfiguration interface is a typical 32-bit memory-mapped register port. It complies with the Avalon Memory-Mapped (Avalon-MM) specification defined in the *Avalon Interface Specifications*.

Table 5-9: 100G Interlaken IP Core Arria 10 Transceiver Reconfiguration Interface Signals

Signal Name	Direction	Width (Bits)	Description
reconfig_clk	Input	1	Arria 10 transceiver reconfiguration interface clock.
reconfig_reset	Input	1	Assert this signal to reset the Arria 10 transceiver reconfiguration interface.
reconfig_read	Input	1	Read access to the Arria 10 hard PCS registers.
reconfig_write	Input	1	Write access to the Arria 10 hard PCS registers.
reconfig_address	Input	14 or 15	Address to access the hard PCS registers. This signal holds both the hard PCS register offset and the transceiver channel being addressed, in the following fields: • [8:0]: register offset in the hard PCS • [N:9]: Interlaken lane number • In 12-lane variations, N is 13 • In 24-lane variations, N is 14
reconfig_readdata	Output	32	After user logic asserts the reconfig_read signal, when the IP core deasserts the reconfig_ waitrequest signal, reconfig_readdata holds valid read data.
reconfig_ waitrequest	Output	32	Busy signal for reconfig_readdata.
reconfig_ writedata	Input	32	When reconfig_write is high, reconfig_writedata holds valid write data.

5-17

Related Information

Avalon Interface Specifications

Defines the Avalon-MM interface specification, including the behavior of the output signals and the expected behavior of the input signals.

100G Interlaken IP Core Register Map

6

2013.12.02

UG-01128

Subscribe

Send Feedback

The 100G Interlaken IP core control registers are 32 bits wide and are accessible to you using the management interface, an Avalon-MM interface which conforms to the *Avalon Interface Specifications*. This table lists the registers available in the IP core. All unlisted locations are reserved.

Table 6-1: 100G Interlaken IP Core Register Map

Offset	Name	R/W	Description
9'h0	PCS_BASE	RO	[31:8] – Constant "HSi" ASCII
			[7:0] – version number
			Despite its name, this register does not encode the hard PCS base address.
9'h1	LANE_COUNT	RO	Number of lanes
9'h2	TEMP_SENSE	RO	Device temperature according to the internal temperature sensing diode.
			[7:0] - the temperature in degrees Fahrenheit
			[15:8] – the temperature in degrees Celsius
			For example, when the temperature is 54 degrees Celsius (130 degrees Fahrenheit), the value of the register is 0x3682. To interpret this register value, you read 0x36 (decimal 54) to be the temperature in degrees Celsius, and you read 0x82 (decimal 130) to be the temperature in degrees Fahrenheit.
			This register is invalid in the following IP core variations:
			 Variations that target an Arria 10 device Variations in which you turn off the hidden parameter Include Temp Sense
9'h3	ELAPSED_SEC	RO	[23:0] - Elapsed seconds since power up. The IP core calculates this value from the management interface clock (mm_clk) for diagnostic purposes. During continuous operation, this value rolls over every 194 days.
9'h4	TX_EMPTY	RO	[NUM_LANES-1:0] - Transmit FIFO status (empty)

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

Offset	Name	R/W	Description
9'h5	TX_FULL	RO	[NUM_LANES-1:0] - Transmit FIFO status (full)
9'h6	TX_PEMPTY	RO	[NUM_LANES-1:0] - Transmit FIFO status (partially empty)
9'h7	TX_PFULL	RO	[NUM_LANES-1:0] - Transmit FIFO status (partially full)
9'h8	RX_EMPTY	RO	[NUM_LANES-1:0] - Receive FIFO status (empty)
9'h9	RX_FULL	RO	[NUM_LANES-1:0] - Receive FIFO status (full)
9'hA	RX_PEMPTY	RO	[NUM_LANES-1:0] - Receive FIFO status (partially empty)
9'hB	RX_PFULL	RO	[NUM_LANES-1:0] - Receive FIFO status (partially full)
9'hC	REF_KHZ (2)	RO	PLL reference clock frequency (kHz)
			If you turn off Include diagnostic features , this register is not available.
9'hD	RX_KHZ ⁽²⁾	RO	RX recovered clock frequency (kHz)
			If you turn off Include diagnostic features , this register is not available.
9'hE	TX_KHZ (2)	RO	TX serial clock frequency (kHz)
			If you turn off Include diagnostic features , this register is not available.
9'hF	LANE_PROFILE	RO	[NUM_LANES-1:0] – Mask delineating the transceivers this IP core uses on the device. For example, if the FPGA has 24 lanes on one side of the device and the IP core uses the bottom twelve transceivers, the mask would be 24'b000000_000000_111111_1111111.
			This register is not available in IP core variations that target an Arria 10 device.
9'h10	PLL_LOCKED	RO	In Arria 10 devices: [0] – Transmit PLL lock indication.
			In other device families: [Number of transceiver blocks–1:0] – Transceiver block transmit PLL n lock indication. One lock indicator per transceiver block. Bits that correspond to unused transceiver block PLLs are forced to 1.
9'h11	FREQ_LOCKED	RO	[NUM_LANES-1:0] – Clock data recovery is frequency locked on the inbound data stream
9'h12	LOOPBACK	RW	[NUM_LANES-1:0] – For each lane, write a 1 to activate internal TX to RX serial loopback mode, or write a 0 to disable the loopback for normal operation.

⁽²⁾ Altera recommends that you use this register only during hardware operation. During simulation, you should not rely on the value in this register, because the amount of simulation time required for the IP core to provide consistent values in the REF_KHZ, RX_KHZ, and TX_KHZ registers is too long.

100G Interlaken IP Core Register Map

Offset	Name	R/W	Description
9'h13	RESET	RW	Bit 9 : 1 = Force lock to data mode
			Bit 8 : 1 =Force lock to reference mode
			Bit 7 : 1 = Synchronously clear the TX-side error counters and sticky flags
			Bit 6: 1 = Synchronously clear the RX-side error counters and sticky flags
			Bit 5 : 1 = Program load mode: perform a sequence of DMA reads. Currently the IP core supports only the value of 1'b0, indicating a processor controls the read operations.
			Bit 4 : 1 = Ignore the RX analog reset
			Bit 3 : 1 = Reset the soft microcontroller
			Bit 2 : 1 = Reset the transmitter and the receiver
			Bit 1 : 1 = Reset the receiver
			Bit 0 : 1 =Ignore RX digital resets
			The normal operating state for this register is all zeroes, to allow automatic reset control. These bits are intended primarily for hardware debugging use. Bit 2 is a good general purpose soft reset. Bits 6 and 7 are convenient for monitoring long stretches of error-free operation.
9'h20	ALIGN	RO	Bit 12 : TX lanes are aligned
			Bit 0 : RX lanes are aligned.
9'h21	WORD_LOCK	RO	[NUM_LANES-1:0] – Word (block) boundaries have been identified in the RX stream.
9'h22	SYNC_LOCK	RO	[NUM_LANES-1:0] – Metaframe synchronization has been achieved.
9'h23	CRC0	RO	4 bit counters indicating CRC errors in lanes 7,6,5,4,3,2,1,0.
			These will saturate at F, and you clear them by setting bit 6 in the RESET register.
			If you turn off Include diagnostic features , this register is not available.
9'h24	CRC1	RO	4 bit counters indicating CRC errors in lanes 15,14,13,12,11,10,9,8.
			These will saturate at F, and you clear them by setting bit 6 in the RESET register.
			If you turn off Include diagnostic features , this register is not available.

Offset	Name	R/W	Description
9'h25	CRC2	RO	4 bit counters indicating CRC errors in lanes 23,22,21,20,19,18,17,16.
			These will saturate at F, and you clear them by setting bit 6 in the RESET register.
			If you turn off Include diagnostic features , this register is not available.
9'h27	SH_ERR	RO	[NUM_LANES-1:0] – Sticky flag indicating a sync header (framing bit) error has occurred in the corresponding RX lane since this bit was last cleared through the RESET register.
9'h28	RX_LOA	RO	Bit [0] – Sticky flag indicating loss of RX side lane-to-lane alignment since this bit was last cleared through the RESET register. Typically, the IP core asserts this bit in case of a catastrophic problem such as one or more lanes going down.
9'h29	TX_LOA	RO	Bit [0] – Sticky flag indicating loss of TX side lane to lane alignment since this bit was last cleared through the RESET register. Typically, the IP core asserts this bit in case of a TX FIFO underflow / overflow caused by a significant deviation from the expected data flow rate through the TX PCS.
9'h30	PCS_6SEL	RO	Transceiver block selection for PCS test bus. (Factory use only).
			If you turn off Include diagnostic features , this register is not available.
9'h31	PCS_LNSEL	RO	Lane selection within transceiver block for PCS test bus. (Factory use only).
			If you turn off Include diagnostic features , this register is not available.
9'h32	PCS_TB	RO	PCS test bus. (Factory use only).
			If you turn off Include diagnostic features , this register is not available.
9'h33	Reserved		
9'h34	RX_PRBS_DONE	RO	[NUM_LANES-1:0] – Indicates whether enough bits have been received on the corresponding RX lane for one complete pass through the PRBS polynomial.
			If you turn off Include diagnostic features , this register is not available.
9'h35	RX_PRBS_ERR	RO	[NUM_LANES-1:0] – Sticky flag that indicates whether a PRBS error has occurred on the corresponding RX lane after RX_PRBS_DONE has attained the value of 1.
			If you turn off Include diagnostic features , this register is not available.

Altera Corporation

100G Interlaken IP Core Register Map

Offset	Name	R/W	Description
9'h36	RX_PRBS_COUNT	RO	[7:0] – This eight-bit counter holds the number of words that had PRBS errors across all lanes. Saturates at the value of 0xFF.
			If you turn off Include diagnostic features , this register is not available.
9'h37	RX_PRBS_CTRL	RW	Bit [0] – If you set this bit to the value of 1, the IP core clears the RX_PRBS_DONE, RX_PRBS_ERR, and RX_PRBS_COUNT registers. Reset this bit to the value of 0 to capture new PRBS status.
			If you turn off Include diagnostic features , this register is not available.
9'h38	CRC32_ERR_INJECT	RW	[NUM_LANES-1:0] - When a bit has the value of 1, the IP core injects CRC32 errors on the corresponding TX lane. When it has the value of 0, the IP core does not inject errors on the TX lane. You must maintain each bit at the value of 1 for the duration of a Meta Frame, at least, to ensure that the IP core transmits at least one CRC32 error.
			If you turn off Include diagnostic features , this register is not available.
Offset	Name	R/W	Description
9'h102	ERR_INJECT	RW	Bit [0] - When you write the value of 1 to this register bit, the IP core TX MAC injects a single bit error in outgoing Interlaken communication. This bit error will cause one or possibly more CRC24 errors. Before you can inject a second error, you must write the value of 0 to this register bit. Altera recommends that you write the value of 1 and then write the value of 0 to inject a single bit error.
			If you turn off Include diagnostic features , this register is not available.
9'h122	CNT_ERR_TX	RO	Number of correctable errors in M20K memory in the TX MAC logic.
			If you turn off Enable M20K ECC support , this register is not available.
9'h123	CNT_UNCOR_TX	RO	Number of uncorrectable errors in M20K memory in the TX MAC logic.
			If you turn off Enable M20K ECC support , this register is not available.
9'h124	CNT_ERR_RX	RO	Number of correctable errors in M20K memory in the RX MAC logic.
			If you turn off Enable M20K ECC support , this register is not available.

Offset	Name	R/W	Description
9'h125	CNT_UNCOR_RX	RO	Number of uncorrectable errors in M20K memory in the RX MAC logic.
			If you turn off Enable M20K ECC support , this register is not available.

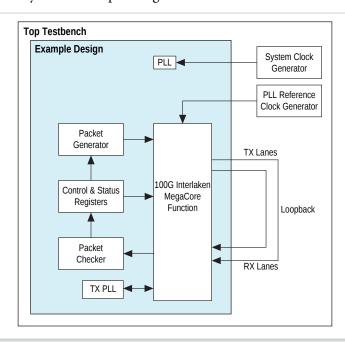
Related Information

Avalon Interface Specifications

2013.12.02

UG-01128

Subscribe Subscribe


Send Feedback

When you generate an 100G Interlaken IP core variation, the software generates an example design and testbench to simulate your 100G Interlaken IP core variation. The testbench provides system and PLL reference clocks and connects the TX output pins of the IP core to its RX input pins, implementing physical layer loopback.

In simulation, the testbench generates packets on the IP core TX user data transfer interface. The IP core sends these packets on the loopback Interlaken link. After the IP core receives the packets on the loopback Interlaken link, it processes the Interlaken packets and transmits them on the RX user data transfer interface. The testbench checks that the packets it receives on the IP core RX user data transfer interface are consistent with the packets sent in.

Figure 7-1: 100G Interlaken IP Core Testbench Block Diagram

The TX PLL is present only in the example designs for Arria 10 variations.

In Arria 10 variations, the example design includes external TX PLLs. You can examine the clear text files to view sample code that implements one possible method to connect external PLLs to the 100G Interlaken IP core.

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

The Arria 10 example design packs six Interlaken lanes in a transceiver block, and connects all of the channels in the same transceiver block to a single ATX PLL. The IP core connects each ATX PLL to a dedicated bit of the 100G Interlaken IP core tx_pll_locked and $tx_pll_powerdown$ buses. This simple connection model is only one of many options available to you for configuring and connecting the external PLLs in your 100G Interlaken design.

100G Interlaken IP Core Testbench Interface Signals on page 7-2

Testbench Simulation Behavior on page 7-2

Running the Testbench With the Example Design on page 7-3

100G Interlaken IP Core Testbench Interface Signals

Table 7-1: 100G Interlaken IP Core TestBench Signals

Port Name	Direction	Width (Bits)	Description
clk50	Input	1	System clock input. Clock frequency is 50 MHz.
pll_ref_clk	Input	1	Transceiver reference clock. Drives the RX CDR PLL in Arria 10 variations, and drives both the TX PLL and the RX PLL in other variations.
rx_pin	Input	Number of lanes	Receiver SERDES data pin.
tx_pin	Output	Number of lanes	Transmit SERDES data pin.

Related Information

100G Interlaken IP Core Clock Interface Signals on page 5-1

Lists the valid PLL reference clock frequencies.

Testbench Simulation Behavior

During simulation, the 100G Interlaken IP core testbench performs the following actions:

- 1. Resets the 100G Interlaken IP core.
- 2. After the reset sequence completes, sends a sequence of Interlaken packets of fixed sizes with predefined data in the payload to the TX user data transfer interface of the IP core. This action continues for a preset amount of time.

Altera Corporation 100G Interlaken IP Core Testbench

Note: If the IP core is in dual segment mode, the testbench sends 65-byte bursts on the TX user data transfer interface. If the IP core is in single segment, Interleaved mode, the testbench sends 128-byte bursts.

- **3.** Performs a sequence of register read and write operations to demonstrate register access.
- 4. Resets the 100G Interlaken IP core again.
- **5.** After the reset sequence completes, sends an additional sequence of Interlaken packets of the same type as in Step 2.
- **6.** Completes the sequence of packets and reports success or failure.

The testbench is not parameterizable — you cannot modify the packet sequence that the testbench generates for a specific DUT. However, Altera provides the testbench files in cleartext format, and you can modify the testbench for your own testing purposes. The packet generator included in the testbench can be used to generate pseudo-random or specific sizes packets.

The packet checker included in the testbench provides the following basic packet checking capabilities:

- Checks that the transmitted packet sequence is not violated
- Checks that the received data matches expected values

Running the Testbench With the Example Design

Perform the following steps to simulate the testbench example:

- 1. Setting Up the Testbench Example on page 7-3
- 2. Simulating the Example Design on page 7-3

Setting Up the Testbench Example

When you generate your IP core, the resulting file structure includes the example design and the testbench. It is no longer necessary to name your IP core output file with a specific name, nor are you offered the choice of whether or not to turn on **Generate example design**.

Related Information

Specifying Parameters and Generating the MegaCore Function on page 2-1 Provides instructions to generate the DUT.

Simulating the Example Design

Altera provides simulation scripts for simulating the testbench in the Mentor Graphics Modelsim SE simulator. However, you can write your own scripts to simulate the testbench in other Altera-supported simulators. Your script should check that the SOP and EOP counts match after simulation is complete.

To simulate the example design using the Altera-provided scripts, perform the following steps:

- 1. Ensure IP core generation is complete.
- 2. Start the Mentor Graphics ModelSim-SE simulation tool.
- **3.** Change directory to **<variation>_sim/ilk_core/testbench**, which is the folder that contains the generated testbench.
- 4. Type the following command: do vlog.do

100G Interlaken IP Core Testbench
Altera Corporation

The testbench generates a series of packets on the IP core TX user data transfer interface, loops the resulting Interlaken data transmissions back to the IP core on the Interlaken link, and checks the packets that the IP core generates on the RX user data transfer interface. After simulation completes, a success or failure notice displays.

Altera Corporation 100G Interlaken IP Core Testbench

100G Interlaken IP Core Test Features

2013.12.02

UG-01128

Subscribe (

Send Feedback

Depending on the features you turn on in the 100G Interlaken parameter editor, your 100G Interlaken IP core supports the following test features:

PRBS Generation and Validation on page 8-1

CRC32 Error Injection on page 8-6

CRC24 Error Injection on page 8-7

PRBS Generation and Validation

The 100G Interlaken IP core supports generation and validation of several predetermined pseudo-random binary sequences (PRBS) for Interlaken link testing.

This feature is available if you turn on **Include diagnostic features** in the 100G Interlaken parameter editor.

Table 8-1: PRBS Polynomials Available in the 100G Interlaken IP Core

Pattern Name	Polynomial	Defined in Interlaken Specifi-	Available in 100G Interlaken IP Core Variations with Target Device Family		
Ivallie		cation	Arria V or Stratix V	Arria 10	
PRBS7	$x^7 + x^6 + 1$	Yes	Yes	No	
PRBS9	$x^9 + x^5 + 1$	No	Yes	Yes	
PRBS15	$x^{15} + x^{14} + 1$	No	No	Yes	
PRBS23	$x^{23} + x^{18} + 1$	Yes	Yes	Yes	
PRBS31	$x^{31} + x^{28} + 1$	Yes	Yes	Yes	

For instructions to activate and use the PRBS test feature in your 100G Interlaken IP core IP core, refer to one of the following two topics:

Setting up PRBS Mode in Arria V and Stratix V Devices on page 8-2

Setting up PRBS Mode in Arria 10 Devices on page 8-3

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

Setting up PRBS Mode in Arria V and Stratix V Devices

To enable the IP core to generate PRBS output, you must program the relevant hard PCS registers to enable the PRBS generator clock, to set the test_enable bit, and to select the PRBS polynomial. To enable the IP core to receive PRBS input, you must program the relevant hard PCS registers to enable the PRBS receiver clock, to set the test_enable bit, and to select the expected PRBS polynomial. If you perform your PRBS testing in loopback mode, you must enable the IP core to both generate and receive PRBS sequences.

The PRBS feature is available only if you turn on **Include diagnostic features** in the 100G Interlaken parameter editor.

This section describes the register values you must program. For instructions to program the registers that activate the PRBS test feature in your Arria V or Stratix V 100G Interlaken IP core, refer to the hard PCS register programming instructions in the Native PHY IP Core chapter for your target device family and in the Transceiver Reconfiguration Controller chapter of the *Altera Transceiver PHY IP Core User Guide*.

Table 8-2: Programming the Hard PCS Registers in Arria V and Stratix V Devices

To turn on the PRBS feature in the hard PCS, you must program the following hard PCS registers in the order shown, for each of the TX and RX sides. These registers are not accessible using the 100G Interlaken IP core Management interface. You must access these registers through the Transceiver Reconfiguration Controller that connects to the IP core.

Ensure you set these register bits using a read-modify-write register access sequence (per register), to avoid modifying the other register fields.

TX	Register Offset	Bits	Meaning	Action	
1	0x141	[0]	Invert TX channels	Set this bit to the value of 0 to specify that the outgoing PRBS be inverted, or set this bit to the value of 1 to specify that the outgoing PRBS not be inverted. The default value of this register bit is 0. By default, the outgoing PRBS is inverted.	
		[10]	Enable PRBS7		
		[8]	Enable PRBS23	Set one of these bits to the value of 1, and the others to the value of 0, to select the TX	
2	2 0x135	[6]	Enable PRBS9	polynomial.	
		[4]	Enable PRBS31		
		[3]	TX test enable	Set this bit to the value of 1 to enable the PRBS pattern generator in the transmitter.	
3	0x137	[2]	Enable TX PRBS clock	Set this bit to the value of 1 to enable the TX PRBS clock.	
RX	Register Offset	Bits	Meaning	Action	
1	0x16D	[2]	Invert RX channels	Set this bit to the value of 0 to specify that the PCS should expect the incoming PRBS to be inverted, or set this bit to the value of 1 to specify that the PCS should not expect the incoming PRBS to be inverted. The default value of this bit is 0. In loopback mode, you should set this bit to match the setting in the PRBS transmitter.	

100G Interlaken IP Core Test Features

RX	Register Offset	Bits	Meaning	Action
	2 0x15E	[14]	Enable PRBS7	
		[13]	Enable PRBS23	Set one of these bits to the value of 1, and the others to the value of 0, to select the expected
2		[12] Enable PRBS9		polynomial.
		[11]	Enable PRBS31	
	[10] F		RX test enable	Set this bit to the value of 1 to enable the PRBS pattern verifier in the receiver.
3	0x164	[10]	Enable RX PRBS clock	Set this bit to the value of 1 to enable the RX PRBS clock.

After you activate an IP core that targets an Arria V or Stratix V device to generate PRBS output, it immediately begins transmitting PRBS output on the Interlaken link. After you enable the IP core to receive PRBS input, you can check the receive PRBS status in the 100G Interlaken IP core PRBS status registers (RX_PRBS_DONE, RX_PRBS_ERR, and RX_PRBS_COUNT).

After your testing is complete, you must reset these register bits to their default values to enable normal operation.

Related Information

- Altera Transceiver PHY IP Core User Guide
- 100G Interlaken IP Core Register Map on page 6-1 Describes the PRBS status registers.
- PRBS Generation and Validation on page 8-1 Lists the supported PRBS polynomials.

Setting up PRBS Mode in Arria 10 Devices

To enable the IP core to generate PRBS output, for each Interlaken lane, you must program the relevant hard PCS registers to enable the PRBS generator clock, to set the test_enable bit, and to select the PRBS polynomial. To enable the IP core to receive PRBS input, for each Interlaken lane, you must program the relevant hard PCS registers to enable the PRBS receiver clock and to select the expected PRBS polynomial, in addition to some bookkeeping tasks. If you perform your PRBS testing in loopback mode, you must enable the IP core to both generate and receive PRBS sequences. After you set the hard PCS registers for PRBS mode, you must perform a soft reset of the transceiver.

The PRBS feature is available only if you turn on **Include diagnostic features** in the 100G Interlaken parameter editor.

This section describes the register values you must program. For instructions to program the registers that activate the PRBS test feature in your Arria 10 100G Interlaken IP core, refer to the hard PCS register information in the *Arria 10 Transceiver PHY User Guide*. You program the hard PCS registers using the 100G Interlaken IP core Arria 10 transceiver reconfiguration interface.

Table 8-3: Programming the Hard PCS Registers in Arria 10 Devices

To turn on the PRBS feature in the hard PCS for IP core variations that target an Arria 10 device, you must program the following hard PCS registers in the order shown, for each of the TX and RX sides. These registers are not accessible using the 100G Interlaken IP core management interface. You must access these registers through the Arria 10 transceiver reconfiguration interface of the 100G Interlaken IP core.

Ensure you set these register bits using a read-modify-write register access sequence (per register), to avoid modifying the other register fields.

TX	Register Offset	Bits	Meaning	Action	
			TX test enable	Set this field to the value of 3'b100 to enable the PRBS pattern generator in the transmitter.	
1	0x6	[3]	PRBS width select	Set this bit to the value of 0 to specify that the PRBS width is 64 bits.	
		[7:6]	Enable TX PRBS clock	Set this field to the value of 2'b01 to enable the TX PRBS clock.	
2	0x7	[2]	Invert TX channels	Set this bit to the value of 0 to specify that the outgoing PRBS be inverted, or set this bit to the value of 1 to specify that the outgoing PRBS not be inverted. The default value of this register field is 0. By default, the outgoing PRBS is inverted.	
		[5]	Enable PRBS9		
		[6]	Enable PRBS15	Set one of these bits to the value of 1, and the others to the value of 0, to select the TX	
	[7]		Enable PRBS23	polynomial.	
3	0x8	[4]	Enable PRBS31		
RX	Register Offset	Bits	Meaning	Action	
1	0xA	[4]	Invert RX channels	Set this bit to the value of 0 to specify that the PCS should expect the incoming PRBS to be inverted, or set this bit to the value of 1 to specify that the PCS should not expect the incoming PRBS to be inverted. The default value of this bit is 0. In loopback mode, you should set this bit to match the setting in the PRBS transmitter.	
		[7]	Enable RX PRBS clock	Set this bit to the value of 1 to enable the RX PRBS clock.	

RX	Register Offset	Bits	Meaning	Action
	2 0xB	[1]	Enable 10G PCS mode	Set this bit to the value of 1 to specify the PCS is in 10G mode.
2		[3:2]	Verifier counter threshold	Set this field to the value your design requires to ensure adequate lead time before the PRBS checker begins counting PRBS errors. The field value specifies the wait time in number of clk_rx_common clock cycles. A counter begins counting clk_rx_common clock cycles after the soft reset, and triggers the start of PRBS checking when the specified threshold is reached. This field has the following valid values:
2				 2'b00—Specifies the counter threshold (the wait time) is 127. 2'b01—Specifies the counter threshold is 255. 2'b10—Specifies the counter threshold is 511. 2'b11—Specifies the counter threshold is 1023.
		[5]	Enable PRBS9	
		[6]	Enable PRBS15	Set one of these bits to the value of 1, and the others to the value of 0, to select the expected
		[7]	Enable PRBS23	polynomial.
		[0]	Enable PRBS31	
3	0xC	[1]	Confirm 10G PCS mode	Set this bit to the value of 1 to confirm the PCS is in 10G mode.
		[3]	PRBS width select	Set this bit to the value of 0 to specify that the PRBS width is 64 bits.
4	0x13F	[3:0]	RX Deserializer width select	Set this field to the value of 4'b1110 to specify that the data width after deserialization is 64 bits.

After you enable the IP core to generate or receive PRBS output, by setting the relevant register field values for each Interlaken lane, you must perform a soft reset of the transceiver transmitters and receivers. To perform a soft reset of the transceiver transmitters and receivers, on the 100G Interlaken IP core management interface, program bit [2] of the 100G Interlaken IP core RESET register at offset 0x13 with the value of 1. On the following mm_clk cycle, or later, program the bit 0x13[2] with the value of 0 to clear the reset. After you reset the transceivers and subsequently clear the reset bit, the IP core immediately begins transmitting PRBS output on the Interlaken link. You can check the receive PRBS status in the 100G Interlaken IP core PRBS status registers (RX_PRBS_DONE, RX_PRBS_ERR, and RX_PRBS_COUNT).

After your testing is complete, you must reset these register bits to their default values and perform the soft reset to enable normal operation.

Related Information

- Arria 10 Transceiver PHY User Guide
 Information about the Arria 10 transceiver reconfiguration interface.
- Arria 10 Transceiver Registers
 Information about the Arria 10 transceiver registers.
- **100G Interlaken IP Core Register Map** on page 6-1 Describes the PRBS status registers and the soft reset register.
- Arria 10 Transceiver Reconfiguration Interface Signals on page 5-16
 Describes the interface to program the Arria 10 hard PCS registers, including the information you need to address the registers for each individual lane.
- 100G Interlaken IP Core Management Interface on page 5-12
 Describes the interface to program the 100G Interlaken IP core registers, including the RESET register.
- PRBS Generation and Validation on page 8-1 Lists the supported PRBS polynomials.

CRC32 Error Injection

The 100G Interlaken IP core supports the injection of CRC32 errors on the Interlaken link for validation of the Interlaken link partner's error handling, and for validation of this IP core's error handling in a loopback configuration. Variations that target an Arria V or Stratix V device require that you first enable the feature in the hard PCS; variations that target an Arria 10 device do not require this step.

This feature is available if you turn on **Include diagnostic features** in the 100G Interlaken parameter editor.

To enable the CRC32 error injection feature in your 100G Interlaken IP core that targets an Arria V or Stratix V device, set the value of bit [15] of the hard PCS register at offset 0x138 (offset 0xC from the hard PCS base address of 0x12C) to the value of 1. Ensure you set the register bit using a read-modify-write register access sequence, to avoid modifying the other register fields. This step is not necessary in 100G Interlaken IP core devices that target an Arria 10 device, because CRC32 error injection is enabled by default in these variations.

For instructions to program the hard PCS registers in Arria V and Stratix V devices, refer to the Native PHY IP Core chapter for your target device family and to the Transceiver Reconfiguration Controller chapter of the *Altera Transceiver PHY IP Core User Guide*.

After you enable the IP core to inject CRC32 errors in the output to the Interlaken link, you can turn on the feature using the 100G Interlaken IP core CRC32_ERR_INJECT register. You must maintain each register bit at the value of 1 for the duration of a Meta Frame, at least, to ensure that the IP core transmits at least one CRC32 error on the corresponding lane.

After your testing is complete, in Arria V and Stratix V devices, you must reset the hard PCS register bit to its default value of zero to enable normal operation.

The 100G Interlaken IP core CRC32 error injection feature does not keep a count of the errors injected.

Related Information

Altera Transceiver PHY IP Core User Guide

100G Interlaken IP Core Register Map on page 6-1

Describes the CRC32_ERR_INJECT register.

100G Interlaken IP Core Test Features

CRC24 Error Injection

The 100G Interlaken IP core supports the injection of CRC24 errors on the Interlaken link for validation of the Interlaken link partner's error handling, and for validation of this IP core's error handling in a loopback configuration.

This feature is available if you turn on **Include diagnostic features** in the 100G Interlaken parameter editor.

To force the IP core to inject a bit error in the output to the Interlaken link, you write the value of 1 to bit [0] of the 100G Interlaken IP core ERR_INJECT register at offset 0x102. This change to the register field value forces the IP core to inject a single bit error, which will cause one or possibly more CRC24 errors.

Before you can inject a second bit error, you must write the value of 0 to the register. Altera recommends that you write the value of 1 and then the value of 0 to inject a single bit error, rather than waiting until you want to inject a second error before writing the value of 0 to clear the register.

100G Interlaken IP Core Test Features

Altera Corporation

Advanced Parameter Settings

9

2013.12.02

UG-01128

Subscribe 🛴

Send Feedback

Advanced users can further customize the 100G Interlaken Mega Core function by modifying hidden parameters that are not displayed in the 100G Interlaken parameter editor of the MegaWizard Plug-In Manager. These parameters can only be modified in the Verilog RTL instantiation in the generated **ilk_core.sv** file and the instantiation of the 100G Interlaken MegaCore function in the top level design file.

The following topics describe the hidden parameters and tell you how to modify their values:

Hidden Parameters on page 9-1

Modifying Hidden Parameter Values on page 9-3

Hidden Parameters

The advanced parameters affect the behavior of the 100G Interlaken MegaCore function. To customize your 100G Interlaken MegaCore function, you can modify parameters to specify the following properties:

Counter Reset Bits on page 9-1

Include Temp Sense on page 9-2

RXFIFO Address Width on page 9-2

SCRAM Constant on page 9-2

SWAP_TX_LANES and SWAP_RX_LANES (Data Word Lane Swapping) on page 9-2

Counter Reset Bits

The **Counter Reset Bits** parameter specifies the counter configuration for the IP core internal reset sequence.

This parameter is not available in IP core variations that target an Arria 10 device. In Arria 10 variations, the size of the reset counters in the internal reset controller is set when the IP core is generated.

For simulation, set this parameter to the value of 6. For hardware testing, set this parameter to the value of 20.

The default value of this parameter is 20.

Related Information

Modifying Hidden Parameter Values on page 9-3

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

Include Temp Sense

The **Include Temp Sense** parameter specifies whether the IP core includes logic to sense the device's case temperature. If the value is set to **1**, the IP core is configured with internal temperature sensing. If the value is set to **0**, this logic is synthesized away.

This parameter is not available in IP core variations that target an Arria 10 device.

The default value of this parameter is 1.

Related Information

Modifying Hidden Parameter Values on page 9-3

RXFIFO Address Width

The **RXFIFO Address Width** parameter specifies the number of bits in the address (offset) of an entry in the RX Reassembly FIFO. The number of bits is \log_2 of the depth of this FIFO. Each RX Reassembly FIFO entry is a 64-bit word.

The default value for the **RXFIFO Address Width** parameter is 12, specifying this FIFO can hold 2^{12} (==4K) 64-bit words. Adjusting this parameter may affect your ability to close timing for your design. However, you can adjust this parameter subject to the successful closure of the timing.

Related Information

Modifying Hidden Parameter Values on page 9-3

SCRAM Constant

The **SCRAM Constant** parameter specifies the initial scrambler state.

This parameter is not available in IP core variations that target an Arria 10 device. In Arria 10 devices, you must set the initial scrambler state in the Arria 10 Native PHY IP core parameter editor.

If a single 100G Interlaken IP Core is configured on your device, you can use the default value of this parameter.

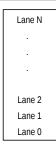
If multiple 100G Interlaken IP Cores are configured on your device, you must use a different initial scrambler state for each IP core to reduce crosstalk. Try to select random values for each 100G Interlaken IP core, such that they have an approximately even mix of ones and zeros and differ from the other scramblers in multiple spread out bit positions.

The default value of this parameter is 58'hdeadbeef123. To change this value, you modify the value of SCRAM_CONST in the relevant **ilk_core.sv** file.

Related Information

Modifying Hidden Parameter Values on page 9-3

SWAP_TX_LANES and SWAP_RX_LANES (Data Word Lane Swapping)


The 100G Interlaken IP core supports a lane reversal feature (lane swapping). Lane swapping parameters determine the order in which blocks are distributed and gathered from the lanes. The 100G Interlaken IP core provides the following two options for the lane order:

• Straight Lane order. The transmitter sends Interlaken blocks sequentially across the lanes starting with the top lane, ending with Lane 0. The receiver takes in Interlaken blocks starting with the top lane, ending with Lane 0.

Altera Corporation Advanced Parameter Settings

Figure 9-1: Straight Lane Order

• Swapped Lane order. The transmitter sends Interlaken blocks sequentially across the lanes starting with Lane 0, ending with Lane N. The receiver takes in Interlaken blocks starting with Lane 0, ending with Lane N.

Figure 9-2: Swapped Lane Order

Two parameters in the **ilk_core.sv** file determine lane order:

```
SWAP_TX_LANES
SWAP_RX_LANES
```

When a parameter is set to **0**, the 100G Interlaken IP core implements the Straight Lane order. When a parameter is set to **1**, the 100G Interlaken IP core implements the Swapped Lane order. The TX and RX parameters are independent and can be set separately.

To conform with the Interlaken specification, the default value of SWAP_TX_LANES and SWAP_RX_LANES is 1.

Note: Running traffic with incompatible lane swapping configuration results in CRC-24 errors and incorrect data at the receiver.

Related Information

Modifying Hidden Parameter Values on page 9-3

Modifying Hidden Parameter Values

To modify the value of a hidden parameter, you must edit one or more generated files. Every time you regenerate the 100G Interlaken IP core, the files are overwritten and you must edit them again.

Advanced Parameter Settings Altera Corporation

To modify the following parameters, edit the top-level wrapper file for synthesis, < *instance name* >.**v**, and the top-level wrapper file for simulation, < *instance name* >_ **sim** /< *instance name* >.**v**:

- CNTR_BITS
- RXFIFO_ADDR_WIDTH

To modify the following hidden parameters, edit the *<instance name>/ilk_core.sv* file for synthesis and the *<instance name>_sim/ilk_core.sv* file for simulation:

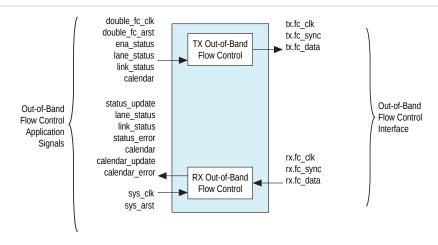
- INCLUDE_TEMP_SENSE
- SCRAM_CONST
- SWAP_TX_LANES
- SWAP_RX_LANES

Altera Corporation Advanced Parameter Settings

Out-of-Band Flow Control in the 100G Interlaken MegaCore Function

2013.12.02

UG-01128


Subscribe Subscribe

Send Feedback

The 100G Interlaken MegaCore function includes logic to provide the out-of-band flow control functionality described in the *Interlaken Protocol Specification, Revision 1.2*, Section 5.3.4.2. This optional feature is intended for applications that require transmission rate control.

Figure 10-1: Out-of-Band Flow Control Block Interface

This figure lists the signals on the four interfaces of the out-of-band flow control block.

The out-of-band flow control block is provided as two separate modules that can be stitched to the 100G Interlaken IP core and user logic. You can optionally instantiate these blocks in your own custom logic. To enable the use of these out-of-band modules, the signals on the far left side of the figure must be connected to user logic, and the signals on the far right side of the figure should be connected to the complementary flow control blocks of the Interlaken link partner.

You must connect the out-of-band flow control receive and transmit interface signals to device pins.

Out-of-Band Flow Control Block Clocks on page 10-2

TX Out-of-Band Flow Control Signals on page 10-2

RX Out-of-Band Flow Control Signals on page 10-3

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

Out-of-Band Flow Control Block Clocks

Table 10-1: 100G Interlaken MegaCore Function Out-of-Band Flow Control Block Clocks

Clock Name	Interface	Direction	Recommended Frequency (MHz)	Description
RX fc_clk	RX Out- of-band	Input	100	Clocks the incoming out-of-band flow control interface signals described in the Interlaken specification. This clock is received from an upstream TX out-of-band flow control block associated with the Interlaken link partner. The recommended frequency for the RX fc_clk clock is 100 MHz, which is the maximum frequency allowed by the Interlaken specification.
TX fc_clk	TX Out- of-band	Output	100	Clocks the outgoing out-of-band flow control interface signals described in the Interlaken specification. This clock is generated by the out-of-band flow control block and sent to a downstream RX out-of-band flow control block associated with the Interlaken link partner. The frequency of this clock must be half the frequency of the double_fc_clk clock. The recommended frequency for the TX fc_clk clock is 100 MHz, which is the maximum frequency allowed by the Interlaken specification.
sys_clk	RX Application	Input	200	Clocks the outgoing calendar and status information on the application side of the block. The frequency of this clock must be at least double the frequency of the RX input clock fc_clk. Therefore, the recommended frequency for the sys_clk clock is 200 MHz.
double_ fc_clk	TX Application	Input	200	Clocks the incoming calendar and status information on the application side of the block. The frequency of this clock must be double the frequency of the TX output clock fc_clk. Therefore, the recommended frequency for the double_fc_clk clock is 200 MHz.

TX Out-of-Band Flow Control Signals

The transmit out-of-band flow control interface receives calendar and status information, and transmits flow-control clock, data, and sync signals. The TX Out-of-Band Flow Control Interface Signals table describes the transmit out-of-band flow control interface signals specified in the *Interlaken Protocol Specification*, *Revision 1.2*. The TX Out-of-Band Flow Control Block Signals for Application Use table describes the signals on the application side of the TX out-of-band flow control block.

Out-of-Band Flow Control in the 100G Interlaken MegaCore Function

Table 10-2: TX Out-of-Band Flow Control Interface Signals

Signal Name	Direction	Width (Bits)	Description
fc_clk	Output	1	Output reference clock to an upstream out-of-band RX block. Clocks the fc_data and fc_sync signals. You must connect this signal to a device pin.
fc_data	Output	1	Output serial data pin to an upstream out-of-band RX block. You must connect this signal to a device pin.
fc_sync	Output	1	Output sync control pin to an upstream out-of-band RX block. You must connect this signal to a device pin.

Table 10-3: TX Out-of-Band Flow Control Block Signals for Application Use

Signal Name	Direction	Width (Bits)	Description
double_fc_ clk	Input	1	Reference clock for generating the flow control output clock fc_clk. The frequency of the double_fc_clk clock must be double the intended frequency of the TX fc_clk output clock.
double_fc_ arst	Input	1	Asynchronous reset for the out-of-band TX block.
ena_status	Input	1	Enable transmission of the lane status and link status to the downstream out-of-band RX block. If this signal is asserted, the lane and link status information is transmitted on fc_data. If this signal is not asserted, only the calendar information is transmitted on fc_data.
lane_status	Input	Number of Lanes	Lane status to be transmitted to a downstream out-of-band RX block if ena_status is asserted. Width is the number of lanes.
link_status	Input	1	Link status to be transmitted to a downstream out-of-band RX block if ena_status is asserted.
calendar	Input	16	Calendar status to be transmitted to a downstream out-of-band RX block.

Related Information

Interlaken Protocol Specification, Revision 1.2

RX Out-of-Band Flow Control Signals

The receive out-of-band flow control interface receives input flow-control clock, data, and sync signals and sends out calendar and status information. The RX Out-of-Band Flow Control Interface Signals table describes the receive out-of-band flow control interface signals specified in the *Interlaken Protocol Specification*, *Revision 1.2*. The RX Out-of-Band Flow Control Block Signals for Application Use describes the signals on the application side of the RX out-of-band flow control block.

Out-of-Band Flow Control in the 100G Interlaken MegaCore Function

Altera Corporation

Table 10-4: RX Out-of-Band Flow Control Interface Signals

Signal Name	Direction	Width (Bits)	Description
fc_clk	Input	1	Input reference clock from an upstream out-of-band TX block. This signal clocks the fc_data and fc_sync signals. You must connect this signal to a device pin.
fc_data	Input	1	Input serial data pin from an upstream out-of-band TX block. You must connect this signal to a device pin.
fc_sync	Input	1	Input sync control pin from an upstream out-of-band TX block. You must connect this signal to a device pin.

Table 10-5: RX Out-of-Band Flow Control Block Signals for Application Use

Signal Name	Direction	Width (Bits)	Description
sys_clk	Input	1	Reference clock for capturing RX calendar, lane status, and link status. Frequency must be at least double the frequency of the TX fc_clk input clock.
sys_arst	Input	1	Asynchronous reset for the out-of-band RX block.
status_update	Output	1	Indicates a new value without CRC-4 errors is present on at least one of lane_status or link_status in the current sys_clk cycle. The value is ready to be read by the application logic.
lane_status	Output	Number of Lanes	Lane status bits received from an upstream out-of-band TX block on fc_data. Width is the number of lanes.
link_status	Output	1	Link status bit received from an upstream out-of-band TX block on fc_data.
status_error	Output	1	Indicates corrupt lane or link status. A new value is present on at least one of lane_status or link_status in the current sys_clk cycle, but the value has at least one CRC-4 error.
calendar	Output	16	Calendar bits received from an upstream out-of-band TX block on fc_data.
calendar_ update	Output	1	Indicates a new value without CRC-4 errors is present on calendar in the current sys_clk cycle. The value is ready to be read by the application logic.
calendar_error	Output	1	Indicates corrupt calendar bits. A new value is present calendar in the current sys_clk cycle, but the value has at least one CRC-4 error.

Related Information

Interlaken Protocol Specification, Revision 1.2

Altera Corporation

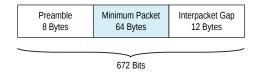
Out-of-Band Flow Control in the 100G Interlaken MegaCore Function

Performance and Fmax Requirements for 100G Ethernet Traffic

2013.12.02

UG-01128

Send Feedback


To achieve 100G Ethernet line rates through the application interface of your 100G Interlaken IP core, you must run the transmit side and receiver side user interface clocks tx_usr_clk and rx_usr_clk at the following minimum required operating frequency:

- 300 MHz in single segment mode and in 24 lane variations⁽³⁾
- 225 MHz in 12 lane variations in dual segment mode

The following discussion describes the packet rate calculation that supports this requirement.

Figure A-1: Interlaken Ethernet Packet

To transmit a minimum size (64-byte) Ethernet packet, the Interlaken link transmitter must send 672 bits of data.

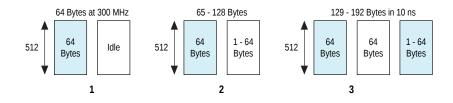
To support an Ethernet line rate of 100Gb/s, the Interlaken link must process 1000 bits in 10ns. The following calculation derives the required clock frequency.

100 x 1,000,000,000 bits/sec
$$\div$$
 672 = 148.8 million packets/sec \approx 150 million packets/sec

This packet rate requires that the user interface handle one packet per cycle if the operating clock runs at 150 MHz, or one packet per two cycles if the operating clock runs at 300 MHz.

In dual segment mode, because the final cycle of one packet can overlap with the initial cycle of another packet, the operating clock frequency requirements are derived from the average number of cycles required for a single packet in back-to-back traffic. The calculations that follow show that the minimum operating clock frequency in dual segment mode is 225 MHz.

The following figures explain the derivation of the minimum frequency requirements.


^{© 2013} Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

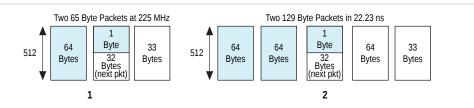
⁽³⁾ The restriction to a minimum of 300 MHz in dual segment mode in 24 lane variations is an artifact of the clocking scheme in this IP core.

Figure A-2: Packet Processing Requirements in Single Segment Mode

A 65-byte packet comprises $(65 + 20) \times 8 = 680$ bits. Therefore, for traffic that consists mainly of 65-byte packets, the most inefficient traffic possible, the user interface must handle:

 $100 \times 1,000,000,000$ bits/sec $\div 680 = 147$ Million packets/sec, or one packet every 6.8 ns.

Case 2 in the single segment mode figure shows that the user interface requires two cycles to process each 65-byte packet. At 300 MHz, two cycles take 6.66 ns, which is a sufficiently small amount of time.


A 129-byte packet comprises $(129 + 20) \times 8 = 1192$ bits. Therefore, for traffic that consists mainly of 129-byte packets, the user interface must handle:

 $100 \times 1,000,000,000$ bits/sec ÷ 1192 = 83.9 Million packets/sec, or one packet every 11.9 ns.

Case 3 in the single segment mode figure shows that the user interface requires three cycles to process each 129-byte packet. At 300 MHz, three cycles take 10 ns, which is a sufficiently small amount of time.

The same calculations applied to lower frequencies yield an average time per packet that is not sufficiently short. Therefore, 300 MHz is the recommended frequency for the two user data transfer interface clocks in your single segment mode 100G Interlaken IP core. For logistical clocking reasons, this frequency is also recommended for your 24-lane variation in dual segment mode.

Figure A-3: Packet Processing Requirements in Dual Segment Mode

In dual segment mode, a 65-byte packet or a 129-byte packet can be followed in the same cycle by the first 32 bytes of the following packet. The table summarizes the numbers illustrated in the figure.

Table A-1: Packet Processing Time in Dual Segment Mode at 225 MHz

The time to process two consecutive packets at 225 MHz is simply the time taken by the relevant number of cycles at 225 MHz. The required maximum time per packet is derived in the discussion of the requirements for single segment mode.

ı			Processing Time	Required Maximum Time per	
ı		Number of Cycles	At 225 MHz:		
ı	Packet Size (Bytes)	for Two Consecu- tive Packets	Time for Two Consecutive Packets (ns)	Average Time per Packet (ns)	
	65	3	13.33	6.66	6.8

Performance and Fmax Requirements for 100G Ethernet Traffic

		Processing Time	Required Maximum Time per	
	Number of Cycles	At 225 MHz:		
Packet Size (Bytes)	for Two Consecu- tive Packets		Average Time per Packet (ns)	·
129	5	22.23	11.12	11.9

Both of the average times per packet are sufficiently short, based on the packets per second requirements for the different sized packets (6.66 < 6.8 and 11.12 < 11.9). The same calculations applied to lower frequencies yield an average time per packet that is not sufficiently short. Therefore, 225 MHz is the recommended frequency for the two user data transfer interface clocks in your 12-lane, dual segment mode 100G Interlaken IP core.

Additional Information

2013.12.02

UG-01128

Subscribe Send Feedback

This section provides additional information about the document and Altera.

Document Revision History

Table B-1: 100G Interlaken MegaCore Function User Guide Revision History

Date	Version	Changes Made
December 2013	13.1 Arria 10 Edition (2013.12. 02)	 Added preliminary support for Arria 10 devices. Documented features of new Arria 10 variations: User logic must configure external PLLs. IP core includes reconfiguration controller. IP core includes new Avalon-MM interface to program Arria 10 Native PHY IP core registers. IP core does not support all of the hidden parameters. IP core does not support temperature register and other registers related to unsupported parameters. IP core provides a different process to enable the PRBS and CRC32 error injection testing features in Arria 10 variations. Corrected recommended simulation value for Meta frame length in words parameter, from 64 (an unsupported value) to 128 (the minimum supported value).

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at $www. alter a. com/common/legal. html. \ Alter a warrants performance of its semiconductor products to current specifications in accordance with the semiconductor products and the semiconductor products are considered by the semiconductor products and the semiconductor products are considered by the semiconductor products and the semiconductor products are considered by the semiconductor products and the semiconductor products are considered by the semiconductor pro$ Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008

Date	Version	Changes Made
November 2013	13.1 (2013.11.04)	 Documented change from Received data format to Data format parameter. If you select Single segment mode, the IP core can no longer handle incoming dual segment traffic on the TX client data interface. Added information about the four new parameters: Include advanced error reporting and handling Enable M20K ECC support Include diagnostic features Include in-band flow control functionality
		Documented new ECC feature for Arria 10 and Stratix V device M20K memory blocks, including four new registers:
		• CNT_ERR_TX • CNT_UNCOR_TX • CNT_ERR_RX • CNT_UNCOR_RX
		 Documented new diagnostic feature: CRC24 error injection, including the new ERR_INJECT register. Added resource utilization information. Updated IP core generation instructions to indicate the MegaWizard Plug-In Manager no longer prompts the user to generate or not generate the example design. Instead, the example design is generated in all cases. Provided additional information about TEMP_SENSE register. Corrected typo in width of itx_hungry signal. Added OpenCore Plus feature support in Installation and Licensing section.
May 2013	13.0 (2013.05.06)	 Documented the new dual segment mode, including: New Received data format parameter in the 100G Interlaken parameter editor. Changed user data transfer signal widths. Added new itx_ifc_err signal. Expanded Fmax requirements discussion to include the dual segment mode case.
		 Documented the new Transfer mode selection parameter in the 100G Interlaken parameter editor. Previously this parameter was hidden (TX_PKTMOD_ONLY). Documented new error handling features, including changes to and renaming of irx_crc_24_err signal to irx_err. Added PRBS support. Changes include addition of new hard PCS registers. Added support for CRC-32 error injection. Updated device speed grade information. Modified document format.

Altera Corporation Additional Information

Date	Version	Changes Made
February 2013	12.1 SP1	 Reformatted figures. Modified Figure 4–1 on page 4–2, Figure 4–2 on page 4–4, Figure 5–1 on page 5–10, and Figure 5–2 on page 5–10 for readability. Removed mention of OpenCore evaluation feature from "100G Interlaken IP Core Evaluation Features" on page 1–5 because the feature name caused confusion with the OpenCore Plus evaluation feature. The current and past descriptions of the evaluation features are correct. Added default parameter values in Chapter 3, Parameter Settings and in Chapter 7, Advanced Parameter Settings. Renamed Appendix A, Performance and Fmax Requirements for 100G Ethernet Traffic. Consolidated information about 100G Interlaken MegaCore function license. All variations of this IP core are available if you have a single Altera license for this IP core. Enhanced description of RX and TX data paths in new sections "Transmit Path Blocks" on page 4–9 and "Receive Path Blocks" on page 4–13. Corrected location of "Receiver Side Timing Diagrams" on page 4–10 to "Receive Path" on page 4–10.
November 2012	12.1	Initial release.

How to Contact Altera

Table B-2: How to Contact Altera

To locate the most up-to-date information about Altera products, refer to this table. You can also contact your local Altera sales office or sales representative.

Contact	Contact Method	Address
Technical support	Website	www.altera.com/support
Technical training	Website	www.altera.com/training
Technical training	Email	custrain@altera.com
Product literature	Website	www.altera.com/literature
Nontechnical support: general	Email	nacomp@altera.com
Nontechnical support: software licensing	Email	authorization@altera.com

Related Information

- www.altera.com/support
- www.altera.com/training
- custrain@altera.com

Additional Information Altera Corporation

- www.altera.com/literature
- nacomp@altera.com
- authorization@altera.com

Typographic Conventions

Table B-3: Typographic Conventions

Lists the typographic conventions this document uses.

Visual Cue	Meaning
Bold Type with Initial Capital Letters	Indicate command names, dialog box titles, dialog box options, and other GUI labels. For example, Save As dialog box. For GUI elements, capitalization matches the GUI.
bold type	Indicates directory names, project names, disk drive names, file names, file name extensions, software utility names, and GUI labels. For example, \ qdesigns directory, D: drive, and chiptrip.gdf file.
Italic Type with Initial Capital Letters	Indicate document titles. For example, <i>Stratix V Design Guidelines</i> .
italic type	Indicates variables. For example, $n + 1$.
	Variable names are enclosed in angle brackets (< >). For example, <i><file name=""></file></i> and <i><project name=""></project></i> . pof file.
Initial Capital Letters	Indicate keyboard keys and menu names. For example, the Delete key and the Options menu.
"Subheading Title"	Quotation marks indicate references to sections in a document and titles of Quartus II Help topics. For example, "Typographic Conventions."
Courier type	Indicates signal, port, register, bit, block, and primitive names. For example, data1, tdi, and input. The suffix n denotes an active-low signal. For example, resetn.
	Indicates command line commands and anything that must be typed exactly as it appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.
	Also indicates sections of an actual file, such as a Report File, references to parts of files (for example, the AHDL keyword SUBDESIGN), and logic function names (for example, TRI).

Altera Corporation Additional Information

Visual Cue	Meaning
1., 2., 3., and a., b., c., and so on	Numbered steps indicate a list of items when the sequence of the items is important, such as the steps listed in a procedure.
•	Bullets indicate a list of items when the sequence of the items is not important.
The Subscribe button links to the Email Subscrivou can sign up to receive update notifications	iption Management Center page of the Altera website, where for Altera documents.

The Feedback icon allows you to submit feedback to Altera about the document. Methods for collecting feedback vary as appropriate for each document.

Related Information

Email Subscription Management Center

Additional Information Altera Corporation

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Altera:

<u>IP-INTLKN/100G/20L | IPR-INTLKN/100G12L | IPR-ILKN/100G | IP-INTLKN/150G/24L | IP-ILKN/50G | IP-INTLKN/150G24L | IPR-ILKN/50G | IP-INTLKN/100G/12L | IPR-INTLKN/100G/12L | IPR-INTLKN/100</u>